The Alexander polynomials of immersed concordant links *

Akio Kawauchi
Osaka City University Advanced Mathematical Institute
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

For two links bounded by an immersed concordance of annuli, we relate the
number of the double points of the immersed annuli to the beta-distance and the
torsion multi-variable Alexander polynomials of the links. This result unifies
T. Kanenobu’s announced result on the Alexander polynomial of a link with
unlinking number one and the author’s result on the Alexander polynomials of
concordant links.
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1. Introduction

As alink an oriented link L in the 3-sphere S* with components K; (1 = 1,2,...,7)
for r > 2 is considered. A link L is immersed concordant to a link L' with components
K!(i=1,2,...,r) if there is a smooth proper immersion

a:rS'x I —S*xI, I=10,1]

such that a(rS* x 0) = L x 0, a(rS' x 1) = L' x 1, and the image a(S,) of the
singular set S, of « consists of finitely many transversely intersected double points in
S3 x (0,1), where rS! denotes the disjoint union of r copies of St. It is understood
that the pairs (S x 0, L x 0) and (S® x 1, L' x 1) are identified with the orientation
reversing pair (—S®, —L) and the oriented pair (S*, L), respectively. The image A of
a consisting of r immersed annuli is called an immersed concordance from L to L'.
The links L and L' are said to be concordant if o is an embedding.! It can be seen

*Dedicated to Professor Francisco Gonzdalez-Acufia on his 70th birthday.
'In an earlier work, “concordant”is called “cobordant”.



that for any links L and L’ with the same number r of components, there is always
an immersed concordance from L to L'. Let A = U]_, A; where A; is the immersed
annulus in A connecting K; to K! by re-indexing the components K/ (i =1,2,...,r)
of L'. The double point number c(A) of A is defined to be the cardinality of a(S,).
The 4-dimensional clasp distance ¢*(L, L") between L and L' are defined by

c*(L, L") = min{c(A)| Aisanimmersed concordance from L to L'.}

In particular, the 4-dimensional clasp number ¢*(L) of L is the 4-dimensional clasp
distance ¢*(L,L') with L’ a trivial link. By definition of the 4-dimensional clasp
number, the inequalities

lc{(L) — ML) < AL, L) < ML) + L)

are established for all links L, L' with the same number of components. It is obvious
that L and L' are concordant if and only if ¢*(L,L') = 0. The Gordian distance
u(L, L") between L and L' is the minimal number of crossing changes needed to
obtain L' from L. In particular, the unlinking number u(L) of L is the Gordian
distance u(L, L") with L' a trivial link. By definition of the unlinking number, the
inequalities

lu(L) — u(L)| < u(L,L") <u(L)+ u(L')

are established for all links L, L’ with the same number of components. If a link L' is
obtained from a link L by n crossing changes, then we have an immersed concordance
A from L to L' with ¢(A) = n by considering the trace of the crossing changes from
L to L' in S? x I. Thus, we have

u(L,L") > L, L.

Let E = E(L) = cl(S*\N(L)) be the compact exterior of L for a tubular neighborhood
N(L) of L in S3. The first homology H;(F) is a free abelian group of rank r and has
a basis given by choices of oriented meridians of L. We explain here the graded multi-
variable Alexander polynomials of L ([6, Chapter 7]). Let A = Z[ti!, 5!, ..., t*!] be
the integral group ring Z[H, (E)] where t; represents a meridian of /;. The link module
of L is the A-module H;(E) for the universal free abelian covering £ — E, namely
the regular covering associated with the Hurewicz epimorphism 7, (£) — H,(£). By
the Noetharian property of A, the link module H;, = H;(F) is finitely generated over
A. For a finitely generated A-module H, let S(H) denote the A-rank of H, namely
the Q(A)-dimension of the Q(A)-vector space H ), Q(A) for the quotient field Q(A)
of A. Let TH be the A-torsion part of H, which is also finitely generated over A
by the Noetharian property of A. Let DH be the A-submodule of T'H consisting
of all elements x such that f;z = 0 for coprime elements f; € A (i = 1,2,...,5s)
for some s > 2. Let BH = H/TH be the A-torsion-free part of H. For any non-
negative integer d, the d-th characteristic polynomial A (H) is defined in [6] by using
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a A-presentation matrix of H. The zeroth polynomial A (H) is simply denoted by
A(H). It is standard to use the notation f = f’ for elements f, f' € A which are
equal up to the units ££7*¢5% ... t" (ny,ng,...,n, € Z) of A. Let AT(H) = A(TH).
For convenience, we list some known facts on properties of the graded characteristic
polynomials which are often used in this paper.

Facts on properties of the graded characteristic polynomials.

(1) For every short A-exact sequence 0 — 7" — T — T" — 0 of finitely generated
torsion A-modules 7", T, 7", we have A(T) = A(T")A(T").

(2) For every finitely generated A-module H, we have A@(H) = 0 for all d < B(H)
and AD(TH) = AUHSED)(H) for all d > 0.

(3) For every finitely generated A-module H with H = DH, we have A(H) = +1.
(4) Let (X, X’) be a regular Z"-covering of a compact polyhedral pair (X, X’). If
Hy(X,X') = 0, then the A-module T; = Hy(X,X') for A = Z[Z"] is a finitely
generated torsion A-module with A(7y)(1,1,...,1) = 1.

Ezxplanation on how Facts (1)-(4) are obtained. For the proof of (1), see [5, Lemma
2.4]. For the proof of (2), apply [6, 7.2.7 (3)] to the natural short exact sequence
0 - TH — H — BH — 0. The proof of (3) is given by the induction on the
minimal number m(H) of A-generators of H. In fact, if m(H) = 1, then there are
coprime elements f; € A (i = 1,2,...,s) with s > 2 and a A-generator = of H
such that f;x = 0 for all i, so that there is a A-epimorphism A/f;A — H. By
Fact (1), A(H) is a factor of the element f; for every i. Using that the elements f;
(1=1,2,...,s) are coprime, we see that A(H) = £1. If m(H) > 2, then we choose
a A-submodule H' C H with ¢(H') = 1 and m(H/H') = m(H) — 1. By induction
on m(H), we have A(H") = A(H/H') = £1, so that A(H) = A(H")A(H/H') = £1
by Fact (1) as desired. The proof of (4) is given in [5, Lemma 2.1] (see also [2] for a
similar argument). This concludes the explanation.

The identity AT(H) = APUH)(H) given by Fact (3) is always a non-zero element of
A and useful in our argument. Let S(L) = B(Hy) which is called the S-rank of L.
Then 0 < (L) < r — 1. The d-th Alexander polynomial A(Ld) = A(Ld) (t1,t9,...,t,) of
L is just the d-th characteristic polynomial A4 (H;). Then A(Ld) = 0 for all d with
0 < d < B(L) and the S(L)-th Alexander polynomial ASZ’B(L)) is equal to the zeroth
Alexander polynomial AT (Hp), which we call the torsion Alexander polynomial of
L and denoted by A?. The zeroth Alexander polynomial Ay is usually called the
Alexzander polynomial of L. By definition, A, # 0 if and only if (L) = 0. The
boundary polynomial b(L) € A of L is the zeroth characteristic polynomial of the
torsion A-module H,(0F). The peripheral polynomial p(L) € A of L is the zeroth

characteristic polynomial of the image imH,(0F) of the natural A-homomorphism
H,(0F) — H,(FE) which is a torsion A-module. The peripheral polynomial p(L) of L
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is a factor of the boundary polynomial b(L) as well as a factor of the torsion Alexander
polynomial AT and will be shown in Lemma 2.1 (4) to be a concordance invariant.
Let A be an immersed concordance from L to L. For every i (i =1,2,...,7), let

c=c(A)= D oA, A,

1<j<r j#i

where ¢(A;, A;) denotes the number of the intersection double points of the immersed
annuli A4; and A;. We note that

¢~ > |Link(K;, K;) — Link(K/, K')|

1<j<r j#i

is a non-negative even integer by the well-known properties on the intersection number
and the linking number. For an ¢, the pair (K;, L\K;) is algebraically split if the
linking number Link(K;, K;) = 0 for all j # ¢, and the link L is algebraically split if
(K;, L\K;) is algebraically split for every i. For example, if (K;, L\ K;) is algebraically
non-split and (K, L'\ K!) is algebraically split, then we have ¢; > 1. Let

( ¢; if neither (K;, L\ K;) nor (K}, L'\K})
or is algebraically split,
¢; — 1 if either, but not both, of (K;, L\ K;)
or (K|, L'\K]) is algebraically split,
max{0,¢; — 2} if both (K;, L\K;) and (K, L'\K))
are algebraically split.

\

The peripheral polynomial of the immersed concordance A is the element

T

p(A) =[]t - 1) e A.

i=1
For any non-zero element f € A we can write it as

T

f= [t t) = H(tz —1)"yg

i=1
for some integers n; > 0 (i = 1,2,...,r) and an element g € A which does not have
any element t; — 1 (i = 1,2,...,7) as a factor. Then the elementary factor e(f) of

f is defined by e(f) = [[;_,(t; — 1) where ¢; € {0,1} is the modulo 2 reduction of
n;. If f =0, then we take e(f) = 0. The peripheral polynomial p(L, L") of the link
pair (L, L') is defined to be the elementary factor p(L, L") = e(p(.A)) of the peripheral
polynomial p(A) of the immersed concordance A, which will be shown later to be
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independent of a choice of A and determined only by the link pair (L,L’). For a
Laurent polynomial f = f(t1,t2,...,t,) € A, we denote

fr=fhtt .t e

It is a classical result due to Blanchfield [1] that A(Ld) = A(Ld)* for all d, so that in
particular, A;, = A% and AT = (AT)*. In [5], the author showed the following result
in a slightly different form, whose difference is explained soon after Lemma 2.1. (see
also Theorem 5.4.2 in [13].)

Concordance Theorem. If L and L' are concordant, then we have
AfAL = 17
for an element f € A.

T. Kanenobu announced the following result in [4].

Unlinking Number One Theorem. For an r-component link L with u(L) = 1,
we have Ay = 0 for r > 2, and for r = 2 there is an element f € A such that

ff*  if Link(L) = +1

Ar = { (b — 1)(ts — 1)ff*  if Link(L) = 0.

The gap factor of a link pair (L, L) is the elementary factor g(L, L") = e(ATAL)) of
the product ATAZ,. The S-distance of a link pair (L, L') is the number

B(L, L) = |B(L) = BL)| <7 — 1.
The following theorem is our main theorem.
Theorem 1.1 We have
u(L, L") > (L, L") > B(L,L') > 0.
Further, if ¢*(L, L") = B(L, L"), then we have
ATAL = g(L, L)ff* and  g(L, L) = e(p(L)p(L, L')p(L))
for an element f € A.

It is noted that another estimate of the Gordian distance u(L, L) from below is given
by different invariants of a link in [7]. As a corollary to Theorem 1.1, we obtain the
following result.



4-dimensional Clasp Number One Theorem For an r-component link L with
(L) =1, we have A, = 0 for r > 2, and for r = 2 there is an element f € A such
that
A - { ff* if Link(L) = £1

T (=1t = 1)ff*  if Link(L) = 0.
We note that if r = 2, ¢*(L) = 1 (or u(L) = 1) and Link(L) # 0, then we have
Link(L) = £1 because of the following inequalities

u(L) > ¢*(L) > [Link(L)].

Then Unlinking Number One Theorem follows directly from 4-dimensional Clasp
Number One Theorem because if Ay # 0 and u(L) = 1, then » = 2 and u(L) =
¢'(L) = B(L,0) = B(0) = 1.

In § 2, some computations of the boundary polynomial and the peripheral polyno-
mial are done and it is explained how Concordance Theorem and 4-dimensional Clasp
Number One Theorem are derived from Theorem 1.1. Throughout § 3, the proof of
Theorem 1.1 is done. In § 4, we show three corollaries to Theorem 1.1 and exam-
ples on the unlinking number, the 4-dimensional clasp number and the peripheral
polynomials.

2. Computing the boundary polynomial and the peripheral polynomials

The following lemma is used to compute the boundary polynomial and the pe-
ripheral polynomial of a link.

Lemma 2.1 We have the following (1)-(3).

(1) The boundary polynomial b(L) of a link L is given by b(L) = [[_,(t; — 1)=
where ¢; € {0,1} (i = 1,2,...,r), and ¢; = 1 if and only if the pair (K;, L\K;) is
algebraically split.

(2) If B(L) = 0, then p(L) = b(L).

(3) If B(L) = r — 1, then L is algebraically split, b(L) = [[;_,(¢t; — 1) and p(L) = 1.
(4) Let f, € A be the factor of AT obtained from AT by removing all the non-unit
prime factors g, € A of AT with ¢;(1,1,...,1) = 1. Then p(L) is a factor of fr. If L
is concordant to a link L', then we have f;, = fr, and p(L) = p(L’).

In (4), we take an element f, € A with AT = f,f,. Then f,(1,1,...,1) = =£1.
Counting the identity f; = fr/ given by (4) and also known by [5], we obtain the
identities f;, = fihh* and AT = AT hh* for an element h € A with h(1,1,...,1) =
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+1 from Concordance Theorem. This last identity is an exact form of Concordance
Theorem given in [5].

Proof To see (1), we note that the lift of the torus component T; of F around K,
to OF consists of components homeomorphic to S' x R or RQ according to whether
(K;, L\K;) is algebraically split or not. Hence we have H,(0E) = @, _, A/(t;, —1) for
the members i, (k =1,2,...,s)in{1,2,...,r} withe;, = Land b(L) = [[,_, (t;, —1).
To see (2), since

B(L) =0, Hy(E) = DHy(E) = \N/(t; — 1,t, — 1,...,t, — 1), DH,(0E) =0,
Blanchfield duality [1] implies that there is a (1, to, . .., t,)-anti monomorphism
BH,(E,0E) — hom(BH,(E),A) =0
and there is a (1, to, ..., t,)-anti isomorphism
THy(E,0E)/DH,(E,0E) = hom (T Hy(E)/DHy(E), Q(A)/A) = 0.

Thus, we see that Hg(l?, 8127) = DHQ(NE’, OF). Then, because DH,(0E) = 0, the
boundary map 0, : Ho(E,0FE) — H,(OL) is the zero-map. Hence the natural homo-
morphism H,(0F) — H\(E) is injective, so that we have p(L) = b(L). To see (3), let
Aqy = Z[t,t '] be the t-variable Laurent polynomial ring, and E(;) — E the infinite
cyclic covering associated with the epimorphism H,(E) — Z sending every oriented
meridian of L in OF to 1 € Z. Then the A(jy-rank §(1)(L) of the Ajy-module H, (E(y))
is 7 — 1 (cf. [6, 7.3.12]), which implies that the torsion Alexander polynomial A of

the A¢)-module H,(E()) has A(;y(1) = £1. Thus, the natural homomorphism
Hy(0Bw) = (Aw/(t = 1)" = Hi(Eq)

must be trivial, meaning that the longitude of K; in OF is the boundary of a 2-
chain in £ and hence Link(K;, L\K;) = 0, for every i. Thus, L is algebraically
split. By (1), we have b(L) = [[_,(t; — 1). To see (4), we note that the periph-
eral polynomial p(L) is a factor of AT which does not have any non-unit prime
element ¢g; € A with ¢;(1,1,...,1) = 1. Hence p(L) is a factor of f,. To see that
p(L) is a concordance invariant, let E(A) = cl(S® x I\N(A)) be the exterior of a
concordance A from L to L' where N(A) denotes a tubular neighborhood of A in
S3x 1. Let Ry = cl(0E(A)\(E(L) x 0U E(L") x 1)) which is homeomorphic to both
(OE(L)) x I and (OE(L')) x I. The universal free abelian coverings E(L) — E(L)
and E(L") — E(L') extend to the universal free abelian covering E(A) — E(A).
Since the natural homomorphism H,(0E(L)) — Hi(R4) is a A-isomorphism, the
natural homomorphism H,(£(L)) — Hi(£(A)) sends the image imH, (0L/(L)) of the
natural homomorphism H,(0E(L)) — Hi(£(L)) onto the image imH,(R4) of the
natural homomorphism H;(R4) — Hi(E(A)). Let AL be the zeroth polynomial of
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TH,(E(A)), and p(A) the zeroth polynomial of imH, (R4). Let f4 € A be the factor
of AL obtained from AZ by removing all the non-unit prime factors g; € A of A%
with ¢;(1,1,...,1) = 1. We have

H,(E(A),E(L) x 0) = H,(E(A), E(L") x 1) = 0.
By Fact (4), the A-module 7. = H,(E(A), E(L) x 0) is a torsion A-module with
A(T,)(1,1,...,1) = £1. In the homology exact sequence of the pair (E(A), E(L)x0),
let T3 be the image of the connecting homomorphism

0, : Ty = Hy(E(A), E(L) x 0) — TH,(E(L) x 0),
and 77 the image of

o THi(E(A) x 0) — H,(E(A),E(L) x 0) = 11.
By Fact (1), A(T})(1,1,...,1) = £1(d = 1,2). From the short A-exact sequence

0 — TH(FE(L) x 0)/Ty — TH,(E(A)) = T, -0

and Fact (1), the identity f; = f.4 is obtained. The zeroth polynomial of the A-module
Ty =Ty NimH, (OE(L)) is a unit of A, because by Fact (1) the zeroth polynomial
A(T}) is a common factor of the zeroth polynomlals A(T}) and p(L) which is coprime.
Since the A-epimorphism imH, (0E(L)) — imH, (R4) induces a A-isomorphism

imH, (0E(L))/T! = imH, (R.),

we have p(L) = p(A) by Fact (1). Similarly, we have f,, = f4 and p(L') = p(A).
Thus, we have f;, = f;, and p(L) = p(L'). This completes the proof.

The following lemma shows that the peripheral polynomial of a link pair is calculable
by the linking numbers modulo 2 of the immersed concordant links and hence is
independent of a choice of an immersed concordance.

Lemma 2.2 The peripheral polynomial p(L, L") of a pair (L, L') has the form

T

p(L, L) =]t = 1),

=1

where ¢; € {0,1} is determined by

( Link(K;, L\K;) + Link(K!, L'\K?) (mod 2) if neither (K;, L\K;)
nor (K, L'\K}) is algebraically split,

g; = ¢ Link(K;, L\K;) + Link(K], L'\K]) —1 (mod 2) if either, but not
both, of (K;, L\K;) or (K[, L'\K]) is algebraically split,

0 if both (K;, L\K;) and (K[, L'\K) are algebraically split.

8



Proof As observed in the introduction, we have
¢; = Link(K;, L\ K;) 4+ Link(K;, L'\K}) (mod 2).

In particular, if both (K;, L\K;) and (K[, L'\K]) are algebraically split, then ¢; is
even and max{0,¢; — 2} =0 (mod 2). This completes the proof.

The following corollary is useful in deriving 4-dimensional Clasp Number One Theo-
rem from Theorem 1.1.

Corollary 2.3 Assume that ¢*(L,L') = S(L,L') = r — 1 with (L) =0 and (L) =
r — 1. Then we have the following (1) and (2).

(1) If L is algebraically split, then we have g(L, L") = [[;_,(t; — 1).

(2) If Link (K, L\K;) is odd for every i, then we have g(L, L") = 1.

Proof By the assumption of (1), we have p(L) = [[;_,(t; — 1) and p(L') = 1 by
(1), (2) and (3) of Lemma 2.1, and p(L,L') = 1 by Lemma 2.2, obtaining (1) by
Theorem 1.1. For the assumption of (2), we have p(L) = p(L') = 1 by (1), (2) and
(3) of Lemma 2.1, and p(L, L") = 1 by Lemma 2.2, obtaining (2) by Theorem 1.1.

We are in a position to explain how Concordance Theorem and 4-dimensional Clasp
Number One Theorem are derived from Theorem 1.1.

Deriving Concordance Theorem and j-dimensional Clasp Number One Theorem from
Theorem 1.1. 'To derive Concordance Theorem from Theorem 1.1, assume that L
and L' are concordant. Then we have ¢*(L,L') = B(L,L') = 0 and p(L,L’) = 1.
Since p(L) is a concordance invariant, we have p(L) = p(L’), so that ¢g(L,L') = 1.
Thus, Concordance Theorem is obtained from Theorem 1.1. To derive 4-dimensional
Clasp Number One Theorem from Theorem 1.1, let L be an r-component link with
¢*(L) = 1. By Theorem 1.1, we have

1> B(L,0) 2 B(O) — B(L) = — 1 - H(L)

for an r-component trivial link O. Hence if > 2, then S(L) > r —2 > 0 and
A, = 0. For r = 2, assume Ay # 0. Then (L) = 0 and ¢*(L) = B(L,0) = 1.
Since AT(O) =1 and |Link(L)| < ¢*(L) = 1, the desired result follows directly from
Theorem 1.1 and Corollary 2.3.

3. Proof of Theorem 1.1

Throughout this section, the proof of Theorem 1.1 will be done. Let A be an
immersed concordance from L to L' with n = ¢(A) = ¢*(L, L'). We assume that

BL) =p(L)+b
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Figure 1: An immersed concordance A

Figure 2: The surface F

for b= p(L,L") = |B(L)— S(L)|. Since every transversely intersected double point in
A is topologically represented by the cone vertex of a Hopf link, we slide the double
points in A into L' x 1. Then we obtain from A; a connected oriented proper planar
surface Fj in S® x I for every i such that F; N F; = () for every i # j and the boundary
OF of the surface F' = U]_, F} is given by OF = (—L) x0UL" x 1, where L" is the link
which is regarded as a connected sum L" = L'#5_ SH'#_ U[' for thelink L' and the
Hopf links S§' (j = 1,2,...,s) and UJ" (k= 1,2,...,u) with the following conditions
(1)-(3) (see Fig. 1 for an illustration of an immersed concordance A and Fig. 2 for an
illustration of the surface F):

(1) s +u=n.

(2) The connected sum connects one component of L' and one component of S{* for
every j and one component of L' and one component of U for every k.

(3) The components of every Hopf link Sf except the arc used for the connected
sum belong to the same component of F' and the components of every Hopf link U}
except the arc used for the connected sum belong to distinct components of F.
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We attach a (+1)-framed 2-handle 7% to S* x 1 to make a (£1)-twist on S/ producing
a two-component trivial link. Then the surgery of S* x 1 on the 2-handles b3 (j =
1,2,...,s) change the link L” into the split link of the links (L'#¢_,UH) x 1 and
an s-component trivial link O® x 1. We assume that the attaching core circle of
the 2-handle h? has linking number 0 with Sf. By adding s mutually disjoint disks
in S x 1 bounded by O® x 1 to the surfaces F; (i = 1,2,...,7), we obtain planar
surfaces F{ (i = 1,2,...,7) in a 4-manifold X = S$* x I Uj_, h} with boundary
0X = 5% x 0US? x 1 such that the surface F’ = U!_, F] has boundary 0F' = (—L) x
0U (L'#¢_UH) x 1. Further, we add the connected sum bands By, (k =1,2,...,u)
used for the connected sum (L'#¥_,UH) x1in S? x 1 to the surface F’. The resulting
surface F"' = F'U}_, By in X has r components such that the boundary 0F" is given
by OF" = (=L) x 0UL'_ x 1, where L', x 1is a link in S* x 1 split into the link L' x 1
and the Hopf links U x 1 (k= 1,2,...,u). After deforming F" into a proper surface
in X, let Y = cl(X\N(F")) be the compact 4-manifold for a tubular neighborhood
N(F") = F" x D? of F" in X. For the link L, let L = L(® U LM where L is the
sublink of L consisting of all components K such that (K, L\ K) is algebraically split
and LW is the sublink of L consisting of the other components. Applying the same
notation to the link L',, we have L', = (L,)® U (L,)® with (L',)® = (L')© and
(L)W = (L)W ut_, UE. Let My be the 0-surgery manifold of S* along L), and

M = cl(My\N(LWM))

for a tubular neighborhood N (L") of L™, Similarly, let M}, be the 0-surgery manifold
of 53 along L = (L), and

M= A(MP\N((L)D)), M, = cA(MON((L)D)).

Then we have a connected sum decomposition M/ = M'#_E(Uf) for the Hopf
link exteriors E(UH) (k=1,2,...,u). Since dY is a torus sum of link exteriors F(L)
and E(L',), and the product F” x S', we construct a 4-manifold

W=Mx[-1,00UY UM, x[1,2]

pasting M x [—1,0] and Y along E(L) x 0 and pasting Y and M’ x [1,2] along
E(L") x 1. Let G be a possibly disconnected proper surface in W' obtained from a
push off of F” by attaching disks to the components of L(® and (L', ) = (L")©. See
Fig. 3 for an illustration of the surface G.

Then the boundary OW of the 4-manifold W is a torus sum of M x (—1), M/ x 2 and
the product G x S*. If G has a 2-sphere component, namely if there is an S? x S*
component in G x S', then we paste the 4-manifold B® x S! with B3 the 3-ball
to it and hence assume that G x S! has no S? x S!' components. For simplicity,
we take M = M x (=1), P = G x S*, and M/, = M/ x 2. By construction, the

maximal free abelian covering F(L) over E(L) extends to a free abelian covering

11
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Figure 3: The surface G

(W; M, P, ]\;[:L) over (W;M,P,M!). For a compact submanifold pair (W', W") of
W, the homology H,E(W’J W™ of the lift (W', W") to VT{ forms a finitely generated
A-module. Let S,(W',W") denote the A-rank of H,(W',W"). At first, we note
that H;(P) is a finitely generated torsion A-module, which is seen from the following
lemma, because every component P; of P satisfies the assumption of the lemma after

a suitable permutation of the indexes of t; (j =1,2,...,7).

Lemma 3.1 Let G| be a 2-sphere with n(> 2) holes, and P, = G| x S*. Let the
fundamental group m;(P;) have a presentation with generators z; (i = 1,2,...,n)
and relators r; = zy27" and r; = zyza eyt (i = 2,...,n) where z; and x;(i =
2,3,...,n) are represented by a loop p x S* (p € G1) and loops in Gy x 1 (1 € S,
respectively. Let P, — P, be the covering associated with a homomorphism v :
m(P) — Z" such that v.(z1) = ¢; and . (z;) = u; is a monomial with coefficient +1
int;(j=1,2,...,r) such that u # ¢} for any integer k. Then we have the Alexander
polynomial A(H,(P;)) = (t; — 1)" 2. In particular, H,(P,) is a finitely generated
torsion A-module.

Proof We use the Fox free calculus [3] (see also [6, 7.1.5]). The Jacobian (n, n)-matrix
(Or;/0x;)" with entries in A is given by

0 0 0 0
].—U2 t]_—]_ 0 0
1—11,3 0 tl—l 0
1—u, 0 0 t1—1

This matrix is a presentation matrix of a A-module M admitting a short exact se-
quence
0— Hi(P) > M —<(A) =0,

12



where ¢(A) = (t; — 1,5 — 1,...,t, — 1) denotes the fundamental ideal which is the
torsion-free A-module of rank one obtained as the kernel of the homomorphism A — Z
sending every t; to 1. By Fact (2), the Alexander polynomial A(H,(P;)) = AM (M),
which is obtained from the second elementary ideal of the Jacobian matrix by taking
the smallest principal ideal. The second elementary ideal is

((tl - 1)11717 (1 - ul)(t o 1)7172 (7’ = 17 27 37 R n))
Hence we have A(H,(P)) = (t; — 1)* 2, completing the proof of Lemma 3.1.
We need the following computations of A-ranks, where the identity s+u = n is noted.

Lemma 3.2
(1) 61(8W) 26(L) + b+ wu.

(2) r(W) < B(L).
(3) B (aW) < Bz(W GW) + 51( ).
4) B (W 8W)—n+u+51( ).

Proof Since every solid torus S* x D? attaching to E(L) or E(L, ) used to construct
M or M’ lifts to the disjoint union of copies of R' x D? in M or M’, we have

B(L) = y(M) and
BILL) = pi(MY) = pi(M') +u=B(L) +u=B(L)+b+u.

Since W is a torus sum of M, M’ and P = G x S* and H,(P) is a finitely generated
torsion A-module, we have

Bi(OW) = Bi(M) + Bi(M},) =2B(L) +b+u,

showing (1). Since H,(W, M) = 0, we see from Fact (4) that B (W, M) = 0, which
implies that S(L) = (M) > p1(W), showing (2). Using the exact sequence

Hy,(W,0W) — H,(OW) — H, (W),

we have (3). To see (4), we note by Blanchfield duality [1] that Ba(W,0W) = Bo(W)
and f3(W) = (W, 0W). We see that 5, (W,0W) = 0 by the exact sequence

Hl(W, M) — Hl(W, 3W) — Ho(aW, M)
of the triad (W,0W, M) and By (W, M) = Bo(0W, M) = 0. The Euler characteristic
X(W) of W is given by x(W) = n + u. In fact, W is a union of M x [-1,0], Y,

M! % [1,2] and some copies of B* x S pasting along E(L) x 0, E(L' ) x 1 and
some copies of S? x S whose Euler characteristics are 0 except Y. Hence we have
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XW) = x(Y) = x(X) — x(F"), for Y = cl(X\N(F")). Since X is obtained from
S* x I by attaching the 2-handles b3 (j = 1,2,...,s), we have x(X) = s. Because
the surface F" is obtained from F' by attaching s disks along the boundaries and by
spanning v bands where F'is homeomorphic to r annuli with n open disks removed,
we have x(F") = —n + s +u — 2u = —2u. Thus, we have x(W) = s +2u =n +u as
desired. Then since B4(W) = 0(d # 1,2), it follows that

Bo(W) = B1(W) = n +u,

showing (4). This completes the proof.

By Lemma 3.2, we have the following inequalities:

26(L) +b+u = pi(OW) (by(1))
< Bo(W,0W) + By(W)
=28(W)+n+u (by(3)and(4))
<2B8(L)+n+u (by(2)).

This means the inequality 8(L,L') = b < n = ¢*(L,L'), giving the first half of
Theorem 1.1. Further, if this inequality is replaced by the equality, namely, if
B(L,L') =b=mn=c*L,L'"), then we have the identity:

(%) Bo(W,0W) + BL(W) = By (0W).
We need the following lemma:

Lemma 3.3 (Exactness Lemma) Under the identity (*), the natural exact se-
quence

Hy(W,0W) 25 Hy (W) == H (W)

induces an exact sequence

THy(W,0W) 2 TH(OW) =5 TH,(W).

This lemma is shown by the observation that the identity (*) implies that the A-
homomorphism

BHy(W,0W) — BH,(dW)

induced from &, is a monomorphism, where we note that the A-module BH induced
from every A-module H is a torsion-free A-module by definition. Let H = H,(0W),
and 7" the image of 0, : THy(W,0W) — TH,(0W) = TH. By [5, Theorem 3.1], we
have

AT (H) = A(TH) = A(T)A(T')*.

14



To calculate AT(H), we need the following lemma.

Lemma 3.4
(1) AT = p(L)AT(H (M), AT, = p(L')AT(Hy(M")).

(2) AT(H) = p(A)AT (H, (M) AT (H, (M)).
(3) A(Hi(P)) = p(A).

Proof To see (1), let V' be the solid tori used to construct M from E(L). Since
H,(V) = 0, the homology exact sequences of the pairs (E(L),0E(L)), (M,V) con-
nected by the excision isomorphisms H,(E(L),0F(L)) = H,(M,V) induce the fol-
lowing short exact sequence

0 — imH, (0E(L)) — Hy(F(L)) — H,(M) — 0.
Similarly, we have the following short exact sequence.
0 — imH, (0E(L')) — H(E(L')) — H,(M') — 0.

Applying Fact (1) to the short exact sequences restricted to the torsion parts of these
short exact sequences, we have (1). To see (2), let S = dM U JM!, which is a union

of tori. Then we have H;(S) = 0. By excision, we have
H,(0W,S) = Hy(M,0M) @D Hi(P,S) @ Hi (M, 001},
Since there is a natural exact sequence
Hy(S) =0 — H (0W) — H (OW,S) — Hy(S)
and Hy(S) = DHy(S), we see from Facts (1) and (3) that
AT(H) = AT(H (0W)) = AT (H (0W, S)).
Similarly, we have

AT(Hl(J\:I,aM))iAT(Hl( ), )
AT (Hy (M, 0MY)) = AT (H (M) = AT(H(M")).

N) and H(P) = TH,(P). By the exact
S)) = A(H,(P)). Thus, we have

L(M)) AT (H, (M)

Assuming (3), we complete the proof of (2). To see (3), we note that the component
G; of G obtained from A; is a 2-sphere with ¢; + 2 holes if (K;, L\ K;) nor (K[, L'\K})

By lemma 3,1, note that H,(P,S) = TH,(
1

P,
sequence of the pair (P, S), we have A(H, (P,
H(H

AT(H) = A(Hy(P))A
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is algebraically split, a 2-sphere with ¢; + 1 holes if either, but not both, of (K;, L\ K;)

r (K!, L'\K]) is algebraically split, and a 2-sphere with ¢; holes if both (K;, L\K;)
and (K|, L'\K]) are algebraically split. In the last case, recall that ¢; is always even
and we omitted the case ¢; = 0. Then, (3) is confirmed from Lemma 3.1. This
completes the proof of Lemma 3.4.

By Lemmas 3.3 and 3.4, we have

PAZATAL, N ~

= p(A)*p(L)p(L') AT (Hy(M))A" (Hy(M"))
= p(A)p(L)p(L) A" (H)

= p(A)p(L)p(L")A(T")A(T")*

= e(p(L)p(L, L")p(L"))gg

for some non-zero element g € A, so that
AT(L)AT(L) = g(L, L) f 7,
9(L, L") = e(p(L)p(A)p(L')) = e(p(L)p(L, L')p(L))

for some f € A. This completes the proof of Theorem 1.1.
4. Corollaries to Theorem 1.1 and related examples

We consider a pair (L, L') of an r-component algebraically split link L with Ay # 0
and an r-component completely split link L’ with components K/ (i = 1,2,...,r) such
that ¢*(L,L') < r — 1. Since B(L,L') = B(L') = r — 1, we see from Theorem 1.1
that ¢*(L,L') = B(L,L") = B(L') = r — 1. For every r > 2, there are lots of such
pairs (L,L'). For example, from any given knot K and any r > 2, A. Shimizu
constructed in [12] an algebraically split link L of r components, called a lassoed
link associated with K, such that Ay # 0 and w(L,L’) = r — 1 for the completely
splittable link L' consisting of K and the (r—1)-component trivial link, where we have
u(L,L") = ¢*(L,L'") = B(L,L") = r — 1 by Theorem 1.1. In the following corollary,
we will concern with a relationship between the Alexander polynomials of such a link
pair (L, L").

Corollary 4.1 Let (L,L') be a pair of an r-component algebraically split link L
with A;, # 0 and an r-component completely split link L’ with components K]
(1 =1,2,...,7) such that ¢*(L, L") < r — 1. Let dgs be the product of all mutually
distinct prime factors a of Ak, such that a* = a and the exponent of @ in the prime
decomposition of Ags is odd. Then we have ¢*(L,L') = 3(L,L') = B(L') =r —1 and

v =L~ O] w7
i=1 j=1
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for an element f € A, where the Alexander polynomial A is regarded as an integral
Laurent polynomial in ¢; for every 1.

Proof By Theorem 1.1, we have the identities ¢*(L, L) = (L, L") = B(L') =r —1
and hence ApAT, = ¢g(L,L")gg* for an element ¢ € A. By Lemmas 2.1 and 2.2,
p(L) =][;_,(t;—1),p(L") = Land p(L, L") = 1, so that g(L, L') = p(L) = [[;_,(t;—1).
Using that A}‘q_ = Agr, we see that Agr = 0xrd;d; for an element d; € A and hence

AL =[] Ak = dpdd’
j=1

for 6 = [[j_, 0y and d = [[;_, d;. If aa” divides bb" for non-zero elements a,b € A,
then the quotient bb* /aa* is written as the form cc* for an element ¢ € A, which can be
easily shown by taking the prime decompositions of a and b. Since AT, (1,1,...,1) =
+1, we see that A%, is coprime with g(L,L') and hence A%, divides gg*. Let hh* be
the quotient gg*/dd* for an element h € A. Then Apéy = g(L, L')hh*. For every
prime factor a of 67/, the product a? divides hh* because a divides hh* and satisfies
a* = a. Hence 6%, = 61,0}, divides hh*. The quotient is denoted by the product ff*
for an element f € A. Then we have Ay = g(L, L")or f f*, completing the proof.

For a link L with r components, the fraction
AL(t) = A()/(t = 1) = Ayt t, ..., 0)/(t = 1)

is known to be an integral polynomial, called the Hosokawa polynomial of L (see [6]).

We know that the multiplicity of the factor ¢ — 1 in Aj(¢) is always even. In fact,
the statement that oy (L) = £1(L) (mod 2) in Lemma 5.7 of [8] implies this assertion.
Then the following corollary is obtained from Theorem 1.1.

Corollary 4.2 If the one-variable Alexander polynomial A (¢) of a link L with r(> 2)
components is a non-zero polynomial, then

u(L) > c*(L) > B(L,0) =r — 1.
Further if ¢*(L) = r — 1, then the Hosokawa polynomial A (¢) has the form
ALty = ft)f(t)
for an integral polynomial f(¢) in ¢ up to multiplications of +#* (1 € Z).

Recall that the group order of the first homology H;(M,) of the double branched
covering space M}, of S? branched along L coincides with the absolute value |Ap(—1)|
by taking the group order of an infinite abelian group to be 0 (see [6]).
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Corollary 4.3 If the first homology H;(M}) of the double branched covering space
My, of S? branched along a link L with (> 2) components is a finite abelian group,
then

u(L) > ¢*(L) > B(L,0) =1 — 1.

Further if ¢*(L) = r — 1, then the group order |H(M,)| has the form
|H (M) =2""'n?
for an integer n.

In the case of a link L with » = 2 and u(L) = 1 (implying ¢*(L) = 1), the latter half
of Corollary 4.3 has been observed by P. Kohn [9]. The following example concerns
a computation on the unlinking number, the 4-dimensional clasp number and the
peripheral polynomials for the links illustrated in Fig. 4 together with the notation
of “linkinfo”? in the bracket, whose Alexander polynomials are given in [11].

® R G ®

3 2 : 1 -
6 Wead) 7, (L7a6) 7, L7095 (18a16)

R AN (4
B & &
Y R P R P

Figure 4: Links used in Example 4.4

Example 4.4 (1) Let L = 63 (L6a4) (the Borromean rings), and O the 3-component
trivial link. Since u(L) < 2, (L) = 0 and B(0) = 2, we have u(L) = ¢*(L) =
B(L,0) = 2 by the first half of Theorem 1.1. We have p(O) = 1. Since L is

2http://www.indiana.edu/ linkinfo/.
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algebraically split, we see from Lemma 2.2 that p(L, O) = 1. The latter half assertion
of Theorem 1.1 is confirmed as follows:

AL =g(L,0) = (t, = 1)(t2 — 1)(t3 — 1) = p(L).

We can also see u(L) = ¢*(L) = 2 from the inequality u(L) < 2 and the following fact
that the link L is algebraically split, but not link-homotopically trivial (see [10]).

(2) Let L = 7% (LT7a6), and O the 2-component trivial link. Then we have
Ap=1—1t; —to+ (1 —t1 — t)trty + (t1t)”
which cannot be written as g(L, O)f f*. Hence by Theorem 1.1 we obtain
u(L) > c*(L) > B(L,0) = 1.
Since u(L) < 2, we have u(L) = ¢*(L,0) =
(3) Let L = 73 (L7ab), and O the 2-component trivial link. Then we have
Ap=1—t, —ty+ (3—t, — ta)tate + (tit2)*

(L) = 0 and B(0) = 1, we see from the first half of Theorem 1.1 that

Since u(L ) <Lp
= B(L,O) = 1. The latter half assertion of Theorem 1.1 is confirmed as

u(L) = c*(L)
follows:

Ap=(ti+t' =)t "+t —1), g¢(L,0)=p(L)=pO)=pL,0)=

(4) Let L = 82 (L8al6), and O the 3-component trivial link. Then we have u(L, L°) =
1 for the split link L° consisting of the unoriented (2, 4)-torus link 754 and a trivial
knot. Note that 3(L) =0, S(L°) =1 and

ATy =tity+1, Ap=(ty —1)(ty — 1)(ts — 1) (tsty + 1),

where ¢, and ¢, are represented by the meridians of the sublink 754 of L°. Then we
have u(L, L°) = ¢*(L,L°) = B(L, L") = 1 by the first half of Theorem 1.1 and the
latter half assertion of Theorem 1.1 is confirmed as follows:

ApLATy = g(L, L) (tity + 1) (7151 + 1)

where g(L, L°) = e(p(L)p(L, L°)p(L°)) = (t; — 1)(ty — 1)(¢3 — 1). Since the sublink
Ts4 of L° has the linking number &2 and the corresponding sublink L; in L has
the linking number 41, and Link(K, L;) = 0 for the component K = L\ Ly, we see
from Lemma 2.2 that p(L,L°) = (t; — 1)(t; — 1). Using that b(L’) = ¢3 — 1 and
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the longitude of O bounds a disk in the exterior E(L"), we see that p(L") = 1, so
that p(L) = ¢t3 — 1. From the linking number of T34, we obtain that u(L’) = 2 and
hence u(L) < 3. On the other hand, we have §(L,0) = 5(O) = 2. Examining the
form of A, we see from Theorem 1.1 that ¢*(L) > 5(L,0) = 2. Thus, we have that
u(L) = cXL) = 3.

(5) Let L = 93 (L9a54), and O the 3-component trivial link. Then we have
Ap=(t—1)(ta = 1)(ts — 1) (] =t + 1),
which cannot be written as g(L, O)f f*. Hence by Theorem 1.1 we have
u(L) > ¢*(L) > B(L,0) = 2.
Since u(L) < 3, we have u(L) = ¢*(L) = 3.

(6) L = 93, (L9a53) which is an algebraically split link, and O the 3-component trivial
link. Since u(L) < 2 and $(L,0) = 2, we have u(L) = ¢*(L) = (L, 0) = 2 and

Ay =g(L,0)(t = 1)(t7" — 1)
where g(L,0) = (t; — 1)(t2 — 1)(t3 — 1) = p(L) and p(L, O) = p(0) = 1.

(7) Let L = 93, (L9n27) which is an algebraically split link, and O the 3-component
trivial link. Then we have Ay =0, u(L) <1, 8(0) =2, B(L) =1, AT(L) = ¢, — 1
and p(O) = 1. By the first half of Theorem 1.1, we have u(L) = ¢*(L) = B(L,0) = 1.
The latter half of Theorem 1.1 is confirmed as follows:

A7 = g(L,0) = e(p(L)p(L,0)p(0)) = t, — 1.
By Lemma 2.2, p(L, O) = 1, so that p(L) =t; — 1.
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