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Abstract. This article is an explanation on recent investigations on
homological infinity of a 4D universe for every 3-manifold, namely a
boundary-less connected oriented 4-manifold with every closed connected
oriented 3-manifold embedded, and homological infinity of a 4D punc-
tured universe, namely a boundary-less connected oriented 4-manifold
with every punctured 3-manifold embedded. Types 1, 2 and full 4D uni-
verses are introduced as fine notions of a 4D universe. After introducing
some topological indexes for every (possibly non-compact) oriented 4-
manifold, we show the infinity on the topological indexes of every 4D
universe and every 4D punctured universe. Further, it is observed that a
full 4D universe is produced by collision modifications between 3-sphere
fibers in the 4D spherical shell (i.e., the 3-sphere bundle over the real
line) embedded properly in any 5-dimensional open manifold and the
second rational homology groups of every 4D universe and every 4D
punctured universe are always infinitely generated over the rationals.

Mathematics Subject Classification (2010). Primary 57N13; Secondary
57M27, 57N35.

Keywords. 4D universe, 4D punctured universe, Topological index, Col-
lision modification, 3-manifold, Punctured 3-manifold, Signature the-
orem.

1. Introduction

Throughout this paper, by a closed 3-manifold we mean a closed connected
oriented 3-manifold M , and by a punctured 3-manifold the punctured man-
ifold M0 of a closed 3-manifold M . Let M be the set of ( oriented home-
omorphism types of) closed 3-manifolds M , and M0 the set of ( oriented
homeomorphism types of) punctured 3-manifolds M0. It is known that the
sets M and M0 are countable sets (see for example [13, 16]).

.
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By a 4D universe or simply a universe, we mean a boundary-less con-
nected oriented 4-manifold with every closed 3-manifoldM embedded, and by
a 4D punctured universe or simply a punctured universe a boundary-less con-
nected oriented 4-manifold with every punctured 3-manifold M0 embedded.
Every universe and every punctured universe are open 4-manifolds since for
every compact (orientable or non-orientable) 4-manifold, there is a punctured
3-manifold which is not embeddable in it (see [6, 23]).

For a boundary-less connected oriented 4-manifold X, we note that
there are two types of embeddings k : M → X. An embedding k : M → X
is of type 1 if the complement X\k(M) is connected, and of type 2 if
the complement X\k(M) is disconnected. If there is a type 1 embedding
k : M → X, then there is an element x ∈ H1(X;Z) with the intersection
number IntU (x, k(M)) = +1, so that the intersection form

IntX : H1(X;Z)×H3(X;Z) → Z

induces an epimorphism

Id : Hd(X;Z) → Z
for d = 1, 3 such that the composite I3k∗ : H3(M ;Z) → H3(X;Z) → Z is
an isomorphism and the composite I1k∗ : H1(M ;Z) → H1(X;Z) → Z is the
0-map (see [6, 12]). By using the concepts of embeddings of types 1 and 2,
special kinds of universes are considered in [12]: Namely, a universe U is a
type 1 universe if every M ∈ M is type 1 embeddable in U , and a type 2
universe if every M ∈ M is type 2 embedded in U . A universe U is a full
universe if U is a type 1 universe and a type 2 universe. In Theorem 2.1,
a full universe U will be constructed in every open 5-manifold W from the
spherical shell S3 × R by infinitely many collision modifications on 3-sphere
fibers of M × R.

Actually, there exist quite many 4D universes and 4D punctured uni-
verses. The following comparison theorem between them is established in [12,
Theorem 2.1]:

Comparison Theorem.

Type 1 universe
↗ ↘

(1) Full universe Universe → Punctured universe.
↘ ↗

Type 2 universe

(2) Type 1 universe ̸→ Full universe.

(3) Type 2 universe ̸→ Full universe.

(4) Universe ̸→ Type 1 universe.

(5) Universe ̸→ Type 2 universe.

(6) Punctured universe ̸→ Universe.
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Examples showing the assertions (2)-(6) will be given in Section 2.
Let X be a non-compact oriented 4-manifold. Let β2(X) be the Q-

dimension of the second rational homology group H2(X;Q). For the inter-
section form

Int : Hd(X;Z)×H4−d(X;Z) → Z,
we define the dth null homology of X to be the subgroup

Od(X;Z) = {x ∈ Hd(X;Z)| Int(x,H4−d(X;Z)) = 0}
of the dth homology group Hd(X;Z) and the dth non-degenerate homology
of X to be the quotient group

Ĥd(X;Z) = Hd(X;Z)/Od(X;Z),

which is a free abelian group by [12, Lemma 3.1]. Let β̂d(X) be the Z-rank
of Ĥd(X;Z).

For an abelian group G, let G(2) = {x ∈ G| 2x = 0}, which is a direct
sum of some copies of Z2. For M0 ∈ M0, let δ(M0 ⊂ X) be the minimal
Z-rank of the image of the homomorphism

k0∗ : H2(M
0;Z) −→ H2(X;Z)

for all embeddings k0 : M0 → X. Let ρ(M0 ⊂ X) be the minimal Z2-rank of
the homomorphism image group

Im[k0∗ : H2(M
0;Z) −→ H2(X;Z)](2)

for all embeddings k0 : M0 → X with Z-rank δ(M0 ⊂ X).
Note that in [12], the Z-rank condition in the definitions of ρ(M0 ⊂ X)

and ρ(M ⊂ X) was erroneously omitted.
By taking the value 0 for the non-embeddable case, we define the fol-

lowing topological invariants of X:

δ0(X) = sup{δ(M0 ⊂ X)|M0 ∈ M0},
ρ0(X) = sup{ρ(M0 ⊂ X)|M0 ∈ M0}.

For M ∈ M, let δ(M ⊂ X) be the minimal Z-rank of the image of the
homomorphism

k∗ : H2(M ;Z) −→ H2(X;Z)
for all embeddings k : M → X. Let ρ(M ⊂ X) be the minimal Z2-rank of
the homomorphism image group

Im[k∗ : H2(M ;Z) −→ H2(X;Z)](2)

for all embeddings k : M → X with Z-rank δ(M ⊂ X). By taking the value
0 for the non-embeddable case, we define the following invariants of X:

δ(X) = sup{δ(M ⊂ X)|M ∈ M},
ρ(X) = sup{ρ(M ⊂ X)|M ∈ M}.

Restricting all embeddings k : M → X to all embeddings k : M → X of type
i for i = 1, 2, we obtain the topological indexes δi(X) and ρi(X) (i = 1, 2) of
X in place of δ(X) and ρ(X).
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For a universe or punctured universe U , the following topological invari-
ants

β̂d(U)(d = 1, 2), δ(U), δi(U) (i = 0, 1, 2), ρ(U), ρi(U) (i = 0, 1, 2), β2(U),

called the topological indexes of U and taking values in the set {0, 1, 2, . . . ,+∞}
are used to investigate the topological shape of U (see [12]). The results on
a universe or punctured universe U given in [10, 12, 14] are explained as
follows:

• For a punctures universe U , we have β2(U) = +∞ and one of the topo-

logical indexes β̂2(U), δ0(U), ρ0(U) is +∞. Further, in every case, there is a
punctured spin universe U with the other topological indexes taken 0.

• For a type 1 universe U , we have β2(U) = +∞ and one of the topological

indexes β̂2(U), δ1(U), ρ1(U) is +∞. The condition β̂1(U) ≥ 1 always holds,

but in the case of ρ1(U) = +∞, the condition β̂1(U) = +∞ holds. Further,
in every case, there is a type 1 spin universe U with the other topological

indexes on β̂2(U), δ1(U), ρ1(U) taken 0.

• For a type 2 universe U , we have β2(U) = +∞ and one of the topological

indexes β̂2(U), δ2(U) is +∞. Further, in every case, there is a type 2 spin
universe U with the other topological index taken 0.

• For any universe U , we have β2(U) = +∞ and one of the topological

indexes β̂2(U), δ(U), ρ(U) is +∞. In the case of ρ(U) = +∞, the condition

β̂1(U) = +∞ is added. Further, in every case, there is a spin universe U with

the other topological indexes on β̂2(U), δ(U) and ρ(U) taken 0.

• For a full universe U , we have β2(U) = +∞ and one of the topological

indexes β̂2(U), δ(U) is +∞. The condition β̂1(U) ≥ 1 always holds. Further,
in every case, there is a full spin universe U with the other topological index

on β̂2(U) and δ(U) taken 0.

In this paper, the most recent result β2(U) = +∞ for every universe or
punctured universe U in [14] is especially emphasized.

If a closed 3-manifold M is a model of our living 3-space and a smooth
map t : M → R for the the real line R is a time function, then there is a
smooth embedding M → M × R sending every point x ∈ M to the point
(x, t(x)) ∈ M ×R. The product M ×R, regarded as the M -bundle over R, is
called the spacetime of M . Since every closed 3-manifold M embedded in U
admits a trivial normal line bundle M ×R in U , every universe is considered
as a “classifying space”for the spacetime of every 3-space model M . The
smooth embedding M → M × R given by a time function t : M → R is of
type 2 (see [6]).

A standard physical spacetime model called the hyersphere world-universe
model (see for example [20]) is topologically the product S3 × R, called the
4D spherical shell or simply the spherical shell. In Section 4, the spherical
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shell S3×R is assumed to be properly and smoothly embedded in an open 5-
manifold W . Then we define a collision modification on two distinct 3-sphere
fibers S3

t , S
3
t′ (t, t

′ ∈ R, t ̸= t′) of the spherical shell S3×R and show in Theo-
rem 2.1 that a universe U is constructed in W from the spherical shell S3 × R
by infinitely many collision modifications on 3-sphere fibers of S3 × R. It
may be something interesting to mention that there are 5-dimensional phys-
ical universe models such as Kaluza-Klein model (see [2, 18]) and Randall-
Sundrum model [21, 22] and an argument on the physical collision of a brane
in the bulk space such as [17].

As the final note in the introduction, it would be interesting to observe
that the infinity in every case of a 4D universe comes from the existence of the
connected sums of copies of the trefoil knot, which occurs frequently next to
the trivial knot (see [1, 24, 25]). In fact, the closed 3-manifolds contributing to
the infinities in [12] are called c-efficient 3-manifolds which are the connected
sums of the homology handles obtained from the 3-sphere S3 by the 0-surgery
along the connected sums of certain copies of the trefoil knot. The closed 3-
manifolds contributing to the infinity β2(U) = +∞ are the connected sums of
homology 3-tori constructed from the 3-torus T 3 by replacing the standard
solid torus generators with the exteriors of the connected sums of certain
copies of the trefoil knot.

2. Examples on distinctions of a 4D punctured universe and
4D universes

In the following comparison theorem, the assertion (1) is obvious by defini-
tions. We will give examples showing the assertions (2)-(5).

Theorem 2.1 (Comparison Theorem).

Type 1 universe
↗ ↘

(1) Full universe Universe → Punctured universe.
↘ ↗

Type 2 universe

(2) Type 1 universe ̸→ Full universe.

(3) Type 2 universe ̸→ Full universe.

(4) Universe ̸→ Type 1 universe.

(5) Universe ̸→ Type 2 universe.

(6) Punctured universe ̸→ Universe.

To see (3) and (4), we note that the stable 4-space

SR4 = R4#+∞
i=1S

2 × S2
i
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considered in [7] is a type 2 spin universe because every closed 3-manifold M
bounds a simply connected spin 4-manifold whose double is the connected
sum of some copies of S2 × S2. Since H1(SR4;Z) = 0, we see that any
closed 3-manifold cannot be type 1 embedded in SR4 (as observed in the
introduction), showing (3) and (4). To see (2) and (5), we consider a type 1
spin universe

USP = R4#+∞
i=1 Mi × S1

which we call the S1-product universe.
An argument on a linking form, namely a non-singular symmetric bi-

linear form ℓ : G × G → Q/Z on a finite abelian group G is used. The
linking form ℓ is split if ℓ is hyperbolic, i.e., G is a direct sum H ′ ⊕H ′′ with
ℓ(H ′,H ′) = ℓ(H ′′,H ′′) = 0 or ℓ is the orthogonal sum of a linking form
ℓH : H ×H → Q/Z and its inverse −ℓH : H ×H → Q/Z. Then we have the
following lemma:

Lemma 2.2. If a closed 3-manifold M with H1(M ;Z) a finite abelian group
is type 2 embeddable in the S1-product universe USP , then the linking form

ℓ : H1(M ;Z)×H1(M ;Z) → Q/Z

is split.

The proof of Lemma 2.2 is given by the following arguments (see [12]
for the detailed proof):

(2.2.1) IfH1(M ;Z) is a finite abelian group, thenM is type 2 embedded in an
S1-semi-product 4-manifoldX consisting of the connected summandsMi×S1

(i = 1, 2, . . . ,m) such that there is a point pi ∈ S1 with (Mi × pi) ∩M = ∅
for every i.

By (2.2.1), for I = [0, 1] we may consider that M is type 2 embedded
in the connected sum

Y = M1 × I#M2 × I# . . .#Mm × I,

so that M splits Y into two compact 4-manifolds A and B whose boundaries
∂A and ∂B have the form

∂A = M ∪ ∂AY, ∂B = (−M) ∪ ∂BY,

where

∂AY = M1 × ∂I ∪M2 × ∂I ∪ · · · ∪Ms × ∂I,

∂BY = Ms+1 × ∂I ∪Ms+2 × ∂I ∪ · · · ∪Mm × ∂I.

Then we have the following observation:

(2.2.2) The following natural sequence

(#) 0 → torH2(A,M ∪ ∂AY ;Z) ∂∗→ torH1(M ∪ ∂AY ;Z) i∗→ torH1(A;Z) → 0
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on the homology torsion parts is a split exact sequence.

The lens space L(p, q) with p ̸= 0,±1 is not type 2 embeddable in USP

by Lemma 2.2, showing (2) and (5). To see (6), for I = [0, 1] we consider a
punctured spin universe

UIP = R4#+∞
i=1 int(M0

i × I),

which we call the I-product punctured universe. Suppose that there is an
embedding k : M → UIP for a closed 3-manifold M ∈ M. We note that every
element of H1(UIP ;Z) is represented by the sum of 1-cycles in int(M0

i × I)
for a finite number of i which can be moved to be disjoint from k(M). This
means that the intersection number Int(M,H1(UIP ;Z)) = 0, showing that
the embedding k is not of type 1 and hence k must be of type 2. The inclusion
UIP ⊂ USP is obtained by taking I ⊂ S1. Then the composite embedding

M
k→ UIP ⊂ USP is still of type 2, because the boundary ∂(M0

i × I) is
connected. Thus, if H1(M ;Z) is a finite abelian group, then the linking form
ℓ : H1(M ;Z)×H1(M ;Z) → Q/Z splits by Lemma 2.2. Thus, the lens space
L(p, q) with p ̸= 0,±1 is not embeddable in UIP , implying that UIP is not
any universe, showing (6).

3. Independence on some topological indexes of a 4D universe
and a 4D punctured universe

In this section, the following lemma is shown:

Lemma 3.1.
(1) There is a punctured spin universe U such that anyone of the topological

indexes β̂2(U), δ0(U), ρ0(U) is +∞ and the other topological indexes are
taken 0.

(2) There is a type 1 universe U such that anyone of the topological indexes

β̂2(U), δ1(U), ρ1(U) is +∞ and the other topological indexes are taken 0.

(3) There is a type 2 spin universe U such that anyone of the topological

indexes β̂2(U), δ2(U) is +∞. and the other topological index is taken 0.

(4) There is a spin universe U such that anyone of the topological indexes

β̂2(U), δ(U), ρ(U) is +∞ and the other topological indexes are taken 0.

(5) There is a full spin universe U such that anyone of the topological indexes

β̂2(U), δ(U) is +∞ and the other topological index is taken 0.

The proof of Lemma 3.1 is given by the following Examples 3.2-3.4.

Example 3.2. The stable 4-space SR4 = R4#+∞
i=1S

2 × S2
i has the following

property:
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(3.2.1) For everyM ∈ M, there is a type 2 embedding k : M → SR4 inducing
the trivial homomorphism k∗ = 0 : H2(M ;Z) → H2(SR4;Z).

Thus, U = SR4 is a punctured and type 2 spin universe with β̂2(U) =

+∞, β̂1(U) = 0, δ0(U) = δ2(U) = 0 and ρ0(U) = ρ2(U) = 0. Further,
US = S1 × S3#SR4 is a punctured, type 1, type 2, full spin universe with

β̂2(US) = +∞, β̂1(US) = 1,

δ0(US) = δ1(US) = δ2(US) = δ(US) = 0,

ρ0(US) = ρ1(US) = ρ2(US) = ρ(US) = 0.

Example 3.3. For any 3-manifolds Mi ∈ M (i = 1, 2, . . . ), let Wi be a spin
4-manifold obtained from Mi × I by attaching 2-handles on Mi × 1 along
a basis for H1(Mi × 1;Z)/(torsions) to obtain that H1(Wi;Z) is a torsion
abelian group, where I = [0, 1]. Then the natural homomorphism

H2(Mi × I;Z) → H2(Wi;Z)

is an isomorphism, so that H2(Wi;Z) is a free abelian group. We construct
the open 4-manifolds

UT = R4#+∞
i=1 intWi and UST = S1 × S3#UT .

The open 4-manifold UT is a punctured and type 2 spin universe with

β̂2(UT ) = β̂1(UT ) = 0,

δ0(UT ) = δ2(UT ) = +∞,

ρ0(UT ) = ρ2(UT ) = 0.

The open 4-manifold UST is a punctured, type 1, type 2 and full spin universe
with

β̂2(UST ) = 0, β̂1(UST ) = 1,

δ0(UST ) = δ1(UST ) = δ2(UST ) = δ(UST ) = +∞,

ρ0(UST ) = ρ1(UST ) = ρ2(UST ) = ρ(UST ) = 0.

Example 3.4. Let Z/2 = Z[ 12 ] be a subring of Q. The 4-dimensional solid

torus with three meridian disks is a spin 4-manifold D(T 3) with boundary the
3-dimensional torus T 3 which is obtained from the 4-disk D4 by attaching
the three 0-framed 2-handles along the Borromean rings LB in the 3-sphere
S3 = ∂D4 (see [11, 19]). For s ≥ 2, let D(sT 3) be the disk sum of s copies of
D(T 3). Then the boundary ∂D(sT 3) is the connected sum #sT 3of s copies
of T 3. For s = 0, we understand D(sT 3) = S4 and #sT 3 = ∅. Let

Σ = S1 × S3#D(sT 3) and Σ̂ = S4#D(sT 3) = D(sT 3).

The 4-manifolds Σ and Σ̂ are called the standard Samsara 4-manifold and
the standard reduced Samsara 4-manifold on S3, respectively. A Samsara 4-
manifold onM ∈ M is a compact oriented spin 4-manifold Σ with ∂Σ = #sT 3
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and with Z/2-homology of the standard Samsara 4-manifold Σ for some s ≥ 0
such that there is a type 1 embedding k : M → Σ inducing the trivial
homomorphism

k∗ = 0 : H2(M ;Z/2) → H2(Σ;Z/2) = Z/2
3s.

A reduced Samsara 4-manifold on a punctured 3-manifold M0 is a compact
oriented spin 4-manifold Σ̂ with ∂Σ̂ = #sT 3 and with Z/2-homology of the

standard reduced Samsara 4-manifold Σ̂ for some s such that there is a
punctured embedding

k0 : M0 → Σ̂

inducing the trivial homomorphism

k0∗ = 0 : H2(M
0;Z/2) → H2(Σ̂;Z/2) = Z/2

3s.

The number s is called the torus number of a Samsara 4-manifold Σ or a
reduced Samsara 4-manifold Σ̂. In [10], the following result is shown:

Theorem 3.5. For every closed 3-manifold M , there is a reduced (closed or

bounded) Samsara 4-manifold Σ̂ on M0 with the Z2-torsion relation

β
(2)
2 (Σ̂;Z) = β1(M ;Z2).

Further, for every positive integer n, there are infinitely many closed 3-
manifoldsM such that every reduced (closed or bounded) Samsara 4-manifold

Σ̂ on M0 has the Z2-torsion relation

β
(2)
2 (Σ̂;Z) ≥ β1(M ;Z2) = n.

For every closed 3-manifold M , there is a (closed or bounded) Samsara 4-
manifold Σ on M with

β
(2)
2 (Σ;Z) = β1(M ;Z2).

Further, for every positive integer n, there are infinitely many closed 3-
manifolds M such that every (closed or bounded) Samsara 4-manifold Σ
on M has

β
(2)
2 (Σ;Z) ≥ β1(M ;Z2) = n.

Note that any information on the torus number s is not given in Theo-
rem 3.5. It can be seen from [14] that a large number is needed for the torus
number s of any Samsara 4-manifold Σ on a certain closed 3-manifold M .

Let Σi be a Samsara 4-manifold on every Mi ∈ M (i = 1, 2, 3, . . . ). Let
R4

+ be the upper-half 4-space with boundary the 3-space R3. Let

ΣR4
+ = R4

+#
+∞
i=1 Σi

be the 4-manifold obtained from R4
+ by making the connected sums of the

closed Σi’s with intR4
+ and the disk sums with the bounded Σi’s and R4

+

along a 3-disk in ∂Σi and a 3-disk in ∂R4
+ = R3. The open 4-manifold USM =
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int(ΣR4
+) is called a Samsara universe, which is a punctured and type 1 spin

universe with

β̂2(USM ) = 0, β̂1(USM ) = +∞,

δ0(USM ) = δ1(USM ) = 0,

ρ0(USM ) = ρ1(USM ) = +∞.

Let ΣR4
+ be the 4-manifold obtained from R4

+ by making the connected sums
with countably many copies of S1 × S3 with intR4

+ and the disk sums with
countably many copies of D(T 3) and R4

+ along a 3-disk in ∂D(T 3) and a
3-disk in ∂R4

+ = R3, and

ΣR4 = int(ΣR4
+).

Every Samsara universe USM has the same Z/2-cohomology as ΣR4, so that

β̂2(USM ) = 0. By definition, we have δ(USM ) = 0. If USM is a type 2 universe,
then USM would be a full universe. Then, by [14] as stated in the introduction

(see Section 5), β̂2(USM ) or δ(USM ) must be +∞, which is impossible. Thus,
any Samsara universe USM is not any type 2 universe.

Let

Σ̂R4
+ = R4

+#
+∞
i=1 Σ̂i

be the 4-manifold obtained from R4
+ by making the connected sums of the

closed Σ̂i’s with intR4
+ and the disk sums with the bounded Σ̂i’s and R4

+

along a 3-disk in ∂Σ̂i and a 3-disk in ∂R4
+ = R3. The open 4-manifold

URS = int(Σ̂R4
+)

is called a reduced Samsara universe, which is a punctured spin universe with
the following topological indexes

β̂2(URS) = β̂1(URS) = 0,

δ0(URS) = 0,

ρ0(URS) = +∞.

Let Σ̂R4
+ be the 4-manifold obtained from R4

+ by making the disk sums with
countably many copies of D(T 3), and

Σ̂R4 = int(Σ̂R4
+).

Every reduced Samsara universe URS has the same Z/2-homology as Σ̂R4.
By [10, (3.3.1)], we can show that if a closed 3-manifold M with H1(M ;Z) a
finite abelian group is embedded in URS , then the linking form

ℓp : H1(M ;Z)p ×H1(M ;Z)p → Q/Z

restricted to the p-primary component H1(M ;Z)p of H1(M ;Z) for every odd
prime p is hyperbolic. Thus, URS is not any universe. Further, from [10, 3.3],

we can see that ΣR4 and Σ̂R4 are not any punctured universe.
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4. A 4D full universe obtained by a collision modification of
the spherical shell

Let W be an open connected oriented 5-manifold. Let X and X ′ be two
disjoint compact connected oriented 4-manifolds smoothly embedded in W .
By isotopic deformations ĩ : X → W and ĩ′ : X ′ → W of the inclusion maps
i : X ⊂ W and i′ : X ′ ⊂ W , we consider that the images ĩX and ĩ′X ′ meet
tangently and opposite-orientedly in W with a compact 4-submanifold V ,
where V is assumed to be in the interiors of the 4-manifolds X and X ′. We
call V a collision field of the 4-manifolds X and X ′ in the 5-manifold W .
A collision modification of X and X ′ in W with a collision field V is the
4-manifold

X ′′ = cl(̃iX \ V )
⋃

cl(̃i′X ′ \ V ).

This collision modification gives a standard procedure to construct a new
4-manifold X ′′ from X and X ′ through a regular neighborhood of V in W .
In the spherical shell S3 ×R embedded properly and smoothly in an open 5-
manifold W , we understand that a collision modification on distinct 3-sphere
fibers S3

t and S3
t′) of S3 × R in W is a collision modification of the disjoint

compact spherical shells S3 × I and S3 × I ′ in W with a collision field V for
any disjoint closed interval neighborhoods I and I ′ of the points t and t′ in
R, respectively. In the following theorem, it is explained how a full universe
is constructed from the spherical shell M × R by infinitely many collision
modifications on distinct 3-sphere fibers of S3 × R.

Theorem 4.1. Assume that the spherical shell M × R is embedded properly
in a 5-dimensional open manifold W . Then a full universe U is produced in
W by infinitely many collision modifications on distinct 3-sphere fibers of the
sphere shell S3 × R.

An outline of the proof given in [14] is as follows: By a collision modifi-
cation of S3×I and S3×I ′ inW with a collision field V = S1×D3 the 4D solid
torus, we have the connected sum S3×I#S3×I ′#S2×S2, by which the spher-
ical shell S3 ×R changes into an open 4-manifold S3 ×R#S2 ×S2#S1 ×S3.
Continuing this modification, we have an open 4-manifold U which is the
connected sum of S3 ×R and infinitely many copies of S2 ×S2 and S1 ×S3.
This open 4-manifold U is a full universe.

5. A non-compact version of the signature theorem for an
infinite cyclic covering

In this section, we explain a non-compact 4-manifold version of the infinite
cyclic covering signature theorem in [14] which is given in [12] and needed to
our purpose as a mathematical tool.

Let Y be a non-compact oriented 4-manifold with boundary a closed

3-manifold B. Assume that β̂2(Y ) < +∞. We say that a homomorphism
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γ : H1(Y ;Z) → Z is end-trivial if there is a compact submanifold Y ′ of Y
such that the restriction γ|cl(Y \Y ′)

: H1(Y \Y ′;Z) → Z is the zero map. For

any end-trivial homomorphism γ : H1(Y ;Z) → Z, we take the infinite cyclic

covering (Ỹ , B̃) of (Y,B) associated with γ. Then H2(Ỹ ;Q) is a (possibly,
infinitely generated) Γ-module for the principal ideal domain Γ = Q[t, t−1]
of Laurent polynomials with rational coefficients. Consider the Γ-intersection
form

IntΓ : H2(Ỹ ;Q)×H2(Ỹ ;Q) → Γ

defined by IntΓ(x, y) =
∑+∞

m=−∞ Int(x, t−my)tm for x, y ∈ H2(Ỹ ;Q). Then
we have the identities:

IntΓ

(
f(t)x, y

)
= IntΓ(x, f(t)y) = f(t)IntΓ(x, y),

IntΓ(y, x) = IntΓ(x, y),

where denotes the involution of Γ sending t to t−1. Let

O2(Ỹ ;Q)Γ = {x ∈ H2(Ỹ ;Q)| IntΓ(x,H2(Ỹ ;Q)) = 0}

and

Ĥ2(Ỹ ;Q)Γ = H2(Ỹ ;Q)/O2(Ỹ ;Q)Γ,

which is a torsion-free Γ-module. We show the following lemma:

Lemma 5.1. If β̂2(Y ) < +∞, then Ĥ2(Ỹ ;Q)Γ is a free Γ-module of finite
rank.

Let A(t) be a Γ-Hermitian matrix representing the Γ-intersection form

IntΓ on Ĥ2(Ỹ ;Q)Γ. For x ∈ (−1, 1) let ωx = x+
√
1− x2i , which is a complex

number of norm one. For a ∈ (−1, 1) we define the signature invariant of Ỹ
by

τa±0(Ỹ ) = lim
x→a±0

signA(ωx).

The signature invariants σa(B̃) (a ∈ [−1, 1]) of B̃ are defined in [4, 5, 6, 9]
by the quadratic form

b : TorΓH1(B̃;Q)× TorΓH1(B̃;Q) → Q

on the Γ-torsion part TorΓH1(B̃;Q) of H1(B̃;Q) defined in [3]. For a ∈
[−1, 1], let

σ[a,1](B̃) =
∑

a≤x≤1

σx(B̃),

σ(a,1](B̃) =
∑

a<x≤1

σx(B̃).

The following theorem is a non-compact version of the signature theorem
given in [5].
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Theorem 5.2 (A non-compact version of the signature theorem).

τa−0(Ỹ )− signY = σ[a,1](B̃),

τa+0(Ỹ )− signY = σ(a,1](B̃).

The proof is in [12]. Let κ1(B̃) denote the Q-dimension of the kernel of

the homomorphism t− 1 : H1(B̃;Q) → H1(B̃;Q). By Theorem 5.2, we have

σ(a,1](B̃) + singY = τa+0(Ỹ ) = τa+0(Ỹ
′).

On the other hand, in [6, Theorem 1.6], it is shown that

|τa+0(Ỹ
′))| − κ1(∂Ỹ

′) ≤ β̂2(Y
′).

Since β̂2(Y
′) = β̂2(Y ) and ∂Ỹ ′ = B̃ ∪ B̃0 with σ(a,1](B̃0) = κ1(B̃0) = 0, we

have the following corollary:

Corollary 5.3. For every a ∈ (−1, 1),

|σ(a,1](B̃)| − κ1(B̃) ≤ |signY |+ β̂2(Y ) ≤ 2β̂2(Y ).

Let M ′ be a compact connected oriented 3-manifold M ′, and U a possi-
bly non-compact connected oriented 4-manifold. An embedding k′ : M ′ → U
is said to be loose if the kernel

K(M ′) = ker(k′∗ : H2(M
′;Z) → H2(U ;Q)) ̸= 0.

It is known that if the boundary ∂M ′ of M ′ is ∅ or connected, then every
indivisible x ∈ K(M ′) is represented by a closed connected oriented surface
F in M ′ which we call a null-surface of the loose embedding k′ (see [8]).
Then we have sk′∗[F ] = 0 in H2(U ;Z) for a positive integer s, which is
assumed to be taken to be the smallest positive integer. We consider a loose
embedding k0 : M0 → U for M0 ∈ M0 which is regarded as the inclusion
map k0 : M0 ⊂ U , and F as a null-surface of k0. We use the following lemma:

Lemma 5.4. For a tubular neighborhood NF of F in U , there is a com-
pact connected oriented 3-manifold V in cl(U\NF ) such that [∂V ] = s[F ] in
H2(NF ;Z).

Let EM = cl(U\M0 × [−1, 1]) ⊂ E = cl(U\NF ). For a null-surface F of
a loose embedding k0 : M0 ⊂ U , we define a homomorphism

γ : H1(EM ;Z) i∗→ H1(E;Z) IntV→ Z
by using V in Lemma 5.4, where i∗ is a natural homomorphism and IntV is
defined by the identity IntV (x) = Int(x, V ) for x ∈ H1(E;Z). We have the
following lemma:

Lemma 5.5. i∗ and IntV are onto, so that γ is onto.
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The homomorphism γ is called a null-epimorphism (associated with an
null-surface F ) of a loose embedding k0. We also need the following lemma:

Lemma 5.6. Every null-epimorphism γ : H1(EM ;Z) → Z of a loose embed-
ding k0 : M0 → U is end-trivial.

Let α be the reflection on the double DM0(= ∂EM ) of M0 exchanging
the two copies of M0 orientation-reversely. A meridian m of F in M0×[−1, 1]
is deformed inM0×[−1, 1] into a loopm′ inDM0 = ∂EM with α(m′) = −m′.
Since IntV ([m]) = s, the following lemma is directly obtained:

Lemma 5.7. We have γ̇(xF ) = s and α∗(xF ) = −xF for the element xF =
[m′] ∈ H1(∂EM ;Z) and the restriction γ̇ : H1(DM0;Z) → Z of γ.

Corollary 5.8. If s is odd, then the Z2-reduction γ̇2 : H1(DM0;Z) → Z2 of
γ̇ is not α-invariant.

A homomorphism γ̇ : H1(DM0;Z) → Z satisfying the conclusion of
Corollary 5.5 is called a Z2-asymmetric homomorphism in [4, 5].

Let M = M(k) be the homology handle obtained from the 3-sphere
S3 by the 0-surgery along an oriented knot k (see [11] for a general ref-

erence of knots), and M̃ the infinite cyclic connected covering of M as-

sociated with a generator γ̇M ∈ H1(M ;Z). Let σ[a,1](k) = σ[a,1](M̃) and

σ(a,1](k) = σ(a,1](M̃) for every a ∈ (−1, 1) (see [9]). The signature invariant
σ[a,1](k) of a knot k is critical if σ[a,1](k) ̸= 0 and σ[x,1](k) = 0 for every
x ∈ (a, 1).

To confirm that β2(U) = +∞ for any universe or punctured universe
U , a property of the signature invariants of a homology 3-torus generalizing
a property of the 3-torus T 3 is needed, which we introduce from now.

For the 3-torus T 3 = S1 × S1 × S1, let Ci (i = 1, 2, 3) be disjointly em-
bedded circles in T 3 representing a Z-basis for H1(T

3;Z) such that C1, C2, C3

are isotopic to S1×1×1, 1×S1×1, 1×1×S1 in T 3, respectively. Let N(Ci)
be a tubular neighborhood of Ci in T 3 with a fixed meridian-longitude system
for i = 1, 2, 3.

A homological 3-torus is a closed 3-manifold M = M(k1, k2, k3) ∈ M ob-
tained from T 3 and 3 knots k1, k2, k3 in S3 by replacing N(C1), N(C2), N(C3)
with the compact knot exteriors E(k1), E(k2), E(k3) so that the meridian-
longitude system of ∂N(Ci) is identified with the longitude-meridian system
of ki in E(ki) for i = 1, 2, 3. The cup product a ∪ b ∪ c ∈ H3(M ;Z) of a
Z-basis a, b, c of H1(M ;Z) representing the dual elements of the meridians of
ki (i = 1, 2, 3) is a generator of H3(M ;Z) ∼= Z, which is a property inherited
from a well-known property of the 3-torus T 3.

It is convenient to note that the cup product a′ ∪ b′ ∪ c′ ∈ H3(M ;Q) of
anyQ-base change a′, b′, c′ of a, b, c inH1(M ;Q) is a generator ofH3(M ;Q) ∼=
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Q and hence the elements a′ ∪ b′, b′ ∪ c′, c′ ∪ a′ ∈ H2(M ;Q) form a Q-basis of
H2(M ;Q) orthogonally dual to the Q-basis c′, a′, b′ ofH1(M ;Q), respectively
[To see this, note that u ∪ v = −v ∪ u and, in particular, u ∪ u = 0 for all
u, v ∈ H1(M ;Q)].

For an integer m > 0, let Tm be the collection of 3-manifolds consisting
of the connected sums of m homological 3-tori.

For an application of the signature invariants σ[a,1](B̃), consider the dis-
joint union B = M×1∪M×(−1) for a closed 3-manifoldM ∈ Tm, whereM×
1 and M × (−1) are respectively identified with M and the same 3-manifold
as M but with orientation reversed. A homomorphism γ̇ : H1(B;Z) → Z is
asymmetric if there is no system of elements x1, x2, . . . , xn ∈ H1(M ;Z) (n =
3m) representing a Q-basis for H1(M ;Q) such that γ̇(xi) = ±α∗(xi) for all i,
where α denotes the standard orientation-reversing involution on B switching
M × 1 to M × (−1).

The following calculation is used in our argument.

Lemma 5.9. For positive integers d and m, let (ki,1, ki,2, ki,3) (i = 1, 2, . . . ,m)
be a sequence of triplets of knots used for the closed 3-manifold M ∈ Tm

such that

(1) the signature invariants σ[a,1](ki,1), σ[a,1](ki,2), σ[a,1](ki,3) are critical for
all i (i = 1, 2, . . . ,m), and

(2) |σ[a,1](k1,1)| > 2d + 4m, and for all i, i′, j, j′ (i, i′ = 2, 3, . . . , 3m; j, j′ =
1, 2, 3),

|σ[a,1](ki,j)| >
∑

(i,j)>(i′,j′)

|σ[a,1](ki′,j′)|+ 2d+ 4m,

where (i, j) > (i′, j′) denotes the dictionary order.

Then for any asymmetric homomorphism γ : H1(B;Z) → Z, there is a
number b ∈ (−1, 1) such that

κ1(B̃) ≤ 4m and |σ[b,1](B̃)| > 2d+ 4m.

Example 5.10. Let k be a trefoil knot. Then the connected sum k1,1 of d +
2m+ 1 copies of k has the critical signature invariant

|σ[ 12 ,1]
(k1,1)| = 2d+ 4m+ 2.

Further continuing connected sums of copies of k, we obtain a sequence of
triplets of knots (ki,1, ki,2, ki,3) (i = 1, 2, . . . ,m) used for the closed 3-manifold
M ∈ Tm satisfying the assumptions (1) and (2) of Lemma 3.1 with a = 1

2 .

The following estimate on aQ-subspace of the first cohomologyH1(M ;Q)
of a closed 3-manifold M in Tm is technically useful:
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Lemma 5.11. Let ∆ be a Q-subspace of H1(M ;Q) of codimension c(= 3m−
dimQ ∆), and ∆(2) the Q-subspace of H2(M ;Q) consisting of the cup product

u ∪ v ∈ H2(M ;Q) for all u, v ∈ ∆. Then dimQ ∆(2) ≥ 2m− c.

We call the Q-space ∆(2) the cup product space of the Q-space ∆.

The following corollary is used to confirm the non-vanishing of the sec-
ond rational homology of a bounded Samsara 4-manifold.

Corollary 5.12. For a (possibly non-compact) oriented 4-manifold X and
m > 0, assume that a closed 3-manifold M ∈ Tm is a boundary component
of X. Let d be the Q-dimension of the kernel of the natural homomorphism
i∗ : H1(M ;Q) → H1(X;Q). Then we have β2(X) ≥ max{2m− d, d} ≥ m.

6. Infinities on the topological indexes of a 4D universe and a
4D punctured universe

In this section, the following result in [12] is explained.

Lemma 6.1.

(1) For a punctured spin universe U , anyone of the topological indexes β̂2(U),
δ0(U), ρ0(U) must be +∞.

(2) For a type 1 universe U , anyone of the topological indexes β̂2(U), δ1(U),
ρ1(U) must be +∞.

(3) For a type 2 spin universe U , anyone of the topological indexes β̂2(U),
δ2(U) must be +∞.

(4) For a universe U , anyone of the topological indexes β̂2(U), δ(U), ρ(U)
must be +∞.

(5) For a full spin universe U , anyone of the topological indexes β̂2(U), δ(U)
must be +∞.

An outline of Lemma 6.1 given in [12] is as follows:

Confirmation of (1). For any positive integers n, c, let ki (i = 1, 2, . . . , n) be
knots whose signatures σ(ki) (i = 1, 2, . . . , n) have the condition that

|σ(k1)| > 2c and |σ(ki)| >
i−1∑
j=1

|σ(kj)|+ 2c (i = 2, 3, . . . , n).

Let Mi = χ(ki, 0) and M = M1#M2# . . .#Mn. We call M a c-efficient
3-manifold of rank n. The following calculation is done in [6, Lemma 1.3]:
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(6.1.2) Every c-efficient 3-manifold M of any rank n has

|σ(−1,1](D̃M0))| > 2c

for every Z2-asymmetric homomorphism γ̇ : H1(DM0;Z) → Z.

Suppose that a punctured universe U has

β̂2(U) = c < +∞, δ0(U) = b < +∞, ρ0(U) = b′ < +∞.

Let M be a c-efficient 3-manifold of any rank n > b+ b′. Suppose that M0 is
embedded in U with Z-rank b of the image. For the inclusion k0 : M0 ⊂ U ,
the kernel

K(M0) = ker[k0∗ : H2(M
0;Z) → H2(U ;Q)]

is a free abelian group of some rank d = n − b > b′. Then there is a basis
xi (i = 1, 2, . . . , n) of H2(M

0;Z) such that xi (i = 1, 2, . . . , d) is a basis of
K(M0). Since ρ0(U) = b′ < d, we can find an indivisible element x in the
basis xi (i = 1, 2, . . . , d) after a base change such that the multiplied element
rx for an odd integer r is represented by the boundary cycle of a 3-chain in
U . Taking a closed connected oriented surface F in M0 representing x, we
have a null-epimorphism γ : H1(EM ;Z) → Z (associated with an null-surface
F ) of the loose embedding k0 whose restriction γ̇ : H1(DM0;Z) → Z is a
Z2-asymmetric homomorphism. Then we obtain from (6.1.1) a contradiction
that

2c < |σ(−1,1](D̃M0)| ≤ 2c

because β̂2(EM ) ≤ β̂2(U) = c and κ1(D̃M0) = 0. Thus, at least one of β̂2(U),
δ0(U), ρ0(U) must be +∞.

Confirmation of (2). Let U be a type 1 universe. We always have β̂1(U) ≥ 1.

Since U is also a punctured universe, at least one of β̂2(U), δ1(U), ρ1(U)
must be +∞ by (1). Suppose that a type 1 universe U has

b = β̂2(U) < +∞, c = δ1(U) < +∞, s = β̂1(U) < +∞.

Then we show that there is a 3-manifold M which is not type 1 embeddable
in U . Let Ĥ1(U ;Z) = Zs. Let Uu (u = 1, 2, . . . , 2s − 1) be the connected
double coverings of U induced from the epimorphisms Zs → Z2. Let Mu be
the subset of M consisting of M such that a type 1 embedding k : M → U is
trivially lifted to ku : M → Uu. Since every type 1 embedding M → U lifts
to Uu trivially for some u, we see that

2s−1⋃
u=1

Mu = M.

Let U ′ be a compact 4-submanifold of U such that U ′′ = cl(U\U ′) is trivially
lifted to Uu for all u. Let U ′

u and U ′′
u be the lifts of U ′ and U ′′ to Uu. Let

b′ = max{β2(U
′
u)|u = 1, 2, . . . , 2s−1}.
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(6.1.3) rank(im(ku)∗) ≤ b+ b′ for any u.

For any positive integers n, c, we take n knots ki (1 ≤ i ≤ n) whose local
signatures σ(a,1)(ki) (1 ≤ i ≤ n) have the condition that there are numbers
ai ∈ (−1, 1) (i = 1, 2, . . . , n) such that

|σ(a1,1](k1)| > 2c, |σ(ai,1](ki)| >
i−1∑
j=1

∣∣σ(a,1](kj)
∣∣+ 2c (i = 2, 3, . . . , n)

for every a ∈ (−1, 1) (see [9]). Let Mi = χ(ki, 0) be the 0-surgery manifold
along ki, and M = M1#M2# . . .#Mn. We call M a strongly c-efficient 3-
manifold of rank n. For this 3-manifold M , we say that a homomorphism
γ̇ : H1(DM0;Z) → Z is symmetric if γ̇|α(M0

i )
= ±γ̇|M0

i
for all i, where α is

the reflection on the double DM0. Otherwise, γ̇ is said to be an asymmetric
homomorphism. The following calculation is also seen from [6, Lemma 1.3]:

(6.1.4) For every strongly c-efficient 3-manifold M of any rank n and every
asymmetric homomorphism γ̇ : H1(DM0;Z) → Z, we have a number a ∈
(−1, 1) such that

|σ(a,1](D̃M0))| > 2c.

For example, if M is constructed from the knots ki (i = 1, 2, . . . , n) with
ki the ic

+-fold connected sum of the trefoil knot for any fixed integer c+ > c,
then M is a strongly c-efficient 3-manifold of rank n. We show that every
strongly c-efficient 3-manifoldM of rank > b+b′ is not type 1 embedded in U .
Suppose that M is type 1 embedded in U and lifts trivially in Uu. Let U(M)
and Uu(M) = U(M)∪tU(M) be the 4-manifolds obtained respectively from U
and Uu by splitting along M , where t denotes the double covering involution.
Let ∂U(M) = M0 ∪−M1 and ∂Uu(M) = M0 ∪−M2, where M0,M1,M2 are
the copies of M . Since the natural homomorphism H2(M ;Z) → H2(U ;Q) is
not injective, there is a non-zero element [C] ∈ H2(M ;Z) such that C = ∂C
for a 3-chain D in Uu and C = ∂D∗ for a 3-chain D∗ in U which is the image
of D under the covering projection Uu → U . The 3-chains Dand D∗ define
3-chains D′, D′′ and D′′′ in U(M) such that

∂D′ = C ′′
1 − (C0 + C ′

0),

∂D′′ = C ′
1 − C ′′

0 ,

∂D′′′ = (C ′
1 + C ′′

1 )− (C0 + C ′
0 + C ′′

0 )

for some 2-cycles Cu, C
′
u, C

′′
u in Mu (u = 0, 1). Since β̂2(U(M)) ≤ c, the

non-zero end-trivial homomorphism γ̇ : H1(DM0;Z) → Z defined by any
3-chain in U(M) must be symmetric by Corollary 4.3 and (6.2.2) because

every strongly c-efficient 3-manifold M has κ1(D̃M0) = 0. Let

[C] =

m∑
i=1

aixi, [C ′] =

m∑
i=1

a′ixi, [C ′′] =

m∑
i=1

a′′i xi
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in H1(M ;Z) with xi a generator of H1(Mi;Z) ∼= Z. By the symmetry condi-
tions on D′, D′′ and D′′′, we have the following relations:

a′′i = εi(ai + a′i), a′i = ε′ia
′′
i , a′i + a′′i = ε′′i (ai + a′i + a′′i ),

where εi, ε
′
i, ε

′′
i = ±1 for all i. Then we have

(1 + ε′i)a
′′
i = ε′′i (εi + 1)a′′i .

If εiε
′
i = −1, then we have a′′i = a′i = ai = 0 for all i. If εiε

′
i = 1, then we

have ai = 0 for all i. Hence we have [C] = 0, contradicting that [C] ̸= 0.
Hence M is not type 1 embeddable in U .

Confirmation of (3). Let U be a type 2 universe. Suppose that

β̂2(U) = c < +∞, δ2(U) = b < +∞.

Let M ∈ M be a c-efficient 3-manifold of any rank n > b. Let k : M ⊂ U
be a type 2 embedding which is a loose embedding. Let U ′ and U ′′ be the
4-manifolds obtained from U by splitting along M . For U ′ or U ′′, say U ′,
we have a null-surface F in M and a positive (not necessarily odd) integer r
such that the natural homomorphism H2(M ;Z) → H2(U

′;Z) sends r[F ] to 0.
Taking the minimal positive integer r, we have a compact connected oriented
3-manifold V in U ′ with ∂V = rF . This 3-manifold V defines an end-trivial
epimorphism γ : H1(U

′;Z) → Z whose restriction γ̇ : H1(M ;Z) → Z is

equal to rγ̇F for the epimorphism γ̇F : H1(M ;Z) → Z defined by F . Let M̃

and M̃F denote the infinite cyclic coverings of M induced from γ̇ and γ̇F ,
respectively. Let (1 ≤)i1 < i2 < · · · < is(≤ n) be the enumeration of i such
that the Z2-reduction of γ̇F restricted to the connected summand Mi of M
is non-trivial. By a calculation made in [6, Lemma 1.3], we have

σ(−1,1](M̃F ) =

s∑
j=1

σ(Kij ),

so that |σ(−1,1](M̃F )| > 2c. By [6, Lemma 1.3], we also have

σ(−1,1](M̃F ) = σ(a,1](M̃)

for some a ∈ (−1, 1). Then, since β̂2(U
′) ≤ β̂2(U) = c and κ1(M̃) = 0, we

obtain from Corollary 4.3 a contradiction that

2c < |σ(a,1](M̃)| ≤ 2c.

Hence β̂2(U) or δ2(U) must be +∞.

Confirmation of (4). Let U be a universe. Assume that

β̂2(U) = c < +∞ and δ(U) < +∞.

By the proof of (3), for every infinite family of strongly c-efficient 3-manifolds
of infinitely many ranks n any member must be type 1 embeddable to U . By

the proof of (2), we have ρ(U) = +∞ and β̂1(U) = +∞.



20 A. Kawauchi

Confirmation of (5). Since a full universe U is a type 1 and type 2 universe,
the desired result follows from (2) and (3).

7. Infinities of the second rational homology groups of every
4D universe and every 4D punctured universe

In this section, it is shown that β2(U) = +∞ for any universe or punctured
universe U . More precisely, the following theorem is shown.

Theorem 7.1. Let X be a non-compact oriented 4-manifold with the second
Betti number β2(X) < +∞. Then there is a punctured 3-manifold M0 ∈ M0

which is not embeddable in X.

The following corollary is direct from Theorem 7.1.

Corollary 7.2. For any universe or punctured universe U , we have β2(U) =
+∞.

An outline of the proof of Theorem 7.1 given in [14] is as follows:
Let β2(X) = d < +∞. We show that there is M ∈ M such that M0 is

not embeddable in X. Suppose M0 is in X for an M ∈ M with β1(M) = n.
The 2-sphere S2 = ∂M0 is a null-homologous 2-knot in X. Let XM be the
4-manifold obtained from X by replacing a tubular neighborhood N(K) =
S2 ×D2 by the product D3 × S1. Then we have

β2(XM ) = β2(X) = d

and the closed 3-manifold M is embedded in XM by a type 1 embedding.
We show that there is an M ∈ Tm with m > d non-embeddable in XM

by a type 1 embedding.
Let X ′ be the 4-manifold obtained from XM by splitting along M , and

B = ∂X ′ = M × 1 ∪M × (−1).
For the homomorphisms i′∗, i∗ : H2(M ;Q) → H2(X

′;Q) induced from
the natural maps i′ : M → M × (−1) → X ′, i : M → M × 1 → X ′, let

C = imi′∗ ∩ imi∗ ⊂ H2(X
′;Q), C ′

∗ = (i′∗)
−1(C), C∗ = (i∗)

−1(C).

The following lemma is needed:

Lemma 7.3. Every closed 3-manifold M ∈ Tm with m > d satisfies one of the
following (1)-(3).

(1) The homomorphism i′∗ or i∗ is not injective,

(2) The homomorphisms i′∗ and i∗ are injective and C ′
∗ = C∗ = 0 or C ′

∗ ̸= C∗.
(3) The homomorphisms i′∗ and i∗ are injective and C ′

∗ = C∗ ̸= 0 which has
no Q-basis x1, x2, . . . , xs with i′∗(xi) = ±i∗(xi) for all i.
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By assuming Lemma 7.3, an outline of the proof of Theorem 7.1 is as
follows.

If i′∗ and i∗ are injective and C∗ = C ′
∗ = 0, then the natural homomor-

phism H2(M ;Q) → H2(XM ;Q) is injective. Since

β1(M) = n = 3m > β2(XM ) = β2(X) = d,

we have a contradiction. Hence (2) implies C ′
∗ ̸= C∗. Then in either case,

there is an end-trivial homomorphism γ : H1(X
′;Z) → Z such that the

restriction γ̇ : H1(B;Z) → Z of γ is asymmetric. To see this, we use an
analogous argument of [12, Section 5]. The inclusion k : B → X ′ is called
a loose embedding if the homomorphism k∗ : H2(B;Z) → H2(X

′;Q) is not
injective. By Lemma 7.3, the inclusion k is a loose embedding and there is a
closed oriented 2-manifold F in B, called a null-surface, such that F bounds
a compact connected oriented 3-manifold V in X ′ and the Poincaré dual
element γ̇ ∈ H1(B;Z) of the homology class [F ] ∈ H2(B;Z) is asymmetric.
Then the 3-manifold V defines an end-trivial homomorphism

γ : H1(X
′;Z) → Z

by the intersection number IntX′(x, [V ]) ∈ Z for every x ∈ H1(X
′;Z). Then

the element γ̇ ∈ H1(B;Z) is a restriction of γ. Since

β̂2(X
′) ≤ β̂2(X) ≤ β2(X) = d,

the inequality (3.1) of the signature theorem implies

|σ[a,1](B̃)| − κ1(B̃) ≤ 2d

for all a ∈ (−1, 1). By a choice of a closed 3-manifold M ∈ Tm in Lemma 5.9,

there is a number b ∈ (−1, 1) such that |σ[b,1](B̃)| − κ1(B̃) > 2d, which is a
contradiction. This completes the outline of the proof of Theorem 7.1 except
for the proof of Lemma 7.3.

An outline of the proof of Lemma 7.3 is as follows:
Let X̃ be the infinite cyclic cover of X associated with the fundamen-

tal region (X ′;M × (−1),M × 1). Let n = 3m. Suppose that the following
assertion is true:

(*) The homomorphisms i∗ and i′∗ are injective and C ′
∗ = C∗ ̸= 0, which has

a Q-basis x1, x2, . . . , xs with i′∗(xi) = ±i∗(xi) for all i.

Then by the Mayer-Vietoris exact sequence, we have

H2(X̃;Q) ∼= Γd′
⊕ (Γ/(t+ 1))c(+) ⊕ (Γ/(t− 1))c(−),

for some non-negative integers d′ and c(±) such that

dimQ C = c(+) + c(−) ≤ n, n− (c(+) + c(−)) ≤ d′, d′ + c(−) ≤ d,

so that n− c(+) ≤ d. Let Y be a compact 4-manifold such that M ⊂ Y ⊂ X

and the Γ-torsion part TorΓH2(Ỹ ;Q) of the homology Γ-module H2(Ỹ ;Q)
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has

TorΓH2(Ỹ ;Q) = TorΓH2(X̃;Q) ∼= (Γ/(t+ 1))c(+) ⊕ (Γ/(t− 1))c(−).

By the duality in [3], we have

TorΓH1(Ỹ , ∂Ỹ ;Q) ∼= (Γ/(t+ 1))c(+) ⊕ (Γ/(t− 1))c(−).

Let

H∗(Ỹ , ∂Ỹ ;Q) = TorΓH∗(Ỹ , ∂Ỹ ;Q)⊕ FH∗(Ỹ , ∂Ỹ ;Q)

be any splitting of a finitely generated Γ-module into the Γ-torsion part and
Γ-free part, and

H∗(Ỹ , ∂Ỹ ;Q) = T ∗(Ỹ , ∂Ỹ ;Q)⊕ F ∗(Ỹ , ∂Ỹ ;Q)

theQ-dual splitting. Let T 1(Ỹ , ∂Ỹ ;Q)t+1 be the (t+1)-component of T 1(Ỹ , ∂Ỹ ;Q).

For the natural homomorphism k∗ : T ∗ (Ỹ , ∂Ỹ ;Q) → H∗(M ;Q), consider
the following commutative square on cup products:

T 1(Ỹ , ∂Ỹ ;Q)t+1 × T 1(Ỹ , ∂Ỹ ;Q)t+1

∪
−→ H2(Ỹ , ∂Ỹ ;Q)

k∗ ⊗ k∗ ↓ k∗ ↓
H1(M ;Q)×H1(M ;Q)

∪
−→ H2(M ;Q).

Let Ω be the Q-subspace of H2(M ;Q) generated by the elements k∗(u∪v) ∈
H2(M ;Q) for all u, v ∈ T 1(Ỹ , ∂Ỹ ;Q)t+1. Let

j∗ : H2(Ỹ , ∂Ỹ ;Q) → H2(Ỹ ;Q),

(k′)∗ : T 2(Ỹ ;Q) → H2(M ;Q)

be the natural homomorphisms. By a transfer argument of [4, Lemma 1.4],

the homomorphism (k′)∗ : T 2(Ỹ ;Q) → H2(M ;Q) is injective. Since

k ∗ (u ∪ v) = (k′)∗j∗(u ∪ v) ∈ (k′)∗T 2(Ỹ ;Q)t−1,

we have

Ω ∩ (k′)∗T 2(Ỹ ;Q)t+1 = 0.

Hence the quotient map

Ω → H2(M ;Q)/(k′)∗T 2(Ỹ ;Q)t+1

is injective. Since

T 2(Ỹ ;Q)t+1
∼= (Γ/(t+ 1))c(+),

we have

dimQ Ω ≤ dimQ H2(M ;Q)/(k′)∗T 2(Ỹ ;Q)t+1 = 3m− c(+) ≤ d.

On the other hand, by a transfer argument of [4, Lemma 1.4], the homomor-
phism

k∗ : T 1(Ỹ , ∂Ỹ ;Q)t+1 → H1(M ;Q)

is injective. Since

dimQ T 1(Ỹ , ∂Ỹ ;Q)t+1 = c(+),
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the image ∆ = k∗T 1(Ỹ , ∂Ỹ ;Q)t+1 of the homomorphism k∗ is a Q-subspace
of H1(M ;Q) of codimension d′ = 3m − c(+) ≤ d. Since the cup product
space ∆(2) of ∆ is equal to Ω, we have

dimQ Ω ≥ 2m− d′ ≥ 2m− d.

Hence 2m − d ≤ d, that is m ≤ d. This contradicts the inequality m > d.
Thus, the assertion (*) is false. This completes the outline of the proof of
Lemma 7.3.
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