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ABSTRACT

Every Dehn surgery manifold of a component-conservatively invertible link
is embedded into a closed oriented 4-manifold with the Z/2-homology of S1×S3,

where Z/2 = Z[12 ] is a subring of Q. This 3-manifold and 4-manifold give a typ-
ical example of a closed Samsara 4-manifold on an invertible 3-manifold. After
observing that not every closed oriented 3-manifold is a Dehn surgery mani-
fold of a component-conservatively invertible link, we shall construct, for every
closed oriented 3-manifold M , an analogous compact oriented 4-manifold but
only with as boundary a connected sum of 3-tori, which we call a bounded
Samsara 4-manifold on M . This construction leads to an open question asking
whether every M is embedded into a compact oriented 4-manifold with the
trivial second Q-homology. We shall investigate a relationship between the Z2-
rank of the 2-torsion part of the second homology group of a bounded Samsara
4-manifold on M and the Z2-rank of the first Z2-homology group of M . From
a closed Samsara 4-manifold on M , we also obtain a closed oriented 4-manifold
with the Z/2-homology of S4 where a punctured 3-manifold M0 of M is embed-
ded, called a reduced closed Samsara 4-manifold on M0. A reduced bounded
Samsara 4-manifold on any punctured 3-manifold is also discussed in parallel.

1. Introduction

An oriented knot K in the 3-sphere S3 is invertible if there is an orientation-
preserving self-homeomorphism f of S3 sending K to the orientation-reversed knot
−K of K (see [12] as a general reference of knot theory). Until now, it appears
that a topological meaning of an invertible knot has not been enough observed. In
this paper, we try to find a meaning in an embedding relationship between a closed



oriented 3-manifold and a closed oriented 4-manifold constructed from an invertible
knot. The self-homeomorphism f : S3 → S3 induces an orientation-preserving and
spin-structure-preserving self-homeomorphism h : M → M such that h∗ = −1 :
H1(M ;Z) → H1(M ;Z) for the first homology H1(M ;Z) of the Dehn surgery 3-
manifold M = χ(K; r) with any rational surgery coefficient r ∈ Q. Let Σ be the
mapping torus of h: namely,

Σ = M × [0, 1]/{(h(x), 0) ∼ (x, 1) | x ∈ M}.

We have H1(Σ;Z) ∼= Z ⊕H1(M ;Z2) and H1(M ;Z) ∼= Zn where n is the numerator
of the reduced fraction of r.

For a manifoldX, the Z-rank ofthe dth homologyHd(X;Z) is denoted by βd(X;Z)
and the Z2-rank of Hd(X;Z2) by βd(X;Z2). Then s = β1(M ;Z2) is 0 or 1 according
to whether n is odd or even. Since the Euler characteristic χ(Σ) = 0, we obtain

Hd(Σ;Z) ∼=


Z (d = 0, 3, 4)
Z2

s (d = 2)
Z ⊕ Z2

s (d = 1)
0 (others), where s = β1(M ;Z2).

by Poincaré duality. For an abelian group G and a prime number p, the subgroup
{x ∈ G | px = 0} of G is denoted by G(p). If G is finite, then we have G(p) ∼= G⊗Zp.

By β
(p)
d (X;Z), we denote the Zp-rank of Hd(X;Z)(p). Under these notations, we have

the following Z2-torsion relation

β1(M ;Z2) = β
(2)
2 (Σ;Z).

Throughout this paper, by a closed 3-manifold we mean a closed connected ori-
ented 3-manifold, and by a punctured 3-manifold M0 of a closed 3-manifold M ,
the bounded 3-manifold M0 = cl(M\D3) for a 3-disk D3 in M . An embedding1

k : M → Y from a closed oriented 3-manifold M into an orientable (possibly
non-compact) 4-manifold Y is of type 1 or type 2 if the complement Y \k(M) is
connected or disconnected, respectively. Since we can find a simple closed curve
C in Y meeting k(M) with one point transversely, we see that H3(Y ;Z) has a
direct summand Z with a generator represented by the 3-submanifold k(M) and
H1(Y ;Z) has a direct summand Z with a generator represented by the cirlce C.
Thus, if moreover Hd(Y ;Q) ∼= Hd(S

1 × S3;Q) for d = 1, 3, then H3(Y ;Z) ∼= Z has
a generator represented by the 3-submanifold k(M) and H1(Y ;Z)/(torsion) ∼= Z
has a generator represented by the cirlce C so that the induced homomorphism
k∗ : H1(M ;Z) → H1(Y ;Z)/(torsion) is the zero map. To make our argument clear,
we use the subring Z/2 = Z[1

2
] of Q rather than Q itself. Then the 4-manifold Σ

1An embedding is assumed to be a smooth or piecewise-linear embedding unless otherwise spec-
ified.
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is a spin 4-manifold with Z/2-homology of S1 × S3 and there is a type 1 embedding
k : M → Σ. Since Σ is an fiber bundle over the circle S1 with fiber M , we consider
a closed 4-manifold Σ̂ obtained from Σ by a surgery killing a section of S1, namely

Σ̂ = cl(Σ\S1 ×D3) ∪D2 × ∂D3

for a regular neighborhood S1 × D3 of a section in Σ. The embedding k : M → Σ
induces a punctured embedding

k0 : M0 → Σ̂

for a punctured 3-manifold M0 of M and we have

Hd(Σ̂;Z) ∼=


Z (d = 0, 4)
Z2

s (d = 1, 2)
0 (others), where s = β1(M ;Z2).

In particular, Σ̂ is a spin 4-manifold with Z/2-homology of the 4-sphere S4 with
theZ2-torsion relation

β1(M ;Z2) = β
(2)
2 (Σ̂;Z).

As a result, we obtain the following observation on a pair of a 3-manifold and a
4-manifold which is constructed from every invertible knot reflecting a topological
meaning of an invertible knot.

Observation 1.1. Every Dehn surgery manifold M = χ(K; r) of an invertible knot
K with every rational surgery coefficient r ∈ Q is embedded in a spin 4-manifold Σ

with Z/2-homology of S1×S3 and with theZ2-torsion relation β
(2)
2 (Σ;Z) = β1(M ;Z2)

by a type 1 embedding k : M → Σ. Further, there is a punctured embedding
k0 : M0 → Σ̂ for a spin 4-manifold Σ̂ with Z/2-homology of S4 and with theZ2-

torsion relation β
(2)
2 (Σ̂;Z) = β1(M ;Z2) which is obtained from Σ by a surgery killing

a generator of H1(Σ;Z)/(2-torsion) = Z.

Here is a remark showing that a Z/2-homology 4-sphere Σ̂ cannot be always re-
placed by S4.

Remark 1.2. One may expect that every punctured manifold M0 of every Dehn
surgery manifold M = χ(K; r) of an invertible knot K is embeddable in the 4-sphere
S4, but it is not true. For example, the lens space L(p, q) is a Dehn surgery manifold of
a trivial knot which is an invertible knot and it is known by Epstein[2] and Zeeman[17]
that the punctured manifold L(p, q)0 is embeddable in S4 if and only if p is odd or
p = 0. If we consider the 0-surgery manifold M = χ(K; 0) of the trefoil knot K
(known to be invertible), then it is shown in [3] that M0 is not embeddable in S4.
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The embeddings M → Σ and M0 → Σ̂ both constructed from an invertible
knot K are most standard examples of a closed Samsara manifold Σ on an invertible
3-manifoldM and a reduced closed Samsara 4-manifold Σ̂ on a punctured invertible 3-
manifold M0. Similar examples are constructed from every component-conservatively
invertible link and more generally from an invertible 3-manifold. After observing
that not every closed 3-manifold is an invertible 3-manifold, we show a main result
(Theorem 3.2) that we can have a bounded Samsara 4-manifold Σ on every closed

3-manifold and a reduced bounded Samsara 4-manifold Σ̂ on every punctured 3-
manifold with the Z2-torsion relation. In Remark 3.3, we observe that there are closed
3-manifolds which are not type 2 embeddable in any (closed or bounded) Samsara
4-manifold Σ on any closed 3-manifold M and not embeddable in any (closed or

bounded) reduced Samsara 4-manifold Σ̂ on any punctured 3-manifold M0.
In Section 2, we generalize Observation 1.1 in the introduction to an observation

(Observation 2.1) arising from a component-conservatively invertible link. Then we
introduce a concept of an invertible 3-manifold to obtain a similar observation (Ob-
servation 2.3). Some non-invertible 3-manifolds are also given here. In Section 3, we
define a Samsara 4-manifold on a closed 3-manifold and a reduced Samsara 4-manifold
on a punctured 3-manifold . In Observation 3.1, some observations on the Z2-torsion
relation are given. Then we state our main result (Theorem 3.2). In Remark 3.3,
non-embedding results relating to Theorem 3.2 are given. In Section 4, we explain
an estimate on the signature theorem for an infinite cyclic covering, which is a main
tool to prove the Z2-torsion relation in Theorem 3.2. The proof of Theorem 3.2 is
done in Section 5. One remaining open question is also stated there.

Finishing this introduction, we note that the Samsara 4-manifolds on 3-manifolds
constructed in this paper are used in [12] to construct a necessary example on an
open orientable 4-manifold with every closed 3-manifold type 1 embedded.

2. A generalization to a component-conservatively invertible link and in-
vertible 3-manifolds

An oriented link L with components Ki (i = 1, 2, ..., n) in S3 is component-
conservatively invertible if there is an orientation-preserving self-homeomorphism f :
S3 → S3 sending Ki to −Ki for every i. The self-homeomorphism f induces an
orientation-preserving and spin-structure-preserving self-homeomorphism h : M →
M such that h∗ = −1 : H1(M ;Z) → H1(M ;Z) for the Dehn surgery 3-manifold
M = χ(L; r) with every surgery coefficient r ∈ Qn. Let Σ be the mapping torus of
h. Then we have

H1(Σ;Z) ∼= Z ⊕H1(M ;Z2) ∼= Z ⊕ Z2
s

for an integer s ≧ 0. Since the Euler characteristic χ(Σ) = 0, we obtain by Poincaré
duality
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Hd(Σ;Z) ∼=


Z (d = 0, 3, 4)
Z2

s (d = 2)
Z ⊕ Z2

s (d = 1)
0 (others),where s = β1(M ;Z2).

Thus, there is an embedding k : M → Σ of type 1 and the 4-manifold Σ is a spin

4-manifold with Z/2-homology of S1 × S3 and with β
(2)
2 (Σ;Z) = β1(M ;Z2). Since Σ

is an fiber bundle over the circle S1 with fiber M , we consider a closed spin 4-manifold
Σ̂ obtained from Σ by a surgery killing a section of S1. Then we have

Hd(Σ̂;Z) ∼=


Z (d = 0, 4)
Z2

s (d = 1, 2)
0 (others),where s = β1(M ;Z2).

In particular, there is an embedding k0 : M0 → Σ̂ and Σ̂ has the Z/2-homology

of S4 with the Z2-torsion relation β
(2)
2 (Σ̂;Z) = β1(M ;Z2). We obtain the following

observation similar to Observation 1.1.

Observation 2.1. Every Dehn surgery manifold M = χ(L; r) for every component-
conservatively invertible link L and every surgery coefficient r ∈ Qn is embedded
in a spin 4-manifold Σ with Z/2-homology of S1 × S3 by a type 1 embedding k :

M → Σ with β
(2)
2 (Σ;Z) = β1(M ;Z2). Further, there is a punctured embedding

k0 : M0 → Σ̂ for a spin 4-manifold Σ̂ with Z/2-homology of S4 and with the Z2-torsion

relation β
(2)
2 (Σ̂;Z) = β1(M ;Z2) which is obtained from Σ by killing a generator of

H1(Σ;Z)/(2-torsion) ∼= Z.

A closed 3-manifold M is invertible if there is an orientation-preserving self-
homeomorphism h : M → M such that

h∗ = −1 : H1(M ;Z) → H1(M ;Z).

Here are some examples of invertible 3-manifolds.

Example 2.2.
(1) Every Dehn surgery manifold M = χ(L; r) for every component-conservatively
invertible link L and every surgery coefficient r ∈ Qn is an invertible 3-manifold.
(2) The double branched cover of S3 branched along every link is an invertible 3-
manifold.
(3) Every closed 3-manifold of Heegaard genus ≦ 2 is an invertible 3-manifold. In
particular, every lens space is an invertible 3-manifold.
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In fact, (1) was discussed in Section 2. To see (2), we consider a tangle decomposi-
tion (D3

1, T1)∪ (D3
2, T2) of every link (S3, L) such that Ti is a trivial tangle in a 3-disk

D3
i for i = 1, 2. The double branched covering spaces D3

i (Ti)2 (i = 1, 2) are han-
dlebodies and thus give a Heegaard decomposition of the double branched covering
space M = S3(L)2. The covering transformation t on M gives a hyperelliptic involu-
tion on the Heegaard surface F = ∂B3

1(T1)2 = ∂B3
2(T2)2 inducing the (−1)-multiple

map of H1(F ;Z). This implies that t induces the (−1)-multiple map of H1(M ;Z).
(3) follows from the fact that every closed 3-manifold of Heegaard genus ≦ 2 is the
double covering space of S3 branched along a link (see Birman-Hilden[1], Viro[16]).

Considering the mapping torus Σ of h : M → M for an invertible 3-manifold M
as it is discussed in Sections 1 and 2, we obtain the following observation similar to
Observations 1.1 and 2.1, which has been implicitely used in [7, Theorem 2.5].

Observation 2.3. Every invertible 3-manifold M is embedded in a spin 4-manifold

Σ with Z/2-homology of S1 × S3 and with β
(2)
2 (Σ;Z) = β1(M ;Z2) by a type 1

embedding k : M → Σ. Further, there is a punctured embedding k0 : M0 → Σ̂ for a

spin 4-manifold Σ̂ with Z/2-homology of S4 and with β
(2)
2 (Σ̂;Z) = β1(M ;Z2) which

is obtained from Σ by a surgery killing a generator of H1(Σ;Z)/(2-torsions) ∼= Z.

An important point in Observation 2.3 is that the embedding k : M → Σ is of
type 1, because for every compact oriented 4-manifold W , there is an invertible 3-
manifold M which is not embeddable in W by any type II embedding (see [7]). Here
are some examples of non-invertible 3-manifolds.

Example 2.4.
(1) Every closed hyperbolic 3-manifold with no symmetry or with only odd symmetries
is a non-invertible 3-manifold.
(2) Every closed 3-manifold M admitting 3 elements u1, u2, u3 ∈ H1(M ;Zp) for an
odd prime p > 1 such that u1 ∪ u2 ∪ u3 ̸= 0 in H3(M ;Zp) ∼= Zp is a non-invertible 3-
manifold. For example, if M is Zp-homology cobordant to the connected sum T 3#M ′

of the 3-torus T 3 = S1×S1×S1 and any closed 3-manifold M ′, then M satisfies this
condition and hence is non-invertible.

In fact, (1) follows since every invertible hyperbolic 3-manifold must admit an
even order isometry by Mostow rigidity theorem (see Thurston[15]). To see (2),
suppose that there is an orientation-preserving self-homeomorphism h of M such
that h∗ = −1 : H1(M ;Z) → H1(M ;Z). Then h∗ = −1 : H1(M ;Zp) → H1(M ;Zp),
so that

h∗(u1 ∪ u2 ∪ u3) = h∗(u1) ∪ h∗(u2) ∪ h∗(u3) = −(u1 ∪ u2 ∪ u3).

Hence h∗ = −1 : H3(M ;Zp) → H3(M ;Zp) meaning that h is an orientation-reversing
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self-homeomorphism, which is a contradiction. Thus,M is a non-invertible 3-manifold
showing (2).

3. Samsara 4-manifold on 3-manifolds

We shall define a closed Samsara 4-manifold and a closed reduced Samsara 4-
manifold by the homologies of the closed oriented 4-manifolds constructed from an
invertible 3-manifold as follows:

Definition. A closed Samsara 4-manifold on a closed 3-manifold M is a spin 4-
manifold Σ with Z/2-homology of S1 × S3 such that there is a type 1 embedding
k : M → Σ. A reduced closed Samsara 4-manifold on a punctured 3-manifold M0 is a
spin 4-manifold Σ̂ with Z/2-homology of S4 such that there is a punctured embedding

k0 : M0 → Σ̂.

It is unknown whether there is a closed Samusara 4-manifold on every closed
3-manifold. Instead, we shall construct a bounded Samsara 4-manifold on every
closed 3-manifold and a bounded reduced Samsara 4-manifold on every punctured
3-manifold as an analogy of the construction from an invertible knot. To define a
bounded Samsara 4-manifold, we note that there are three kinds of 4-dimensional
solid tori with boundary the 3-torus T 3, which are defined as follows:

(i) The solid torus with one meridian disk is T 2 ×D2.

(ii) The solid torus with two meridian disks is the compact exterior ET 2 = cl(S4\T 2×
D2) for an unknotted torus-knot T 2 in S4 where the two loops S1 × 1 × 1 and 1 ×
S1 × (−1) of T 3 bound disjoint disks.

(iii) The solid torus with three medridian disks is the 4-manifold D(T 3) obtained
from the 4-disk D4 by attaching the 0-framed 2-handles h2

i (i = 1, 2, 3) along the
components of the Borromean rings LB, where the three loops S

1×1×1, 1×S1×(−1)
and (−1)× (−1)× S1 of T 3 bound disjoint disks which are the dual core disks of h2

i

(i = 1, 2, 3) (see Matumoto [14]).

The solid torus D(T 3) with three medridian disks is a simply connected spin
4-manifold with the following homology:

Hd(D(T 3);Z) ∼=


Z3 (d = 2)
Z (d = 0)
0 (others).

We see from this calculation that the intersection form on H2(D(T 3);Z) is the zero
form, because the natural homomorphism H2(T

3;Z) → H2(D(T 3);Z) is an isomor-
phism. The solid torus with one meridian disk or two meridian disks is embedded in
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S4 and obtained from D(T 3) by a surgery killing one sphere or two spheres in D(T 3)
respectively. On the other hand, the solid torus D(T 3) with three medridian disks
cannot be embedded in S4. To see this, suppose that D(T 3) is embedded in S4. Then
the exterior W = cl(S4\D(T 3)) has the homology:

Hd(W ;Z) ∼=


Z3 (d = 1)
Z (d = 0)
0 (others).

It is shown in [12, p.192] that T 3 is not the boundary of a compact oriented 4-manifold
W with H2(W ;Z) = 0, a contradiction. Thus, D(T 3) cannot be embedded in S4. For
s ≧ 2, we denote by D(sT 3) the disk sum of s copies of the solid torus D(T 3) with
three medridian disks, which is a simply connected spin 4-manifold with ∂D(sT 3) =
#sT 3 (the connected sum of s copies of T 3) and with H2(D(sT 3);Z) ∼= Z3s such that
the intersection form Int : H2(D(sT 3);Z)×H2(D(sT 3);Z) → Z is the zero form. Let

Σ = S1 × S3#D(sT 3), and Σ̂ = S4#D(sT 3)

for a positive integer s. We define a bounded Samsara 4-manifold on a closed 3-
manifold and a bounded reduced Samsara 4-manifold on a punctured 3-manifold as
follows:

Definition. A bounded Samsara 4-manifold on a closed 3-manifold M is a compact
oriented spin 4-manifold Σ with Z/2-homology of Σ for some s such that there is a
type 1 embedding

k : M → Σ

inducing the trivial homomorphism

k∗ = 0 : H2(M ;Z/2) → H2(Σ;Z/2) = Z/2
3s.

A reduced bounded Samsara 4-manifold on a punctured 3-manifold M0 is a compact
oriented spin 4-manifold Σ̂ with Z/2-homology of Σ̂ for some s such that there is a
punctured embedding

k0 : M0 → Σ̂

inducing the trivial homomorphism

k0
∗ = 0 : H2(M

0;Z/2) → H2(Σ̂;Z/2) = Z/2
3s.

In the definition above, Σ and Σ̂ for all s are called the standard Samsara 4-
manifolds on S3 and the standard reduced bounded Samsara 4-manifolds on the punc-
tured 3-sphere (S3)0, respectively, where we understand that Σ = S1×S3 and Σ̂ = S4

for s = 0. The following computations are made by using Poincaré duality and the
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homology exact sequences for (Σ, ∂Σ) and (Σ̂, ∂Σ̂), which show that there are no

Z/2-homological differences between (Σ, ∂Σ) and (Σ, ∂Σ) and between (Σ̂, ∂Σ̂) and

(Σ̂, ∂Σ̂):

∂∗ : H4(Σ, ∂Σ;Z) ∼= H3(∂Σ;Z) ∼= Z, ∂∗ : H4(Σ̂, ∂Σ̂;Z) ∼= H3(∂Σ̂;Z) ∼= Z,

j∗ : H3(Σ;Z) ∼= H3(Σ, ∂Σ;Z) ∼= Z, H3(Σ̂;Z) = H3(Σ̂, ∂Σ̂;Z) = 0,

i∗ : H2(∂Σ;Z/2) ∼= H2(Σ;Z/2), i∗ : H2(∂Σ̂;Z/2) ∼= H2(Σ̂;Z/2),

∂∗ : H2(Σ, ∂Σ;Z/2) ∼= H1(∂Σ;Z/2), ∂∗ : H2(Σ̂, ∂Σ̂;Z/2) ∼= H1(∂Σ̂;Z/2),

j∗ : H1(Σ;Z/2) ∼= H1(Σ, ∂Σ;Z/2), H1(Σ̂;Z/2) = H1(Σ̂, ∂Σ̂;Z/2) = 0.

From the isomorphisms i∗, we have the trivial intersection forms

Int = 0 : H2(Σ;Z)×H2(Σ;Z) → Z, Int = 0 : H2(Σ̂;Z)×H2(Σ̂;Z) → Z

of every Samsara 4-manifoldΣ on any closed 3-manifold and every reduced Samsara 4-
manifold Σ̂ on any punctured 3-manifold. Further, we have the following observations:

Observation 3.1.
(1) Given a reduced (closed or bounded) Samsara 4-manifold Σ̂ on M0, we have a

(closed or bounded) Samsara 4-manifold Σ on M with H2(Σ;Z) ∼= H2(Σ̂;Z). In fact,

we have Σ by a surgery of Σ̂ along the 2-sphere S2 = ∂M0 since S2 is null-homologous
in Σ̂. To see this, for a regular neighborhood S2 ×D2 of S2 in Σ̂, let

Σ = cl(Σ̂\S2 ×D2) ∪D3 × ∂D2,

which is seen to be a (closed or bounded) Samsara 4-manifold on M . Examining the
excision isomorphism

H2(Σ̂, S2 ×D2;Z) ∼= H2(Σ,D3 × ∂D2;Z),

we see that H2(Σ;Z) ∼= H2(Σ̂;Z). Conversely, given a (closed or bounded) Sam-
sara 4-manifold Σ on M , we obtain a reduced (closed or bounded) Samsara 4-

manifold Σ̂ on M0 with H2(Σ̂;Z) ∼= H2(Σ;Z) by a surgery killing a generator of
H1(Σ;Z)/(2-torsion) ∼= Z.

(2) Given a reduced (closed or bounded) Samsara 4-manifold Σ̂ on M0, then for every

positive integer n there is a reduced (closed or bounded) Samsara 4-manifold (Σ̂ ′ on

M0 with β
(2)
2 (Σ̂ ′;Z) = β

(2)
2 (Σ̂;Z) + n, where the boundary ∂Σ̂ = #sT 3 may be

unchanged or changed so that the integer s takes any larger integer. Similarly, given
a (closed or bounded) Samsara 4-manifold Σ on M , then for every positive integer

n there is a (closed or bounded) Samsara 4-manifold Σ ′ on M with β
(2)
2 (Σ ′;Z) =
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β
(2)
2 (Σ;Z) + n, where the boundary ∂Σ = #sT 3 may be unchanged or changed so

that the integer s takes any larger integer. These constructions are easily made by
taking connected sums or disk sums with some 4-manifolds Y with Z/2-homology of
S4 and with H1(Y ;Z) ∼= Z2m for any non-zero integers m and some copies of D(T 3).

(3) There are infinitely many closed 3-manifoldsM such that there are reduced (closed

or bounded) Samsara 4-manifolds Σ̂ on M0with the Z2-torsion relation β
(2)
2 (Σ̂;Z) <

β1(M ;Z2) and (closed or bounded) Samsara 4-manifolds Σ on M with β
(2)
2 (Σ;Z) <

β1(M ;Z2). For example, we consider any closed 3-manifold M with β1(M ;Z2) > 0
whose punctured manifold M0 is embeddable into S4. Then S4 is a reduced closed

Samsara 4-manifold on M0 with β
(2)
2 (S4;Z) = 0 < β1(M ;Z2). By a surgery of S4

along the 2-knot S2 = ∂M0, we obtain a closed Samsara 4-manifold Σ with homology

of S1 × S3 on M so that β
(2)
2 (Σ;Z) = 0 < β1(M ;Z2).

The following theorem is our main theorem.

Theorem 3.2. For every closed 3-manifoldM , there is a reduced (closed or bounded)

Samsara 4-manifold Σ̂ on M0 with the Z2-torsion relation β
(2)
2 (Σ̂;Z) = β1(M ;Z2).

Further, for every positive integer n, there are infinitely many closed 3-manifolds M
such that every reduced (closed or bounded) Samsara 4-manifold Σ̂ on M0 has the
Z2-torsion relation

β
(2)
2 (Σ̂;Z) ≧ β1(M ;Z2) = n.

For every closed 3-manifold M , there is a (closed or bounded) Samsara 4-manifold Σ

on M with β
(2)
2 (Σ;Z) = β1(M ;Z2). Further, for every positive integer n, there are

infinitely many closed 3-manifolds M such that every (closed or bounded) Samsara
4-manifold Σ on M has

β
(2)
2 (Σ;Z) ≧ β1(M ;Z2) = n.

In the following remark, we discuss some non-embedding results on Theorem 3.2.

Remark 3.3. There are closed 3-manifolds which are not type 2 embeddable in any
(closed or bounded) Samsara 4-manifold Σ on every closed 3-manifold and which are

not embeddable in any reduced (closed or bounded) Samsara 4-manifold Σ̂ on every
punctured 3-manifold. There are punctured 3-manifolds which are not embeddable
in the standard reduced Samsara 4-manifold Σ̂ on the punctured 3-sphere and in the
standard Samsara 4-manifold Σ on S3 for any s.

To see (1) of Remark 3.3, we need the following assertion.
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(3.3.1) Let Y be a compact connected oriented 4-manifold with connected boundary
∂Y . Assume that H1(Y ;Q) = 0 and the natural homomorphism H2(∂Y ;Q) →
H2(Y ;Q) is an isomorphism. Let p be a prime number such that H1(Y ;Z)(p) =
H1(∂Y ;Z)(p) = 0. If a closed 3-manifold M with H1(M ;Q) = 0 is embedded in Y ,
then the linking form

ℓp : H1(M ;Z)p ×H1(M ;Z)p → Q/Z

on the p-primary component H1(M ;Z)p of H1(M ;Z) is hyperbolic.

First, by assuming (3.3.1), we show (1) of Remark 3.3. Since H1(Σ̂;Q) = 0 and

H1(Σ̂;Z)(p) = H1(∂Σ̂;Z)(p) = 0 for every odd prime p, the lens space L(n,m) for

any odd n ̸= ±1 cannot be embedded in Σ̂ by (3.3.1). If a closed 3-manifold M with
H1(M ;Q) = 0 is type 2 embedded in Σ, then we can find a cirlce C in Σ representing
a generator of H1(Σ;Z)/(torsions) ∼= Z and not meeting M . In fact, M splits Σ into
two 4-manifolds W1 and W2. Then, we may have H1(W1;Q) ∼= Q and H1(W2;Q) = 0.
By Mayer-Vietoris sequence, we have a natural isomorphism

H1(W1;Z)/(torsions)⊕H1(W2;Z)/(torsions) → H1(Σ;Z)/(torsions).

Since H1(W2;Z)/(torsions) = 0, we have a natural isomorphism

H1(W1;Z)/(torsions) ∼= H1(Σ;Z)/(torsions).

Any embedded circle C in intW1 representing a generator of H1(W1;Z)/(torsions) is
a desired one. Then the 3-manifold M is embedded in a reduced Samsara 4-manifold
Σ̂ obtained from Σ by a surgery killing C. Thus, the lens space L(n,m) for any odd
n ̸= ±1 cannot be embedded in Σ.

If a punctured 3-manifold M0 with H1(M ;Q) = 0 is embedded in the standard

reduced Samsara 4-manifold Σ̂, then M0 × [−1, 1] is embedded in Σ̂ and hence the

closed 3-manifold DM0 = ∂(M0 × [−1, 1]) is embedded in Σ̂. By (3.3.1) the linking

form on DM0 is hyperbolic, for H1(Σ̂;Z)(p) = H1(∂Σ̂;Z)(p) = 0 for all primes p. In
particular, the linking form on the 2-primary component H1(M ;Z)2 is isomorphic to
a block sum of some linking forms in Ek

0 (k ≧ 1) and Ek
1 (k ≧ 2) described in [11].

In particular, H1(M ;Z)2 is a direct double. Thus, the punctured lens space L(m,n)0

for any non-zero even integer n is not embeddedable in Σ̂ and also in Σ from which
Σ̂ is obtained by a surgery killing a generator of H1(Σ;Z) = Z.

Proof of (3.3.1). Since H1(Y ;Q) = 0, we see that M splits Y into two com-
pact connected 4-manifolds Y ′, Y ′′ where we take ∂Y ′′ ⊃ ∂Y . Since H3(Y, ∂Y ;Z) =
H2(Y, ∂Y ;Z)(p) = 0, the natural isomorphism i∗ : H2(∂Y ;Q) → H2(Y ;Q) implies
that the natural homomorphism i∗ : H2(∂Y ;Z) → H2(Y ;Z) is injective whose cok-
ernel is a p-torsion-free finite abelian group. Thus, in the homology with coefficients
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in the p-local ring

Z(p) = {m
n

∈ Q|m,n ∈ Z, (n, p) = 1},

we have an isomorphism

i∗ : H2(∂Y ;Z(p)) ∼= H2(Y ;Z(p)).

Then we see that the natural homomorphisms i′′∗ : H2(∂Y ;Z(p)) → H2(Y
′′;Z(p)) and

j′′∗ : H2(Y
′′;Z(p)) → H2(Y ;Z(p)) are isomorphisms. In fact, i∗ factors through i′′∗ and

j′′∗ , the composite τ = (i∗)
−1j′′∗ : H2(Y

′′;Z(p)) → H2(∂Y ;Z(p)) is the left inverse of
i′′∗ : H2(∂Y ;Z(p)) → H2(Y

′′;Z(p)). Since H2(M ;Z) = 0, we see from the Mayer-
Vietoris sequence on (Y ′, Y ′′;M) that

j′∗ + j′′∗ : H2(Y
′;Z(p))⊕H2(Y

′′;Z(p)) → H2(Y ;Z(p))

is injective. By Poincaré duality, H2(Y ;Z(p)) is Z(p)-free. Hence H2(Y
′;Z(p)) and

H2(Y
′′;Z(p)) are Z(p)-free, so that i′′∗, j

′′
∗ and j′∗ + j′′∗ are all isomorphisms on Z(p)-free

modules. In particular, H2(Y
′;Z(p)) = 0, by which we have the short exact sequence

0 → H2(Y
′,M ;Z(p))

∂′
∗→ H1(M ;Z(p))

(i′M )∗→ H1(Y
′;Z(p)) → 0.

This implies the following short exact sequence

0 → H2(Y
′,M ;Z)p

∂′
∗→ H1(M ;Z)p

(i′M )∗→ H1(Y
′;Z)p → 0.

By Poincaré duality, this means that the linking form ℓp : H1(M ;Z)p×H1(M ;Z)p →
Q/Z has

ℓp(ker(i
′
M)∗, ker(i

′
M)∗) = 0 and |H1(M ;Z)p| = |H1(Y

′;Z)p|2.

Using that j′∗ + j′′∗ is onto and H1(Y ;Z(p)) = 0, we have a natural isomorphism

(i′M)∗ + (i′′M)∗ : H1(M ;Z(p)) → H1(Y
′;Z(p))⊕H1(Y

′′;Z(p)),

implying that

(i′M)∗ + (i′′M)∗ : H1(M ;Z)p ∼= H1(Y
′;Z)p ⊕H1(Y

′′;Z)p.

Thus, we have |H1(M ;Z)p| = |H1(Y
′;Z)p||H1(Y

′′;Z)p| and hence |H1(Y
′;Z)p| =

|H1(Y
′′;Z)p|. The homology sequence of the pair (Y ′′,M ∪∂Y ) induces the following

exact sequence:

0 → H2(Y
′′,M ∪ ∂Y ;Z)p

∂̄′′
∗→ H1(M ∪ ∂Y ;Z)p

ī′′∗→ H1(Y
′′;Z)p → 0,
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because we have |H1(M ;Z)p| = |H1(Y
′′;Z)p|2, a natural isomorphism H1(M ;Z)p ∼=

H1(M ∪ ∂Y ;Z)p implied by H1(∂Y ;Z)(p) = 0, and an isomorphism H2(Y
′′,M ∪

∂Y ;Z)p ∼= H1(Y
′′;Z)p obtained by Poincaré duality. For the linking form ℓ̄p : H1(M∪

∂Y ;Z)p ×H1(M ∪ ∂Y ;Z)p → Q/Z, we have

ℓ̄p(ker̄i
′′
∗, ker̄i

′′
∗) = 0.

Since (i′M)∗ : H1(M ;Z)p → H1(Y
′′;Z)p is identical to ī′′∗ : H1(M ∪ ∂Y ;Z)p →

H1(Y
′′;Z)p and the linking form ℓp : H1(M ;Z)p × H1(M ;Z)p → Q/Z is identical

to ℓ̄p, we see that
ℓp(ker(i

′
M)∗, ker(i

′
M)∗) = 0.

Since H1(M ;Z)p ∼= ker(i′M)∗⊕ker(i′′M)∗, we see that the linking form ℓp : H1(M ;Z)p×
H1(M ;Z)p → Q/Z is hyperbolic, completing the proof of (3.3.1).

The following remark concerns the definitions of a Samsara 4-manifold and a
reduced Samsara 4-manifold.

Remark 3.4. We replace Σ and Σ̂ by the 4-manifolds

Σ∗ = S1 × S3#sD(T 3) and Σ̂∗ = S4#sD(T 3)

whose boundaties are respectively the disjoint union of s copies of T 3 to define a
“new bounded Samsara 4-manifold”Σ∗ on M and a “new reduced bounded Samsara
4-manifold”Σ̂∗ on M0 by the following three conditions:

(1) H∗(Σ
∗;Z/2) ∼= H∗(Σ

∗;Z/2) and H∗(Σ̂
∗;Z/2) ∼= H∗(Σ̂

∗;Z/2),

(2) ∂Σ∗ = ∂Σ∗ and ∂Σ̂∗ = ∂Σ̂∗,

(3) There is a type 1 embedding M → Σ∗ and there is an embedding M0 → Σ̂∗.

Then the same results (Observation 3.1 and Theorem 3.2) hold for Σ∗ and Σ̂∗ in

place of Σ and Σ̂ except in (4) of Observation 3.1 where a type 2 embedding M → Σ
must be understood as a type 2 embedding M → Σ∗ with [M ] = 0 in H3(Σ

∗;Z).

4. An estimate on the signature theorem for an infinite cyclic covering

We need an estimate on the signature theorem in [6] and [7].
Let Y be a compact connected oriented 4-manifold with boundary a closed 3-

manifold B. For the intersection form Int : H2(Y ;Z)×H2(Y ;Z) → Z, let

O2(Y ;Z) = {x ∈ H2(Y ;Z) | Int(x,H2(Y ;Z)) = 0}.

Then the quotient group Ĥ2(Y ;Z) = H2(Y ;Z)/O2(Y ;Z) is a free abelian group of

finite rank, whose rank is denoted by β̂2(Y ;Z). For example, we have

β̂2(Σ;Z) = β̂2(Σ̂;Z) = 0
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for every (closed or bounded) Samsara 4-manifold Σ on any M and every reduced

(closed or bounded) Samsara 4-manifold Σ̂ on any M0. Assume that there is an
epimorphism γ : H1(Y ;Z) → Z. We take the infinite cyclic covering (Ỹ , B̃) of (Y,B)
associated with γ. Then H2(Ỹ ;Q) is a finitely generated Γ-module for the Laurent
polynomial ring Γ = Q[t, t−1]. We consider the Γ-intersection form

IntΓ : H2(Ỹ ;Q)×H2(Ỹ ;Q) → Γ

defined by

IntΓ(x, y) =
+∞∑

m=−∞

IntQ(x, t
−my)tm

for x, y ∈ H2(Ỹ ;Q), where IntQ denotes the ordinary intersection pairing onH2(Ỹ ;Q).
Then we have the identity

IntΓ(f(t)x, g(t)y) = f(t−1)g(t)IntΓ(x, y)

for all x, y ∈ H2(Ỹ ;Q). Let

O2(Ỹ ;Q)Γ = {x ∈ H2(Ỹ ;Q) | IntΓ(x,H2(Ỹ ;Q)) = 0}.

Then the quotient Γ-module Ĥ2(Ỹ ;Q)Γ = H2(Ỹ ;Q)/O2(Ỹ ;Q)Γ is a free Γ-module of

finite rank, whose rank is denoted by β̂2(Ỹ ;Q)Γ. Let A(t) be a Γ-Hermitian matrix

representing the Γ-intersection form IntΓ on Ĥ2(Ỹ ;Q)Γ. For a, x ∈ (−1, 1), we define

τa±0(Ỹ ) = lim
x→a±0

signA(ωx)

for the complex number ωx = x+
√
1− x2i of norm one. By the quadratic form

b : TorΓH1(B̃;Q)× TorΓH1(B̃;Q) → Q

on the Γ-torsion module TorΓH1(B̃;Q) of H1(B̃;Q), we have the signature invariants
σa(B̃) (a ∈ [−1, 1]) of B̃, taking the value 0 except a finite number of a (see [12, 5]).
We set

σ[a,1](B̃) =
∑

x∈[a,1]

σx(B̃),

σ(a,1](B̃) =
∑

x∈(a,1]

σx(B̃),

σ(−1,1](B̃) = lim
a→−1+0

σ(a,1](B̃).
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Let κ1(B̃) denote the Q-dimension of the kernel of the homomorphism t − 1 :
H1(B̃;Q) → H1(B̃;Q). The following signature theorem is given in [6] and contains
an estimate of the signature explained in [7, Theorem 1.6] (see also [12] for a non-
compact version):

Signature Theorem. We have the following identities.

τa−0(Ỹ )− signY = σ[a,1](B̃),

τa+0(Ỹ )− signY = σ(a,1](B̃).

For every a ∈ (−1, 1), we have the inequalities

|σ(a,1](B̃)| − κ1(B̃) ≦ β̂2(Y ;Z) + |sign(Y )| ≦ 2β̂2(Y ;Z).

5. Proof of Theorem 3.2.

We are in a position to prove Theorem 3.2.

5.1 Proof of Theorem 3.2. If M is invertible, then there is a reduced closed
Samsara 4-manifold Σ̂ on M0 by Observation 2.3. If M is not invertible, then M
is the Dehn surgery manifold χ(L, 0) with all zero coefficients for a component-
conservatively non-invertible link L in S3 of some r components (see for example
[10]). By a result of Murakami-Nakanishi in [13], the link −L which is the same link
as L but with the orientation reversed is obtained by a fusion of of a link which is a
split union of L and some copies of the Borromean rings LBi

(i = 1, 2, ..., s). Thus,
there is a proper oriented surface F consisting of punctured annuli in S3 × [0, 1] such
that ∂F = (L ∪s

i=1 LBi
) × 0 ∪ (−L) × 1. By attaching 2-handles D2 × D2

i with 0
framing (i = 1, 2, ..., 3s) to S3 × 0 along the components of the sublink ∪3s

i=1LBi
× 0,

the surface F extends to the union A of r proper annuli S1 × [0, 1]i (i = 1, 2, ..., r)
with ∂A = L×0∪ (−L)× 1 in the connected sum Y = S3× [0, 1]#D(sT 3). Then the
zero framings on the components of L in S3 extend to a trivial normal disk bundle
A × D2 on A in Y . Replacing S1 × [0, 1]i × D2 with D2 × [0, 1]i × ∂D2 for every i,
we obtain a spin 4-manifold Σ ′ with ∂Σ ′ = #sT 3 ∪ M ∪ −M . We identify M and
−M by considering them as the copies of M to obtain from Σ ′ a bounded Samsara
4-manifold Σ on M with ∂Σ = #sT 3. Let Σ = S1 × S3#D(sT 3) be the standard
Samsara 4-manifold on S3 obtained from Y by identifying S3 × 0 with S3 × 1. Σ is
also obtained from Σ by replacing a normal disk bundle N(KB) of the union KB of
r Klein bottles in Σ obtained from the normal disk bundle A ×D2 on A in Y with
the union of r twisted S1-bundles over the solid Klein bottles. To confirm that Σ is
a bounded Samsara 4-manifold on M , we have the following properties on Σ.
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(1) Since Y is simply connected, every element of H1(Y \A;Z) is generated by merid-
ians of A in Y , so that the natural map

H1(S
3 × 0\L× 0;Z) → H1(Y \A;Z)

is onto and hence the natural map H1(M × 0;Z) → H1(Σ
′;Z) is onto.

(2) By (1) and from construction, there is a natural exact sequence

H1(M ;Z)
k∗→ H1(Σ;Z) → Z → 0

for the embedding k : M ⊂ Σ arising from the inclusion M ⊂ Σ ′, where the image
Im(k∗) ⊂ H1(Σ;Z) is generated by order 2 elements, meaning H1(Σ;Z/2) ∼= Z/2.

(3) There is a Z-basis xi ∈ H2(Y ;Z) (i = 1, 2, . . . , 3s) with Int(xi, xj) = 0 for all i, j
such that every xi is represented by an embedded surface Si disjoint from A.

(4) There is a Z-basis yi ∈ H2(Y,#sT 3;Z) (i = 1, 2, . . . , 3s) with Int(xi, yj) = δij for
all i, j such that every yi is represented by an embedded proper 2-disk Di meeting Si

transversely with one point and Di ∩ Dj = ∅ and Di ∩ Sj = ∅ for distinct i and j.
Also, every Di meets A transversely with one point in Y .

(5) The loops ∂Di (i = 1, 2, . . . , 3s) form a Z-basis of H1(#sT 3;Z).

(6) From Di and its parallel D′
i, we can construct an annulus A(Di) in Σ disjoint

from KB with

[∂A(Di)] = [∂Di + ∂D′
i] = 2[∂Di] ∈ H1(#sT 3;Z)

by piping Di and D′
i along an arc on KB. Let y

∗
i = 1

2
[A(Di)] ∈ H2(Σ, ∂Σ;Z/2). Then

the boundary operator

∂∗ : H2(Σ, ∂Σ;Z/2) → H1(∂Σ;Z/2)

is onto, because ∂∗(y
∗
i ) = [∂Di] (i = 1, 2, . . . , 3s) form a basis for H1(∂Σ;Z/2). Since

∂Σ is connected, the natural map

j∗ : H1(Σ;Z/2) → H1(Σ, ∂Σ;Z/2)

is an isomorphism. By (2) and Poincaré duality, we obtain H3(Σ;Z/2) ∼= Z/2, where
M represents a generator.

(7) χ(Σ) = χ(Σ) = 3s − 1 implies dimQH2(Σ;Q) = 3s. By Poincaré duality,
we have H2(Σ;Z/2) ∼= Z/2

3s. Regarding xi ∈ H2(Σ;Z/2) (i = 1, 2, . . . , 3s), we
have IntZ/2

(xi, y
∗
i ) = δij for all i, j. Hence xi (i = 1, 2, . . . , 3s) form a Z/2-basis

of H2(Σ;Z/2) and by Poincaré duality y∗i (i = 1, 2, . . . , 3s) form a Z/2-basis of
H2(Σ, ∂Σ;Z/2). In particular, we have H∗(Σ;Z/2) ∼= H∗(Σ;Z/2).
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(8) Since M is disjoint from a 2-cycle representing y∗i ∈ H2(Σ, ∂Σ;Z/2) and xi (i =
1, 2, . . . , 3s) form a Z/2-basis ofH2(Σ;Z/2), we see from the identity IntZ/2

(xi, y
∗
j ) = δij

that k∗ = 0 : H2(M ;Z/2) → H2(Σ;Z/2).

From (1)-(8) we see that Σ is a bounded Samsara 4-manifold on M . By Observa-

tion 3.1 (1), we have a reduced (closed or bounded) Samsara 4-manifold Σ̂ onM0 with

H2(Σ̂;Z) ∼= H2(Σ;Z) by a surgery killing a generator of H1(Σ;Z)/(2-torsion) ∼= Z.

By the property (2), we have the Z2-torsion relation β1(M ;Z2) ≧ β
(2)
1 (Σ̂;Z). Since

∂Σ̂ is connected, the group H1(Σ̂, ∂Σ̂;Z) is a quotient torsion group of H1(Σ̂;Z), so

that by Poincaré duality the torsion part of H2(Σ̂;Z) is isomorphic to H1(Σ̂, ∂Σ̂;Z).

Thus, we have the Z2-torsion relation β
(2)
2 (Σ̂;Z) ≦ β1(M ;Z2). If β

(2)
2 (Σ̂;Z) <

β1(M ;Z2), then we can obtain a reduced (closed or bounded) Samsara 4-manifold

Σ̂ ′ on M0 with the Z2-torsion relation β
(2)
2 (Σ̂ ′;Z) = β1(M ;Z2) by Observation 3.1

(2). Counting Observation 3.1 (1), we also have a (closed or bounded) Samsara 4-

manifold Σ on M with β
(2)
2 (Σ;Z) = β1(M ;Z2). This completes the proof of the

existence part of Theorem 3.2.
To prove the inequality part of Theorem 3.2, we need a computation of the signa-

ture invariant on an infinite cyclic covering of the double DM0 = ∂(M0 × [−1, 1]) of
a punctured 3-manifold M0.

For every positive integer n, we take n knots Ki (1 ≦ i ≦ n) whose signatures
σ(Ki) (1 ≦ i ≦ n) have the condition that |σ(K1)| > 0 and

|σ(Ki)| >

∣∣∣∣∣
i−1∑
j=1

σ(Kj)

∣∣∣∣∣ (i = 2, 3, . . . , n).

Let Mi = χ(Ki, 0) and M = M1#M2# . . .#Mn. We call M an efficient 3-manifold
of rank n. We note here that for any n there are infinitely many efficient 3-manifolds
M with β1(M ;Z) = β1(M ;Z2) = n.

A homomorphism γ̇ : H1(DM0;Z) → Z is Z2-asymmetric if the Z2-reduction
γ̇2 : H1(DM0;Z) → Z2 is not invariant under the reflection α on the double DM0.
From construction and [7, Lemma 1.3], we see that

σ(−1,1](D̃M0) ̸= 0

for every efficient 3-manifold M of any rank n and every Z2-asymmetric homomor-
phism γ̇ : H1(DM0;Z) → Z. Also, from construction, we see that

κ1(D̃M0) = 0

for every homomorphism γ̇ : H1(DM0;Z) → Z.
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For every efficient 3-manifold M of any rank n ≧ 1 and every reduced (closed or

bounded) Samsara 4-manifold Σ̂ on M0, we shall show the Z2-torsion relation

β
(2)
2 (Σ̂;Z) ≧ β1(M ;Z2) = n.

Suppose that there is a reduced (closed or bounded) Samsara 4-manifold Σ̂ on

M0 with the Z2-torsion relation β
(2)
2 (Σ̂;Z) < β1(M ;Z2) = n. For any punctured

embedding k0 : M0 ⊂ Σ̂, we note that the kernel of the induced homomorphism
k0
∗ : H2(M

0;Z) → H2(Σ̂;Z)) is a free abelian subgroup H of the free abelian group
G = H2(M

0;Z) with the same rank n, because the image of k0
∗ : H2(M

0;Z) →
H2(Σ̂;Z)) is a torsion group. With a suitable basis xi (i = 1, 2, . . . , n) of G, there are
positive integers ri (i = 1, 2, . . . , n) such that the elements rixi (i = 1, 2, . . . , n) form

a basis of H. Since β
(2)
2 (Σ̂;Z) < n, we can find an index i such that the integer ri is

odd. Then we see that the element xi ∈ H2(M
0;Z) is sent to an odd order element

of H2(Σ̂;Z)) by the homomorphism k0
∗. Since xi is indivisible, we see from [9] that

there is a closed connected oriented surface S in M0 representing xi.
We take a bi-collar M0 × [−1, 1] of M0 in Σ̂ with M0 = M0 × 0 and a regular

neighborhood NS = S ×D2 of S ⊂ M = M × 0 in M0 × [−1, 1]. Let E = cl(Σ̂\NS).

Using the excision isomorphism H3(E, ∂NS;Z) ∼= H3(Σ̂, NS;Z), we see that there
is an indivisible element z ∈ H3(E, ∂NS;Z) with ∂∗(z) = r[S ′] ∈ H2(∂NS;Z) for a
section S ′ of the S1-bundle ∂NS over S and some odd number r under the boundary
operator ∂∗ : H2(E, ∂NS;Z) → H2(∂NS;Z). By Poincaré duality H3(E, ∂NS;Z) ∼=
H1(E, ∂Σ̂;Z) and transverse regularity, the indivisible element z in H3(E, ∂NS;Z)
is represented by a compact oriented 3-manifold V such that the boundary ∂V is a
union of r∗(> 0)-paralells of a closed connected oriented surface S∗ in ∂NS with

[∂V ] = r∗[S∗] = r[S] ∈ H2(∂NS;Z).

By replacing V with a suitable connected component of V , we may assume that V is
connected. For the submanifold EM = cl(Σ̂\M0× [−1, 1]) of E, we have a composite
homomorphism

γ : H1(EM ;Z)
i∗→ H1(E;Z)

IntV→ Z

where i∗ is a natural homomorphism and IntV is a homomorphism defined by the
identity IntV (x) = Int(x, V ) for x ∈ H1(E;Z). By construction, i∗ is onto. Since
E\V is connected, we have an element x ∈ H1(E;Z) with Int(V, x) = IntV (x) = 1
and hence IntV is onto, so that γ is onto.

Let ∂EM = DM0 ∪ M∗ for M∗ = ∂Σ̂. We show that the restriction γ̇ :
H1(DM0;Z) → Z of γ to DM0 is Z2-asymmetric. To see this, we note that the
meridian m(S) of S in M0 × [−1, 1] is deformed into a simple loop m′ in DM0 such
that α(m′) = −m′. Then we have

γ̇([m′]) = IntV ([m
′]) = Int(V,m′) = r.

18



We note that m′ is written as a connected sum m′′#α(m′′) for a simple loop m′′ in
M0 × 1 and the reflection image α(m′′). Then we have

γ̇([m′′]) + γ̇([α(m′′)]) = γ̇([m′]) = r.

Since r is odd, we see that γ̇ is Z2-asymmetric. Let (ẼM ; D̃M0, M̃∗) be the infi-
nite cyclic covering of the triad (EM ;DM0,M∗) associated with γ. The covering
ẼM → EM is a restriction of the infinite cyclic covering Ẽ → E associated with the
epimorphism IntV : H1(E;Z) → Z. Since M∗ does not meet V in E, the cover-
ing M̃∗ → M∗ is the trivial covering. Thus, we see that σ[a,1](M̃

∗) = 0 for every

a ∈ [−1, 1]. Using that κ1(D̃M0) = 0, we also see that κ1(∂ẼM) = 0. Because

β̂2(EM ;Z) = β̂2(Σ̂;Z) = 0 and κ1(∂ẼM) = 0, we see from the signature theorem that

σ(a,1](∂ẼM) = σ(a,1](D̃M0) + σ(a,1](M̃
∗) = 0

for every a ∈ (−1, 1). Thus, we have

σ(−1,1](D̃M0) = 0

which contradicts that σ(−1,1](D̃M0) ̸= 0. Counting Observation 3.1 (1), we also have
the inequality for a (closed or bounded) Samsara 4-manifold Σ on M . This completes
the proof of the inequality part and hence the full proof of Theorem 3.2.

Here is a concluding remark.

Remark 5.2. For the standard type 1 embedding f : M → M × S1 = W , we see
that if H1(M ;Q) ̸= 0, then the intersection form Int : H2(W ;Z) × H2(W ;Z) → Z
is non-trivial and the image im[f∗ : H2(M ;Q) → H2(W ;Q)] ̸= 0. On the other
hand, in Theorem 3.2 we construct a type 1 embedding k : M → Σ for every closed
3-manifold M and a compact oriented 4-manifold Σ such that the intersection form
Int : H2(Σ;Z) × H2(Σ;Z) → Z is trivial and im[k∗ : H2(M ;Q) → H2(Σ;Q)] = 0.
This leads to the following open question:

Is every closed 3-manifold type 1 embeddable in a compact connected oriented 4-
manifold with the trivial second Q-homology ?

We note that there are lots of closed 3-manifoldsM which cannot be type II embedded
in any compact connected oriented 4-manifold X with H2(X;Q) = 0. For example,
the 0-surgery manifold M = χ(K; 0) of the trefoil knot K gives such an example.
To see this, suppose that M is type II embedded in X. Using H2(X;Q) = 0, we
can assume further that H1(∂X;Q) = 0, if neceaasry, by attaching suitable 2-handles
to ∂X. Let Y and Y ′ be the 3-manifolds obtained from X by splitting along M .
Since the natural homomorphism H1(Y ;Q) ⊕ H1(Y

′;Q) → H1(X;Q) is onto and
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there are isomorphisms H1(X;Q) ∼= H1(X, ∂X;Q) ∼= H3(X;Q), we can assume
H1(X;Q) = H2(X;Q) = 0 by surgeries not meeting M which kill a Q-basis for
H1(X;Q). Then one of Y or Y ′, say, Y has H1(Y ;Q) ∼= Q and H2(Y ;Q) = 0.
Let (Ỹ , M̃) be the infinite cyclic covering of (Y,M) associated with an epimorphism
γ : H1(Y ;Z) → Z. Since κ1(M̃) = 0, we see from the signature theorem that
σ(a,1](M̃) = 0 for every a ∈ (−1, 1). By [7, Corollary 1.4], we find an a ∈ (−1, 1) with

σ(a,1](M̃) = ±2, which is a contradiction. Thus, M cannot be type II embedded in
X.
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