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Abstract

In this paper we introduce Gauss diagrams and four kinds of unknotting numbers of
a spatial graph. R. Hanaki introduced the notion of pseudo diagrams and the trivializing
numbers of knots, links and spatial graphs whose underlying graphs are planar. We
generalize the trivializing numbers without the assumption that the underlying graphs are
planar. Finally we discuss relations among the unknotting numbers and the trivializing
numbers.
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1. Introduction

Spatial graphs are graphs embedded in 3-dimensional Euclidean space R3. As knots
and links are encoded by Gauss diagrams with chords on circles, it is natural to extend
similar ideas to encode spatial graphs using Gauss diagrams. In this paper, we first discuss
a way to represent spatial graph diagrams using Gauss diagrams. In [1][2][3], T. Fleming
and B. Mellor generalized the concept of Gauss codes for virtual spatial graphs. It seems
important to encode spatial graphs using Gauss diagrams or Gauss codes when we treat
them by computer, and it would be expected that many invariants of spatial graphs can
be computed in terms of Gauss diagrams.

We introduce Gauss diagrams for spatial graphs in Section 2. The construction is
similar to that of Gauss diagrams for knots. Some typical examples of the moves on Gauss
diagrams corresponding to Reidemeister moves on spatial graph diagrams are shown.
Some moves, RII moves and RIV moves, may change Gauss diagrams of spatial graph
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diagrams to Gauss diagrams that do not correspond to spatial graph diagrams. We discuss
this in Section 3. In Section 4, we discuss Gauss diagrams for based spatial graphs.

In Section 5, we introduce four kinds of unknotting numbers of a spatial graph: the
unknotting number, the based unknotting number, the Γ-unknotting number and the
based Γ-unknotting number. This is based on the idea discussed in [8]. R. Hanaki [5]
introduced the notion of pseudo diagrams and the trivializing numbers for knots, links,
and spatial graphs, where he assumed that the underlying graphs of spatial graphs are
planar. A. Henrich et al. [6] gave a method of computing the trivializing number of a
regular projection of a knot using Gauss diagram. In Section 6, we define four kinds
of trivializing numbers: the trivializing number, the based trivializing number, the Γ-
trivializing number, and the based Γ-trivializing number. In Section 7, we give inequalities
among the unknotting numbers and the trivializing numbers.

2. Spatial graphs and Gauss diagrams

A spatial graph is a finite graph in R3. Two spatial graphs are said to be equivalent
if they are ambiently isotopic. For simplicity, throughout this paper, we assume that a
spatial graph is connected, there are no degree-0 vertices and no degree-1 vertices, and
that there is at least one vertex whose degree is greater than two. Furthermore, we assume
that a spatial graph is oriented, i.e., the edges are oriented.

Similar to a diagram of a knot, a regular projection of a spatial graph G is obtained by
projecting G to a plane so that the multiple points are transverse double points away from
vertices. A diagram of G is a regular projection of G in R2 with over/under information
at each double point. A double point with over/under information is called a crossing.
L. H. Kauffman [7] and D. N. Yetter [9] proved that two diagrams present equivalent
spatial graphs if and only if they are related by the moves shown in Figure 1. We refer
to these moves as Reidemeister moves for spatial graph diagrams.

A Gauss diagram of a knot diagram is an oriented circle identified with the source
circle of an embedding into R3 whose image is the knot, and some chords attached to the
circle whose endpoints correspond to over crossings and under crossings of the crossings.
The chords are oriented from over crossings to under crossings. When a crossing of the
diagram is denoted by c, then the endpoints of the corresponding chord will be denoted
by c and c, where c is the over crossing and c is the under crossing. Chords are assigned
signs which are equal to the signs of the crossings. See Figure 2.

Reidemeister moves for Gauss diagrams are shown in Figure 3. When we apply moves
of type II to Gauss diagrams of knots, we may obtain Gauss diagram that do not corre-
spond to knot diagrams. Such Gauss diagrams correspond to virtual knot diagrams. In
[4], M.Goussarov, M.Polyak, and O.Viro studied such Gauss diagrams.

We introduce the Gauss diagram of a spatial graph diagram. Let G be a spatial graph
and D a diagram of G. The Gauss diagram is constructed as follows:

1. Corresponding to the edges of D, provide downward oriented strands in R2. These
strands are identified with the edges of D and are referred to as the same names.

2. For each crossing c ofD, let c and c denote the points on the strands corresponding to
the over crossing c and the under crossing c of the crossing c, respectively. Connect
the points c and c by a chord, which will be denoted by γc. We assume that the
chord γc is oriented from c to c, and it is assigned a sign which is the sign of c in D.
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Figure 1: Reidemeister moves for spatial graph diagrams

Figure 2: A diagram of the figure eight knot and its Gauss diagram

3. For each vertex, X, of D, consider a sequence of edges incident to X appearing in
anticlockwise direction, say (α1α2 . . . αn). We denote this sequence by ES(X) and
call it the edge sequence at X. When ES(X) = (α1α2 . . . αn), we often abbreviate it
asX(α1α2 . . . αn). The edge sequence ES(X) is considered up to cyclic permutation.

The diagram depicted in Figure 4(a) is a diagram of Kinoshita′s θ-curve, and its
Gauss diagram is depicted in Figure 4(b).

When the edges of G are ordered, we usually draw the Gauss diagram so that the
strands appear in this order from the left. When the edges of G are not ordered, the
Gauss diagram should be considered up to changing the order of the strands in figure.

Reidemeister moves for spatial graph diagrams are translated into moves on Gauss
diagrams, which we call Reidemeister moves for Gauss diagrams of spatial graphs. See
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Figure 3: Reidemeister moves for Gauss diagrams of knots

(a) A diagram of Kinoshita’s θ-curve (b) The Gauss diagram

Figure 4

Figures 5 and 6, where some typical examples of moves are depicted. Especially, for
simplicity, we only show RIV moves there in the case that the edge and the vertex involved
in the corresponding Reidemeister moves of type IV are αk and a vertex X with ES(X) =
(α1α2 . . . αn). The RV moves in Figure 6 correspond to Reidemeister moves of type V.
The left two moves are Reidemeister moves of type V that involve one edge αi of the
graph. For the other four moves, αi and αj are a pair of consecutive adjacent edges at
the vertex X, i.e, ES(X) = (. . . αiαj . . .) or (. . . αjαi . . .).
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Figure 5: Moves on Gauss diagrams

3. On RIV moves and S-regions

When we apply an RII move or an RIV move to the Gauss diagram of a spatial graph
diagram, the result might be a Gauss diagram that does not correspond to a spatial graph
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Figure 6: Moves on Gauss diagrams

diagram. To avoid this situation, we need to identify which part of strands we can apply
an RII move or an RIV move so that the result is the Gauss diagram of a spatial graph
diagram.

For this purpose, we introduce a concept here.

Definition 3.1. A region of a spatial graph diagram D is a connected component of the
complement of the regular projection in R2 from which D is obtained. For a vertex X of
D, an S-region at X is a region of D such that the boudary of the region contains X.

Note that for an S-region of a vertex X, an RIV move is applicable by using any edge
of the boudary of the region so that the result is the Gauss diagram of a spatial graph
diagram.

In the rest of this section, we discuss how to find the boundary of an S-region in terms
of a Gauss diagram.

Let D be a spatial graph diagram of a spatial graph G and let X be a vertex. Let GD be
the Gauss diagram of D and α1, α2, . . . , αm be the edges of G or the corresponding strands
of GD. Our aim is to identify S-regions at X of D in GD. Let ES(X) = (αx1αx2 . . . αxn)
be the edge sequence at X.

Step 1: Choose any two consecutive strands αxi and αx(i+1).

Step 2: Move along the strand αxi (from X), till we reach an endpoint of a chord or an
endpoint of the strand.

Step 3: (a) Suppose that we moved downward in step 2.
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1. If we reach an over crossing c of a chord γc, then move along the chord γc to
reach the under crossing c, move along the strand downward (or upward,
resp.) if the sign of chord is positive (or negative, resp.), till we reach
another endpoint of a chord or an endpoint of the strand.

2. If we reach an under crossing c of a chord γc, then move along the chord γc
to reach the over crossing c, move along the strand upward (or downward,
resp.) if the sign of chord is positive (or negative, resp.), till we reach
another endpoint of a chord or an endpoint of the strand.

(b) Suppose that we moved upward in step 2.
Do the same argument with the case (a) above, with ‘upward’ and ‘downward’
switched.

(c) If we reach a vertex Y different from vertex X along strand α, then move along
the adjacent strand from vertex Y , which is consecutive to α and is located in
clockwise direction with respect to α, till we reach an endpoint of the chord or
the endpoint of the strand.

Step 4: Repeat step 3, till we reach vertex X along the strand αx(i+1). Then we obtain a
sequence Xαxi

b1b2 . . . bkXαx(i+1)
, where

bi =

{
c or c, for some crossing c, or

Yα for some vertex Y which is an endpoint of a strand α.

This sequence describes the loop presenting the S-region at X between the edges
αxi and αx(i+1) in D.

Step 5: Find all loops by applying step 1 to step 4 for i = 1, 2, . . . , n. When i = n, assume
αn+1 = α1. We obtain all loops presenting boundaries of S-regions at vertex X in
D.

Figure 7 depicts the Gauss diagram of the spatial graph diagram shown in Figure 9.
Applying the procedure described above, we have three loops as in Figure 8. They present
the S-regions S1, S2 and S3 at vertex X in Figure 9.

Figure 7

Remark 3.2. To identify which part of strands we can apply an RII move so that the
result is the Gauss diagram of a spatial graph diagram, we need to find loops corresponding
to boundaries of regions, not necessary S-regions. Such loops can be found by a similar
procedure for S-regions by starting any point of a stand and moving upward or downward.
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Figure 8: Loops in a Gauss diagram presenting S-regions

Figure 9: A spatial graph diagram and S-regions at X

4. Based spatial graphs and Gauss diagrams

In this section, we recall the definitions of a based spatial graph, a based diagram, a
monotone based diagram and the warping degree of a based diagram. We also discuss
Gauss diagrams of based diagrams of spatial graphs.

A basis of a spatial graph G is a maximal tree T of G. The pair (G, T ) is called a based
spatial graph. Let αi(i = 1, 2, . . . ,m) be the edges of G − T . For a diagram D of G, we
denote by DT and Dαi the sub-diagrams of D corresponding to T and αi, respectively.
We call DT the tree diagram and Dαi an edge diagram. Since we assume that a spatial
graph is oriented, edge diagrams are oriented.

A diagram D is called a based diagram (with basis T ) if there are no crossings of D
on DT . A based diagram D with basis T is denoted by (D;T ). It is easily seen that for
any based spatial graph (G, T ) and for any diagram D of G, one can apply Reidemeister
moves so that the result is a based diagram of (G, T ).

We say that an edge diagram Dαi is monotone if we walk along the oriented diagram
Dαi, for each crossing ofDαi, we meet it at the first time as over crossing and then as under
crossing. A based diagram (D;T ) of a based spatial graph (G, T ) is monotone if every
edge diagram Dαi is monotone and after changing the numbering of αi (i = 1, 2, . . . ,m)
suitably, for any i and j with 1 ≤ i < j ≤ m, the edge diagram Dαi is over the edge
diagram Dαj.

Definition 4.1 ([8]). Let (D;T ) be a based diagram of a based spatial graph (G, T ).
The warping degree d(D;T ) of (D;T ) is the least number of crossing changes on the edge
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diagrams needed to obtain a monotone diagram from (D;T ).

By definition, the warping degree of (D;T ) is zero if and only if (D;T ) is monotone.
When an order of edges of G − T is given and fixed, the warping degree of (D;T ) with
respect to the order is also defined. Obviously, this restricted version of the warping
degree is greater than or equal to the warping degree without the restriction of the order
of edges.

Let (G, T ) be a based spatial graph. Let D be a diagram of G and let GD be the
Gauss diagram of D.

Definition 4.2. The T -strands are strands of GD corresponding to the tree diagrams of
D, and hence corresponding to edges of T . The R-strands are strands of GD corresponding
to edge diagrams of D, and hence corresponding to edges of G− T .

If D is a based diagram with basis T , i.e., there are no crossings of D over DT , then
there are no chords of GD meeting the T -strands. Conversely, for a diagram D of G, if
there are no chords of GD meeting the T -strands, then the diagram D is a based diagram
with basis T .

Let (G, T ) be a based spatial graph. Given a diagram of G, one can transform it into
a based diagram by Reidemeister moves. Such a transformation may be interpreted in
terms of Gauss diagrams.

Figure 10(a) is the Gauss diagram of the spatial graph diagram shown in Figure 11(a).
There are three vertices, X, Y and Z. Strands α1 and α2 form a basis, and we regard α1

and α2 as T -strands. The RV move from (a) to (b) in Figure 10 corresponds to the move
from (a) to (b) in Figure 11. The move from (b) to (c) in Figure 11 is a combination of a
move of type IV and a move of type II. This corresponds to the move from (b) to (c) in
Figure 10 which is a combination of an RIV move and an RII move.

Figure 10

The following lemma is obvious from the definition, and we omit the proof. (In the
lemma we assume that an order of edges of G is given and the strands are drawn in the
order from the left.)
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Figure 11

Lemma 4.3. Let D be a spatial graph diagram and GD the Gauss diagram of D. In GD,
if every chord is oriented from left to right when the endpoints are on distinct strands and
if every chord is oriented downward when the endpoints are on the same strand, then the
diagram D is monotone. The converse is also true.

Let (G, T ) be a based spatial graph and (D;T ) a based diagram of (G, T ). Let GD

be the Gauss diagram of D. By Lemma 4.3, we see that d(D;T ) is the minimum number
of changes of the orientations of chords in GD so that every chord is oriented as in the
lemma.

Figure 12

Figure 13: A spatial graph diagram corresponding to the Gauss diagram in Figure 12(d)
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The spatial graph diagram in Figure 13 corresponds to the Gauss diagram in Fig-
ure 12(d), which is monotone with respect to an order (α5α4α3α2α1) of the edges. When
we redraw the Gauss diagram so that the strands appear in the order (α5α4α3α2α1) from
the left, then the condition of Lemma 4.3 is satisfied.

The warping degree (with a fixed order of edges) of the diagram in Figure 13 is three
when we fix the order (α5α4α3α2α1). This is seen from that the least number of changes
of the orientations of chords in Figure 12(a) so that the condition of Lemma 4.3 holds is
three after we redraw the Gauss diagram using the order (α5α4α3α2α1).

5. Unknotting numbers

In this section we introduce four kinds of unknotting numbers of a spatial graph: the
unknotting number, the based unknotting number, the Γ-unknotting number, and the
based Γ-unknotting number.

A based spatial graph (G, T ) is unknotted if there is a based diagram (D;T ) which is
monotone.

Definition 5.1 (cf. [8]). 1. A spatial graph G is unknotted if it is unknotted as a
based spatial graph for a basis.

2. The unknotting number u(G) of a spatial graph G is the minimal number of crossing
changes needed to obtain a diagram of an unknotted spatial graph from a diagram
of G.

3. The based unknotting number ub(G) of a spatial graph G is the minimal number of
crossing changes needed to obtain a diagram of an unknotted spatial graph from a
based diagram of G.

For a based diagram (D;T ) of G, let c(D;T ) denote the number of crossings of (D;T ).
The complexity cd(D;T ) of (D;T ) is the pair (c(D;T ), d(D;T )). The complexity γ(G)
of G is the minimum (in the dictionary order) of the complexities cd(D;T ) for all based
diagrams (D;T ) of G. (Here we consider all possible basis T for G.) For a graph Γ, let
γ(Γ) be the minimum of γ(G) for all spatial graphs G whose underlying graph is Γ.

Definition 5.2 (cf. [8]). 1. A spatial graph G is Γ-unknotted if γ(G) = γ(Γ), where
Γ is the underlying graph of G.

2. The Γ-unknotting number uΓ(G) of a spatial graph G is the minimal number of
crossing changes needed to obtain a diagram of a Γ-unknotted spatial graph from a
diagram of G.

3. The based Γ-unknotting number uΓ
b (G) of a spatial graph G is the minimal number

of crossing changes needed to obtain a diagram of a Γ-unknotted spatial graph from
a based diagram of G.

In the definitions above, the based unknotting number ub(G) and the based Γ-unknotting
number uΓ

b (G) are new in this paper, and the other notions are found in [8].

Remark 5.3. (cf. [8]) (1) For any spatial graph G,

u(G) ≤ ub(G), uΓ(G) ≤ uΓ
b (G), u(G) ≤ uΓ(G), and ub(G) ≤ uΓ

b (G).
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The first two inequalities are trivial. The last two inequalities follow from the fact that a
Γ-unknotted spatial graph is unknotted.

(2) When G is a spatial graph whose underlying graph is planar, the following three
conditions are equivalent: (i) G is Γ-unknotted, (ii) G is unknotted, and (iii) G is equiv-
alent to a spatial graph contained in a plane.

6. Trivializing numbers

In this section we introduce four kinds of trivializing numbers of a spatial graph: the
trivializing number, the based trivializing number, the Γ-trivializing number, and the
based Γ-trivializing number.

First we recall the notion of a pseudo diagram and the trivializing number for a knot
introduced by R. Hanaki in [5]. A pseudo diagram Q of a knot means a regular projection
of a knot such that some (or no) double points are equipped with over/under information
and the other double points are not. Double points with over/under information are called
crossings and double points without over/under information are called pre-crossings. A
regular projection itself and a knot diagram are special cases of pseudo diagrams. By
resolving a pre-crossing, we mean giving over/under information to the pre-crossing. A
diagram D is said to be obtained from Q if D is obtained from Q by resolving pre-crossings.
A pseudo diagram Q is called trivial (or unknotted) if every diagram obtained from Q is
a diagram of a trivial knot. The trivializing number tr(S) of a regular projection S of
a knot is the minimum number of pre-crossings of S needed to obtain a trivial pseudo
diagram by resolving the pre-crossings. A. Henrich et al. [6] showed that the trivializing
number of a regular projection for a knot can be computed using Gauss diagrams. The
Gauss diagram of a regular projection has chords without orientations and signs. Such
Gauss diagrams are called chord diagrams in [6]. The trivializing number tr(K) of a knot
K is the minimum among tr(S) for all regular projections S of K.

R. Hanaki [5] also defined a pseudo diagram and the trivializing number for a spatial
graph when the underlying graph is planar. A spatial graph G whose underlying graph
is planar is called trivial (or unknotted) if G is equivalent to a spatial graph contained in
a plane.

A pseudo diagram Q of a spatial graph is a regular projection of a spatial graph such
that some (or no) double points are equipped with over/under information and the other
double points are not. A pseudo diagram Q of a spatial graph whose underlying graph is
planar is said to be trivial (or unknotted) if every diagram obtained from Q is a diagram of
a trivial spatial graph. The trivializing number tr(S) of a regular projection S of a spatial
graph whose underlying graph is planar is the minimum number of pre-crossings of S
needed to obtain a trivial pseudo diagram by resolving the pre-crossings. The trivializing
number tr(G) of a spatial graph G whose underlying graph is planar is the minimum
among tr(S) for all regular projections S of G.

In this section, we generalize these notions to spatial graphs without the assumption
that underlying graphs are planar.

Definition 6.1. A pseudo diagram Q of a spatial graph is unknotted (or Γ-unknotted,
resp.) if every diagram obtained from Q is a diagram of an unknotted spatial graph (or
a Γ-unknotted spatial graph, resp.).
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Note that when the underlying graph is planar, Q is unknotted if and only if it is
Γ-unknotted, and this is equivalent to that Q is unknotted in Hanaki’s sense.

Definition 6.2. For a regular projection S of a spatial graph, the the trivializing number
(or the Γ-trivializing number, resp.) of S is the minimum number of pre-crossings of S
needed to obtain an unknotted pseudo diagram (or a Γ-unknotted pseudo diagram, resp.)
from S by resolving the pre-crossings. We denote it by tr(S) (or trΓ(S), resp.).

Definition 6.3. For a spatial graph G, the trivializing number (or the Γ-trivializing num-
ber, resp.) of G is the minimum among tr(S) (or trΓ(S), resp.) for all regular projections
S of G. We denote it by tr(G) (or trΓ(G), resp.).

A regular projection S of a spatial graph G is called a based projection of G if there
is a basis T of G such that there are no double points of S on the image of T in S. A
pseudo diagram Q of a spatial graph G is called a based pseudo diagram if there is a basis
T of G such that there are no crossings and no pre-crossings of Q on the image of T in Q.

Definition 6.4. For a spatial graph G, the based trivializing number (or the based Γ-
trivializing number, resp.) of G is the minimum among tr(S) (or trΓ(S), resp.) for all
based projections S of G. We denote it by trb(G) (or trΓ

b (G), resp.).

(a) A Γ-unknotted
pseudo diagram Q

(b) A based projection S

Figure 14

Let Q be the based pseudo diagram illustrated in Figure 14(a) and let S be the based
projection illustrated in Figure 14(b). The diagram Q is Γ-unknotted. Since Q is obtained
from S by resolving two pre-crossings, trΓ(S) ≤ 2. It is directly verified that trΓ(S) is
neither 0 nor 1. Thus trΓ(S) = 2.

7. Inequalities among Γ-trivializing numbers and Γ-unknotting numbers

For any spatial graph G, there is an inequality between the Γ-unknotting number
uΓ(G) and the Γ-trivializing number trΓ(G) and a similar inequality for their based ver-
sion.

Theorem 7.1. For any spatial graph G, uΓ(G) ≤ trΓ(G)

2
and uΓ

b (G) ≤ trΓ
b (G)

2
.
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Proof. Let n = trΓ(G) (or n = trΓ
b (G), resp.) and let S be a regular projection (or a

based projection, resp.) of G with n = trΓ(G) = trΓ(S) (or n = trΓ
b (G) = trΓ(S), resp.).

Let c1, c2, . . . , cn be pre-crossings of S such that we obtain a Γ-unknotted pseudo diagram,
say Q, from S by resolving them.

Let D be a diagram (or a based diagram, resp.) of G that is obtained from S. Let C
be the subset of {c1, c2, . . . , cn} such that D and Q have distinct over/under information
at each pre-crossing in C and they have the same over/under information at each pre-
crossings in {c1, c2, . . . , cn} − C. Put k = #C. Let D′ be the diagram obtained from D
by crossing changes over C. Then D′ is a diagram of a Γ-unknotted spatial graph. Thus,
uΓ(G) ≤ k (or uΓ

b (G) ≤ k, resp.).
Let Q be the pseudo diagram obtained from S by resolving the same pre-crossings

c1, c2, . . . , cn in the opposite way to Q. Note that Q is also a Γ-unknotted pseudo diagram.
Changing Q with Q if necessary, we may assume that 0 ≤ k ≤ n/2. Therefore we have
uΓ(G) ≤ trΓ(G)/2 (or uΓ

b (G) ≤ trΓ
b (G)/2, resp.). �

Corollary 7.2. Let G be a spatial handcuff graph. Let K1 and K2 be the constituent
knots of G and put L = K1 ∪K2. Then

u(L) + u(K1) + u(K2) ≤ uΓ(G) ≤ trΓ(G)

2
,

where u(K1) and u(K2) are unknotting numbers of K1 and K2, and u(L) is the unlinking
number of L, which is the minimum number of crossing changes between K1 and K2

needed to split K1 and K2.

Proof. Let n = uΓ(G). Let D be a diagram of G such that there is a subset C of
crossings of D with #C = n and the diagram obtained from D by crossing changes over
C is a diagram D′ of a Γ-unknotted spatial graph G′. Let K ′

1, K ′
2 and L′ be the constituent

knots and the constituent link of G′ corresponding to K1, K2 and L. Then K ′
1 and K ′

2

are trivial knots and L′ is a trivial link.
Divide C into C1, C2 and C3 such that crossings belonging to C1 are crossings of K1,

crossings belonging to C2 are crossings of K2, and crossings belonging to C3 are crossings
between K1 and K2. Then u(K1) ≤ #C1, u(K2) ≤ #C2 and u(L) ≤ #C3. Thus we have
u(L) + u(K1) + u(K2) ≤ uΓ(G). The other inequality follows from Theorem 7.1. �
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