Knot Theory For Spatial Graphs Attached To A Surface

Akio Kawauchi

ABSTRACT. Beside a survey on several unknotting notions of a spatial graph
done earlier by the author, unknotting notions on a spatial graph with degree
one vertices attached to a surface are introduced.

1. Introduction

In the ICTS program KNOT-2013 given at the Indian Institute of Science
Education and Research (IISER) Mohali, the author delivered the following three
lectures:

[Lecture 1] Topology for spatial graphs without degree one vertices
[Lecture 2] Unknotting notions on the spatial graphs
[Lecture 3] Spatial graphs with degree one vertices attaching to a surface

Topics on the first two lectures come from the author’s earlier papers [17, 18]
whose overview is also explained in this article. Topics on the third lecture are
motivated to know knotting structures of a model tying two objects with different
scales, or more concretely to understand knotting structures on a spatial graph
whose degree one vertices are attached to a surface. For example, one asks the
following question:

QUESTION 1.1. In what sense, the string in Figure 1 is "knotted” or ”unknot-
ted” ?

In the unknotting notions of this article, the answer will be “g-unknotted, but
knotted, ~-knotted, I'-knotted and (v,I')-knotted”, whose proof will be done in
Section 8.

A protein attached to a cell surface such as a prion protein whose topological
models are in Figure 2 (see[19]), and a string-shaped virus attached to a cell surface
such as a virus of EBOLA haemorrhagic fever in Figure 3 ! are scientific examples.

In a research of proteins, molecules, or polymers, it is important to understand
geometrically and topologically spatial graphs possibly with degree one vertices
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FIGURE 1. A graph with degree one vertices attached to a surface
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FiGURE 2. Topological models of prion proteins
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FI1GURE 3. A string-shaped virus of EBOLA haemorrhagic fever

including knotted arcs. From this reason, some numerical topological invariants
of a spatial graph generalizing the warping degree and the unknotting number of
knots and links are introduced.
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In Section 2, the equivalence of a spatial graph without degree one vertices is
explained. In Section 3, a monotone diagram, the warping degree, the complexity
and the cross-index for a spatial graph without degree one vertices are explained.
In Section 4, an unknotted graph and the induced unknotting number are explained
for a spatial graph without degree one vertices and for a spatial graph with degree
one vertices attaching to a surface. In Section 5, a S-unknotted graph and the
induced unknotting number are explained for a spatial graph without degree one
vertices and for a spatial graph with degree one vertices attaching to a surface. In
Section 6, a homological invariant of an infinite cyclic covering of a spatial graph
is discussed to estimate the B-unknotting number. In Section 7, a ~y-unknotted
graph and the induced unknotting number are explained for a spatial graph without
degree one vertices and for a spatial graph with degree one vertices attaching to a
surface. In Section 8, a I'-unknotted graph and the induced unknotting number are
explained for a spatial graph without degree one vertices and for a spatial graph
with degree one vertices attaching to a surface. In Section 9, the values taken by
these unknotting numbers are investigated. In Section 10, a notion of the knotting
probability of a spatial graph with degree one free vertices is explained.
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FIGURE 4. A diagram of a spatial graph

2. Equivalence of a spatial graph without degree one vertices

We begin with some basic terminologies on spatial graphs. Throughout this
article, we do not consider graphs with degree zero vertices. A spatial graph of T" is
the image G of a topological embedding I' — R? such that there is an orientation-
preserving homeomorphism h : R?* — R? sending G to a polygonal graph in R3.
We consider a spatial graph G by ignoring the degree two vertices which are useless
in our topological argument. Let v(G) be the set of vertices of degree > 3 in G, and
v1(G) the set of vertices of degree one in G. Let T';(i = 1,2,...,r) be an ordered
set of the connected components of I', and G; = G(I';) the corresponding spatial
subgraph of G = G(I"). The spatial graph G is called a link if T is the disjoint
union of finitely many loops, and it is trivial if it is the boundary of mutually
disjoint disks. A knot is a link with one component. For a general reference of
knots, links and spatial graphs, see the book [15] (specially, Chapter 15). A spatial
graph G is equivalent to a spatial graph G’ if there is an orientation-preserving
homeomorphism h : R? — R? such that h(G) = G'.
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For a spatial graph G with v1(G) = 0, let [G] be the class of spatial graphs G’
which are equivalent to G. A diagram DG of a spatial graph G with v1(G) = (§ in
R? is an the image of G into a plane P under an orthogonal projection

proj: R® —» P

with only double point singularities on edges of G together with the upper-lower
crossing information (see Figure 4).

The fundamental result stated in L. H. Kauffman’s paper [8] that the equiva-
lence of spatial graphs can be described in terms of generalized Reidemeister moves
(see Figure 5) on the diagrams of spatial graphs is explained here as Theorem 2.1
together with a simplified proof. We note that only the moves I, ILIII are needed for
knots and links in which case the moves I, ILIII are simply called the Reidemeister
mouves.

THEOREM 2.1 (Equivalence Theorem). Two spatial graphs G and G’ with
v1(G) = v1(G') = 0 are equivalent if and only if any diagram DG of G is deformed
into any diagram DG’ of G’ by a finite sequence of the generalized Reidemeister
moves.
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FIGURE 5. Generalized Reidemeister moves

v

ProOF. Let G and G’ be equivalent spatial graphs, regarded as polygonal
graphs. After some generalized Reidemeister moves on DG and DG’, we can as-
sume that there is an orientation-preserving homeomorphism h : R?® — R? such
that h(G) = G’ and the restriction h|p is the identity 15 : B — B for a 3-ball
neighborhood B of the set v(G) of vertices of degree > 3, so that in particular
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we have v(G) = v(G’). Thus, there is a one-parameter family of piecewise-linear
homeomorphisms

he :R®* - R?® (0<t<1)

such that hg is the identity 1gs : R® — R?, hi(G) = G’ and h¢ly(c) is the identity
on the set v(G) for all ¢ (0 < ¢ < 1). Then we see from [6] that G’ is obtained from
G by a finite number of cellular moves, that is, a combination of a finite number
of 2-simplex moves in Figures 6, 7. By a slight leaning of the plane P used for
the orthogonal projection proj : R® — P, any diagram DG of G is deformed into
any diagram DG’ of G’ by a finite sequence of the generalized Reidemeister moves.
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FIGURE 6. 2-simplex moves on generalized Reidemeister moves I,
11, 111
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FIGURE 7. 2-simplex moves on generalized Reidemeister moves IV, V
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Let [DG] be the class of diagrams obtained from a diagram DG of a spatial
graph G with v1(G) = 0 by the generalized Reidemeister moves, which is identified
with the class [G] by the equivalence theorem. The fundamental topological prob-
lems on spatial graphs are stated as follows, which are natural generalizations of
the fundamental problems of knot theory:

(1) Study what kinds of spatial graphs there are. List them up to equivalences.
(2) Determine whether two given spatial graphs of a graph I" are equivalent or not.

A basic question on the relationship between a spatial graph and knot theory
is to ask how a spatial graph is related to knot theory. A constituent knot (or a
constituent link, resp.) of a spatial graph G is a knot (or link, resp.) contained in
G. The following proposition is direct from the definition of equivalence.

PROPOSITION 2.2. If two spatial graphs G* and G are equivalent, then there
is a graph-isomorphism f : G* — G such that every constituent knot or link L* of
G* is equivalent to the corresponding constituent knot or link f(L*) of G.

For an integer d > 3, a 04-curve is a spatial graph with 2 vertices and d edges
each of which is tying the 2 vertices. A 63-curve is simply called a #-curve. Any 6-
curve equivalent to the #-curve in Figure 8 is called a trivial 8-curve, which has the
three trivial constituent knots. The 6-curve in Figure 9 has one trefoil constituent
knot and two trivial constituent knots, which is a nontrivial #-curve. Kinoshita’s
#-curve in Figure 10 is known to be a nontrivial #-curve with only trivial constituent
knots. The arbitrary property of the constituent knot families of 64-curves is known
by S. Kinoshita [20, 21].

FIGURE 8. A trivial 6-curve and the three constituent knots

On the other hand, the following theorem is known by J. H. Conway and C.
McA. Gordon in [2]:

PROPOSITION 2.3 (Conway-Gordon Theorem). Every spatial 6-complete graph
K contains a nontrivial constituent link. Every spatial 7-complete graph K7 con-
tains a nontrivial constituent knot.

The Conway-Gordon theorem and the following proposition suggest that the
constituent knots or links are helpless to define an unknotted spatial graph for a
general finite graph I'.
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FIGURE 9. A nontrivial f-curve and the three constituent knots
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FIGURE 10. Kinoshita’s -curve and the three constituent knots

PROPOSITION 2.4. For every spatial graph G with v1(G) = () except a knot
or link, there is an infinite family of spatial graphs G* (up to equivalences) with a
graph-isomorphism f : G* — G such that every constituent knot or link L* of G*
is equivalent to the corresponding constituent knot or link f(L*) of G.

To show Proposition 2.4, we introduce a construction of topological imitations
in [12] in a simplified setting. Let S* = R3 U {oc} be the 3-sphere, and I = [—1, 1]
the interval.

DEFINITION 2.5. A map ¢ : (S,G*) — (S3,G) is a normal imitation if the
composite
ot
q: (S3,G*) = Fix(a) C ($3,G) x 1 PEM (93 @)

for an involution « on (S, G) x I = (S x I, G x I) such that a(z,t) = (z,—t) for
any (x,t) € S* x {1} U N(GQ) x I, where N(G) is a regular neighborhood of G in
S3.

The following properties of a normal imitation are standard (see [11]).

PROPERTIES 2.6. Let ¢ : (S%,G*) — (53, G) be a normal imitation, and N(G)
a normal regular neighborhood of G in S3. Then the statements (0)-(4) hold.

(0) The preimage N(G*) = ¢ }(N(G)) is a regular neighborhood of G* such that
the restriction ¢|n(g+) : N(G*) — N(G) is a homeomorphism and ¢(E(G*)) =
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E(G) for the exteriors E(G*) = cl(S?\N(G*)) and E(G) = cl(S3\N(G)) of the
spatial graphs G* and G, respectively.

(1) The map q1 : (S%,G3) — (S3,G1) defined by ¢ for any spatial graph G; in
N(G) and G} = ¢~ !(G1) is a normal imitation.

(2) We have the same linking number Linkgs(L*) = Linkgs(L) for any oriented
2-component links L in N(G) and L* = ¢~ *(L).

(3) The homomorphism gy : 71 (S?\G*) — 71(S3\G) on fundamental group is an
epimorphism whose kernel Ker(g) is a perfact group, i.e.,

Ker(qy) = [Ker(gg), Ker(gy)]-

(4) For normal imitations ¢ : (S%,G*) — (S3,G) and ¢* : (S3,G**) — (S3,G"),
there is a normal imitation ¢** : (S, G**) — (S%, Q).

The Kinoshita-Terasaka knot is an example of a normal imitation of a triv-
ial knot (see [11]). We say that a normal imitation ¢ : (S%,G*) — (S3,G) is
homotopy-trivial if there is a l-parameter family {g¢s}o<s<1 of normal imitations
qs 1 (S%,G*) — (S3,G) such that ¢o = ¢ and ¢; is a homeomorphism. The fol-
lowing notion is useful in constructing several nontrivial knots, links and spatial
graphs.

DEFINITION 2.7. A normal imitation ¢ : (S3, G*) — (S3, Q) is an AID imitation
if the restriction

Q|(53,CI(G*\W)) : (SB,d(G*\O‘*)) - (SSaCI(G\O‘))
is homotopy-trivial for every pair of an edge « of G and an edge o* of G* with
g(a*) = a.

The following proposition is a main result on the existence of AID imitations
in [12].

PROPOSITION 2.8. For any spatial graph G with v1(G) = (), there is an infinite
family of AID imitations ¢ : (S®,G*) — (93, G) such that the fundamental groups
71 (E(G*)) of the exteriors F(G*) of the spatial graphs G* with v;(G*) = ) are
mutually non-isomorphic.

Proposition 2.4 is a direct consequence of Proposition 2.8. Further, combining
Proposition 2.8 with a result in [13], we can add an additional property that every
spatial graph G* is obtained from G by one crossing change.

3. A monotone diagram, the warping degree, the complexity and the
cross-index for a spatial graph without degree one vertices

Let G; (i = 1,2,...,7) be the connected components of a spatial graph G
with v1(G) = 0. Let T; be a maximal tree of G;. By definition, T; = () if G; is
a knot, and T; is one vertex if GG; has just one vertex of degree > 3. The union
T = Ul_,T; is called a basis of G, and the pair (G,T') a based spatial graph. The
spatial graph G is obtained from a basis T' by adding edges (consisting of arcs or
loops) ay (k= 1,2,...,m). Let D be a diagram of G. Let DT and Day be the
subdiagrams of D corresponding to the basis T and the edge «y, respectively. The
diagram D is a based diagram on a basis T' and denoted by (D;T) if there are no
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FIGURE 11. Deforming the diagram of Figure 4 into a based diagram

crossing points of D belonging to DT'. Every diagram can be deformed into a based
diagram by a finite sequence of the generalized Reidemeister moves (see Figure 11).

An edge diagram Day, is monotone if there is an orientation on the edge ay
such that a point going along the oriented diagram Dqy from the origin vertex
meets first the upper crossing point at every crossing point (see Figure 12), where
a suitable non-crossing point is taken as a starting point if oy is a loop.

F1GURE 12. Monotone edge diagrams

A sequence of the edges oy, (kK = 1,2,...,m) for a based spatial graph (G,T)
is regularly ordered if any edge belonging to a connected based graph component
(G, T;) is ordered to be smaller than any edge belonging to a connected based
graph component (G, Ty) for every i < i’. A based diagram (D;T) of a based
spatial graph (G, T) is monotone if there is a regularly ordered edge sequence «y
(k=1,2,...,m) of (G,T) such that the edge diagram Dqy, is monotone for all k
and the edge diagram Doy is upper than the edge diagram Days for every k <
k. The warping degree d(D;T) of a based diagram (D;T) is the least number of
crossing changes on the edge diagrams Day(k = 1,2,...,m) needed to obtain a
monotone diagram from (D;T) (see Figure 13). For T = (), we denote d(D;T) by
d(D). When the edges oy, (k = 1,2,...,m) are previously oriented, we can also
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define the oriented warping degree d(D;T) (or d(D) for T = ) of a based diagram
(D;T) by considering only the crossing changes on the edge or loop diagrams Day,
(k = 1,2,...,m) along the specified orientations. Similar notions on links have
been discussed by W. B. R. Lickorish and K. C. Millett [22], S. Fujimura [4], T. S.
Fung [5], M. Okuda [26] and M. Ozawa [27] considering the ascending number of
an oriented link. A. Shimizu [29, 30] also established a relationship between the
warping degrees and the crossing number of a knot or link diagram. In particular, A.
Shimizu characterized the alternating knot diagrams by establishing the inequality

d(D) +d(-D) < ¢(D) - 1
for every knot diagram D with crossing number ¢(D) > 0, where the equality holds
if and only if D is an alternating diagram. For the present applications, we note
the following relationships

d(Da) + d(—Da) = ¢(Da), d(Da) = min{d(Da),d(—Da)}
for an oriented edge diagram Da and the oppositely oriented edge diagram —Dq,
where ¢(Da) denotes the crossing number of D(«). For example,

()
J(@_>:1 and J<@+):3.

The warping degree d(G) of a spatial graph G with v1(G) = ) is the minimum of
the warping degrees d(D;T) for all based diagrams (D;T) € [DG]. The complezity
of a based diagram (D, T) is the pair ¢d(D;T) = (¢(D;T),d(D;T)) together with
the dictionary order. This notion was introduced in [16] for an oriented ordered link
diagram. A. Shimizu observed that the dictionary order on cd(D;T) is equivalent to
the numerical order on ¢(D; T)?+d(D; T) by using the inequality d(D; T) < ¢(D; T).

The complezity of a spatial graph G with v1(G) = 0 is the minimum (G) =
(cy(G),dy(G)) (in the dictionary order) of the complexities cd(D;T) for all based
diagrams (D;T) € [DG], where the topological invariants c,(G) and d,(G) are
called the y-crossing number and the v-warping degree of G, respectively.

The crossing number of a spatial graph G with v1(G) = 0 is a non-negative
integer given by ¢(G) = minpepg) ¢(D). By definition, we have the inequality

c(G) < ¢, (G).

The following properties (1) and (2) motivate a reason why we call v(G) the
complexity of a spatial graph G with v1(G) = (:

for

(1) If dy(G) > 0, then there is a crossing change on any based diagram (D;T)
of G with ¢d(D;T) = v(G) to obtain a spatial graph G’ with v(G') < v(G) (see
Figure 13). If d,(G) = 0, then G is equivalent to G’ with a monotone diagram
(D", T") with ¢(D";T") = ¢ (G).

(2) If ¢,(G) > 0, then there is a spatial graph G’ with ¢, (G’) < ¢y(G), so that
v(G") < ¥(G), by any splice on any based diagram (D,T) of G with ¢d(D;T) =
v(G) (see Figure 13). If the crossing number ¢, (G) = 0, then ¢(G) = 0, i.e., G is
equivalent to a graph in a plane C R3.
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FIGURE 13. A crossing change in the left hand side and a splice
in the right hand side

Let Doy, (k=1,2,...,m) be the edge diagrams of a based diagram (D;T) of
a spatial graph G with v1(G) = 0. For k # k', let e(k, k") be 0 or 1 according to
whether the crossing number between Day, and Day is even or odd (see Figure 14).

Dak’

e(k,k’)=1

FIGURE 14. Cross indices of two kinds of edges

The cross indez of a based diagram (D;T) is the number
e(D;T) = > ek k).
1<k<k'<m
We show the following lemma:
LEMMA 3.1. Let G be a spatial graph of a finite graph T' without degree one
vertices. Then the number (D;T) is independent of any choices, any crossing

changes and any Reidemeister moves I, II, III of a based diagram (D,T) € [DG]
fizing the basis diagram DT. Further, the inequality

¢(D;T) > e(D;T)
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holds and there is a spatial graph G, of the finite graph I' with a based diagram
(D.;T) € [DG.] with the same basis T such that

c(Dy;T) =e(Dy;T) =e(D;T).
PRrROOF. By definition, we have ¢(D;T) > ¢(D;T). By crossing changes and

Reidemeister moves, we can reduce the number ¢(D;T) to attain the number
e(D;T). O

The minimum of cross indexes (D;T) for all bases T' of G is an invariant of
the finite graph I" which is called the cross index of I' and denoted by £(T).

Ficure 15. Unknotted spatial graphs

4. An unknotted graph and the induced unknotting number

We define that a spatial graph G with v1(G) = () is unknotted if the warping
degree d(G) = 0. For example, see Figure 15 for some unknotted spatial graphs,
where the figure in the left hand side is an unknotted spatial graph obtained from
the based diagram of Figure 11 by crossing changes. This notion is related to
some notions by T. Endo-T. Otsuki [3], R. Shinjo [31] and M. Ozawa and Y.
Tsutsumi [27]. By definition, a link G is unknotted in this sense if and only if G is
a trivial link. A 64-curve for every d > 3 is unknotted if and only if it is equivalent
to a f4-curve embedded in a plane C R3.

The following properties on spatial graphs without degree one vertices are
shown in [18].

PROPERTY 4.1. For every spatial graph G with v1(G) = 0 of a finite graph T,
there are finitely many crossing changes on DG to make G with d(G) = 0.

PROPERTY 4.2. For every given finite graph I without degree one vertices, there
are only finitely many spatial graphs G with d(G) = 0 of T up to equivalences.

PROPERTY 4.3. For a spatial graph G of every finite connected graph I" without
degree one vertices and with a vertex of degree > 3 such that d(G) = 0, there is a
tree basis T of G such that the spatial graph G/T obtained from G by shrinking T
into a point is equivalent to a bouquet of circles embeddable in a plane P.

PRrROPERTY 4.4. A spatial graph G of every finite connected graph I" without
degree one vertices and with a vertex of degree > 3 such that d(G) = 0 is deformed
into a tree basis T of G by a sequence of edge reductions in Figure 16.
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FIGURE 16. An edge reduction

PROPERTY 4.5. For a spatial graph G of every finite connected graph I" without
degree one vertices and with a vertex of degree > 3 such that d(G) = 0, there is a
tree basis T of G such that every edge (arc or loop) attaching to T is in a trivial
constituent knot.

For example, an unknotted spatial 6-complete graph Ky with a constituent
Hopf link and an unknotted spatial 7-complete graph K; with a constituent trefoil
knot are illustrated in Figure 17.

~—

An unknotted K; An unknotted K,

FIGURE 17. An unknotted Kg and an unknotted K»

Let O be the set of unknotted spatial graphs of a finite graph I' without degree
one vertices. The unknotting number of a spatial graph G of T is the distance u(QG)
from G to the set O by crossing changes on the edges attaching to a basis T' of G:

u(G) = p(G,0).

Next, this unknotting notion is generalized to a spatial graph with degree one
vertices attached to a surface. Let F be a compact surface in R3 with the connected
components Fj (j =1,2,...,s). A spatial graph on F' of a finite graph I is a spatial
graph G of I" such that

(1) G meets F' with GNF = v1(G),
(2) G\v1(G) is contained in a connected component of R3*\ F, and
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(3) there is a homeomorphism h : R3® — R? such that h(G U F) is a compact
polyhedron in R3.

Further, we impose the following mild conditions (4)-(5) on the spatial graph
G and the surface F:

(4) F does not need OF = .

(5) Although we grant that I', G or F are disconnected, assume that |F;Nv1 (G)| > 2
for every j.

A spatial graph G on a surface F is equivalent to a spatial graph G’ on a
surface F’ if there is an orientation-preserving homeomorphism & : R3® — R3 such
that h(FUG) = F'UG’. A shrinked spatial graph of a spatial graph G on a surface
F is a spatial graph G with v1(G) = 0 in R3 obtained from G by shrinking a 2-cell
Aj Wlth

Fj D) Aj D Fj n Vl(G)
into a point for every j. We put the following definition.

DEFINITION 4.6. A spatial graph G on a surface F is unknotted if there is an
unknotted shrinked spatial graph G of G.

We note that if Fj is a 2-sphere or 2-cell for every j, then the equivalence class
[G’] of all shrinked spatial graphs G of a spatial graph G on a surface F does not

depend on any choices of 2-cells A; (j =1,2,...,s). However, in a general surface
F, the equivalence class [G‘] depends on a choice of 2-cells A; (7 =1,2,...,s) (see
Figure 18).

//'

&

FIGURE 18. A trivial shrinked knot and a trefoil shrinked knot
obtained by choices of a 2-cell

Every shrinked spatial graph Gisa spatial graph of the same graph I" obtained
from I' by shrinking F; N Vi (G) into a point for every j. The resulting finite graph
I’ without degree one vertices is called the finite shrinked graph of I' associated with
F'. From this observation and Property 4.2, we see the following lemma:
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LEMMA 4.7. For any given finite graph I' with degree one vertices and any given
surface Fin R3, there are only finitely many unknotted spatial graphs G of T' on
the surface F up to equivalences.

Let O be the set of unknotted spatial graphs of a finite graph I" on a surface
F. The unknotting number of a spatial graph G of a finite graph I" on a surface F
is the distance u(G) from the set {G} of all shrinked spatial graphs G to the set
Or by crossing changes on the edges attaching to a basis:

u(G) = p({G}, Op).

5. A p-unknotted graph and the induced unknotting number

Let G be a spatial graph G with v;(G) = 0, and T a basis of G with T;
(i=1,2,...,r) the connected components. Let B be the disjoint union of mutually
disjoint 3-ball regular neighborhoods B; of T; in S3 (i = 1,2,...,r). Let B¢ =
cl(S?\B) be the complement domain of B, and L = B¢ N G be an m-string tangle
in B¢ consisting of mutually disjoint m arcs which is called the complementary
tangle of the based graph (G,T). We put the following definition.

DEFINITION 5.1. A spatial graph G with v1(G) = () is S-unknotted if there is a
basis T of G whose complementary tangle (B¢, L) is trivial, meaning that L is in a
compact punctured 2-sphere properly embedded in B€.

Here are some observations on S-unknotted spatial graphs.

NoOTE 5.2. There are infinitely many S-unknotted spatial graphs G of the 6-
curve I" up to equivalences (see Figure 19).

FIGURE 19. An infinite family of S-unknotted #-curves

Note 5.3. Triviality of the complementary tangle (B¢, L) of a based spatial
graph (G,T) with v1(G) = 0 depends on a choice of a basis T in general (see
Figure 20).

NOTE 5.4. If a spatial graph G with v1(G) = 0 is S-unknotted, then G is a
free spatial graph, namely a spatial graph with the fundamental group m;(R3\G)
a free group. However, the converse is not true (see Figure 21).
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FiGURE 20. Dependence of a choice of a basis

FIGURE 21. A free 8-knotted spatial graph

Let Og be the set of S-unknotted spatial graphs of a finite graph I' without
degree one vertices. The [S-unknotting number of a spatial graph G of T" is the
distance ug(G) from G to Op by crossing changes on edges attaching to a basis T'
of G:

us(G) = p(G, 03).

Next, this S-unknotting notion is generalized to a spatial graph with degree

one vertices attached to a surface.

DEFINITION 5.5. A spatial graph G on a surface F' is S-unknotted if there is a
B-unknotted shrinked spatial graph G in R3.

By definition, we have:
unknotted = [S-unknotted.

Let Opp be the set of B-unknotted spatial graphs of I' on a surface F. The S-
unknotting number of a spatial graph G of I" on a surface F' is the distance ug(G)
from the set {G} of all shrinked spatial graphs G of G to the set O g by crossing
changes on the edges attaching to a basis:

up(G) = p({G}, OFyp).

6. A homological invariant of an infinite cyclic covering of a spatial
graph without degree one vertices

Let G be a spatial graph with v1(G) = 0 in S = R3 U {oo}. Let T be a
basis of G, and «y, (k = 1,2,...,m) the edges attaching to T which are suitably
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oriented.  Let E(G) = cl(S® — N(G)) be the compact 3-manifold for a regular
neighborhood N(G) of G in S2, which is called the exterior of G. Let

x: Hi(E(G)—=Z

be the epimorphism sending the meridians of oy (kK = 1,2,...,m) to 1 € Z. Let
E(G) — E(G) be the infinite cyclic covering of E(G) associated with y. Let
A = Z[t,t~']. The homology H;(E(G)) is a finitely generated A-module which we
denote by M (G, T;x). Let

A = A* - M(G,T;x) =0

be an exact sequence (over A) for nonnegative integers b',b with ¥ > b. A matrix
A(G,T;x) over A representing the homomorphism AY = A is called a presenta-
tion matriz of the module M (G, T;x). For a nonnegative integer d < b, the dth
ideal E4(G,T;x) of the A-module M (G, T;x) is defined to be the ideal generated
by all the (b — d)-minors of A(G,T;x), and for d > b, we define E4(G,T;x) =
A.  The ideals E4(G,T;x) (d = 0,1,2,3,...) are invariants of the A-module
M(G,T;x). Let Ay be a generator of the smallest principal ideal containing the
ideal E4(G,T;x). Then the Laurent polynomial Ay € A is called the dth Alexzamder
polynomial of the A-module M(G,T;x). If G is a knot K (with 7' = ()), then the
Oth Alexander polynomial Ay € A is denoted by Ag(t) and called the Alezander
polynomial of the knot K.

Assume that a spatial graph G* is obtained from G by n crossing changes on
ar (k= 1,2,...,m). Then y induces the epimorphism x* : Hy(E(G*)) — Z.
Let m(G,T;x) and m(G*,T; x*) be the minimal numbers of A-generators of the
A-modules M(G,T;x) and M(G*,T; x*), respectively. The following lemma is a
generalization of a result of [14] in the case of a knot or link and announced in [18,
Lemma 3.3]:

LEMMA 6.1.  |m(G,T;x) — m(G*,T;x*)| < n.

(+1)-twist on O

0 \ < 0 /
/ N (-1)twistonO

(-1)-crossing (+1)'Cf055i"8

FIGURE 22. A zero-linking twist for a crossing change is the result
of a (£1)-framed 2-handle surgery along the loop O
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PROOF. We note that the exterior F(G*) is obtained from the exterior F(G)
by surgeries of (+1)-framed 2-handles D? x D? (k =1,2,...,n) along zero-linking
loops like a loop O in Figure 22. Let

W = E(G) x [0,1] | ] D* x D}
k=1
be the compact 4-manifold which is the surgery trace from E(G) to E(G*) on
the 2-handles D? x D? (k = 1,2,...,n), which is also the surgery trace from
E(G*) to E(G) on the “dual 2-handles” D* x D} (k =1,2,...,n) (see Figure 23).
By construction, y and x* extend to an epimorphism x* : H;(W) — Z. Let
(W; E(G), E(G*)) be the infinite cyclic covering triad of the triad (W; E(G), E(G*))
associated with xT. Let m(W;x™) be the minimal number of A-generators of the

A-module H;(W). Because the natural homomorphisms 71 (E(G)) — w1 (W) and

m(E(G*)) — w1 (W) are onto, so that the natural homomorphisms Hi(E(G)) —
H{(W) and H{(E(G*)) — Hy(W) are onto. Thus, we have

m(W;x") <m(G,T;x) and m(W;x") <m(G™, T;x7).
By the exact sequence
Hy(W, E(G)) — Hi(E(G)) — Hi(W) = 0

of the pair (W, E(G)) and the computation Hy(W,E(G)) = A™ with a A-basis
represented by the 2-handle cores D? x 05, (k=1,2,...,n), we obtain

m(G,T;x) <n+m(W;x™) <n+m(G*,T;x").
Similarly, we have:
m(G*, T; x*) < n+m(W;x) <n+m(G,T;x).

Thus, we have
Im(G, T x) = m(G", T;x7)| < n.

G ~, [ . E(6*)

N
(0E(G)) X [0,1] = (9E(G*)) X [0,1]

FiGURE 23. The surgery trace
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7. A ~y-unknotted spatial graph and the induced unknotting number

First, let G be a spatial graph with vi(G) = 0. Let v(G) = (¢4(G),d,(G)) be
the complexity of G. A spatial graph G is y-unknotted if d,(G) = 0.

Given a spatial graph G with v1(G) = 0, let [D(G,v)] be the set of based
diagrams (D;T') € [DG] such that ¢(D;T) = ¢y(G). Let O(G,~) be the set of -
unknotted spatial graphs represented by a based diagram (D;T) with ed(D;T) =
Y(G) = (¢4(G),0). Let O(7y) be the union of the set O(G, ) for all spatial graphs
G of I.

The y-unknotting number of a spatial graph G with v1(G) = 0 is the distance
uy(G) from G to the set O of unknotted spatial graphs by crossing changes on the
based diagrams (D;T) € [D(G,7)]:

uy(G) = p([D(G,7)], 0).

By definition, u,(G) = 0 if and only if G is y-unknotted.
Next, this y-unknotting notion is generalized to a spatial graph with degree
one vertices attached to a surface.

DEFINITION 7.1. A spatial graph G on a surface F' is y-unknotted if there is a
~v-unknotted shrinked spatial graph G in R3.

By definition, we have
y-unknotted = unknotted = [S-unknotted.

The v-unknotting number of a spatial graph G on a surface F is the minimum ., (G)
of the y-unknotting numbers u.(G) for the set {G} of all shrinked spatial graphs
G of G:

8. A T-unknotted spatial graph and the induced unknotting number

For a finite graph I' without degree one vertices, let (I') be the minimum
of the complexities v(G) of all spatial graphs G of I'. A spatial graph G of T' is
I-unknotted if v(G) = v(I'). Writing v(I') = (¢,(T'),d(T")), we have

d(I') = 0.
Thus,
[-unknotted = ~-unknotted = unknotted = S-unknotted.

By definition, it is seen that ¢, (I') = 0 if and only if I is a plane graph and a spatial
plane graph G is I'-unknotted if and only if G is equivalent to a graph in a plane.
Let Or be the set of I'-unknotted spatial graphs of I'. Then we have

OIQDODOF.

The I'-unknotting number of a spatial graph G of a finite graph I without degree
one vertices is the distance ur(G) from G to the set Or of I'-unknotted spatial
graphs of I' by crossing changes on the edges attaching to a basis of G:

ur(G) = p(G,Or).
By definition, ur(G) = 0 if and only if G is I'-unknotted.
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The (v, T')-unknotting number u, r(G) of a spatial graph G of a finite graph I’
without degree one vertices is the distance from the set [D(G, )] to Or by crossing
changes on the edges attaching to a basis:

uy,r(G) = p([D(G;7)]; Or).
By definition, u,,r(G) = 0 if and only if G is (v,T")-unknotted, and
(v, I')-unknotted = I'-unknotted
= ~-unknotted = unknotted = S-unknotted.

Next, the I'-unknotting and (-, I')-unknotting notions are generalized to a spa-
tial graph with degree one vertices attached to a surface. Let I be a finite graph
with degree one vertices.

DEFINITION 8.1. A spatial graph G of I" on a surface F' is ['-unknotted if there
is a I'-unknotted shrinked spatial graph G in R? for the finite shrinked graph I' of
I" associated with F'.

The F—unknotti@g number of a spatial grap}} G on a surface F is the minimum
ur(G) among the I'-unknotting numbers up(G) for the set {G} of all shrinked

spatial graphs G of the finite shrinked graph I' of I' associated with F":

ur(G) = min up(G).
Ge{G}
The (v,T)-unknotting number of a spatial graph G on a surface F is the mini-
mum u,r(G) among the (v, I')-unknotting numbers v, (G) for the set {G'} of all
shrinked spatial graphs G of the finite shrinked graph I' of T’ associated with F':
ur(G) = min u, +(G).
r(G) = min g, 1)(€)
Since the introduction of all the unknotting notions is finished, we answer here
Question 1.1 in the introduction.

ANSWER TO QUESTION 1.1. For the spatial graph G in Figure 1 on a surface
F where only a disk part D of F is illustrated in Figure 1. The shrinked spatial
graph G = G/D illustrated in Figure 24 is S-unknotted (see Figure 20) and hence

G is pB-unknotted.

FI1GURE 24. The shrinked spatial graph G= G/D

On the other hand, the shrinked spatial graph G has a trefoil knot as a con-
stituent knot. Any shrinked spatial graph of the spatial graph G on the surface F'
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is a degree 3 vertex connected sum G(#) of G and a f-curve (see Moriuchi [23]),
which has the trefoil knot as a connected direct summand. Hence é(&) is knotted,
so that the spatial graph G on the surface F' is (v, I')-knotted, I-knotted, y-knotted
and knotted. (]

9. The values taken by these unknotting numbers

We show the following two theorems on the values taken by the unknotting
numbers defined in Sections 4-8:

THEOREM 9.1. The unknotting numbers
ug(G), u(G), uy(G), ur(G), uy,r(G)
of any spatial graph G on any surface F satisfy the following inequalities:
ug(G) <u(G) < {uy(G),ur(G)} < uy r(G).
Further, these unknotting numbers are distinct for some spatial graphs G on the 2-

sphere F = S2. In particular, the large-small relation on u~(G) and ur(G) depends
on a choice of spatial graphs G on F = S2.

THEOREM 9.2. For any given finite graph T', any surface F in R3 and any
integer n > 1, there are infinitely many spatial graphs G of ' on F such that

ug(G) = u(G) = uy(G) = ur(G) = u,r(G) = n.
‘We show Theorem 9.1.

PROOF OF THEOREM 9.1. The inequalities are direct from definitions. We
show that these invariants are mutually distinct. Let G be a spatial graph on F' =

5% which is illustrated in Figure 25. The shrinked spatial graph G has c,(G) = 2
and hence

FIGURE 25. A ~y-unknotted spatial graph on 52

On the other hand, we have
UF(G) = U%F(G) = ].,

because the shrinked spatial graph Gisa spatial graph of a plane graph I’ which
has a Hopf link as a constituent link and hence not I'-unknotted. Let G be a spatial
graph on F' = S?, illustrated in Figure 26. Then the shrinked spatial graph G is the
knot 108 which is known by Y. Nakanishi [25] and S. A. Bleiler [1] to be u(10%) = 2
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and u~ (10%) = 3 by the crossing changes at the dotted crossings in Figure 26. Since
every knot or link K has ug(K) = ur(K) and u,(K) = u, r(K) by definition, we
have

ug(G) = u(G) = ur(G) =2 < uy(G) = uyr(G) = 3.

FIGURE 26. A spatial arc of the knot 108 on S?

FIGURE 27. A 6-like spatial graph on S2

Next, let GI be a spatial graph on F' = S?, illustrated in Figure 27. The shrinked
spatial graph G is a S-unknotted spatial §-curve (see Figure 28). Thus, ug(G) = 0.

&)

FIGURE 28. A B-unknotted #-curve
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On the other hand, if the #-curve G is unknotted, then G would be isotopic
to a graph in a plane C R?, which is impossible since G has a trefoil knot as a
constituent knot. Thus, we have

u(G) =wy(G) = ur(G) = uyr(G) = 1.
This completes the proof of Theorem 9.1. O
Next, we show Theorem 9.2.

PRrROOF OF THEOREM 9.2. Assume that I' and F' are connected for simplicity.
Let F be in the interior of a 3-ball B C 3, and S? = 0B. Let Gy be a I'-unknotted
graph on S? in B¢ = cl(S® — B). For a disk Ag C S? with v1(Go) C S?, let
Go = Gy /g be the shrinked spatial graph which is a I-unknotted spatial graph in
S3 with a monotone based diagram (Dy; Tp) such that the crossing number ¢(Do; Tp)
is equal to the cross index a(f) by Lemma 3.1, where I is the finite shrinked graph
of T associated with the disk Ag. Let K (n) be the n-fold connected sum of a trefoil
knot K, and DK (n) a diagram of the knot K(n) with minimal crossing number.
Since ¢(DK(n)) < 3n is obvious, we obtain the crossing number ¢(DK(n)) = 3n
from the following lemma (which is shown later).

LEMMA 9.3. Let K" be the connected sum of the knot K(n) and a (possibly
trivial) knot K'. Then any diagram D" of the knot K" has the crossing number
ce(D") > 3n.

FIGURE 29. Spatial graphs G and Go(n) on S?

Let (Do(n); Tp) be a based diagram of a spatial graph Go(n) obtained from
the based diagram (Dg;Tp) by taking a connected sum Dag# DK (n) of an edge
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diagram Dayg of (Dg; Tp) and the knot diagram DK (n) so that we have the crossing
number

c(Do(n); To) = ¢(Do; To) + c(DK(n) = e(I') + 3n
(see Figure 29). Then we show that (Do(n);Ty) € [D(Go(n),~)]. In fact, every
based diagram (D'; T") € [D(Go(n),~)] has the cross index e(D’; T") > &(I') and an
edge o of the based diagram (D’;T") has the knot K(n) as a connected summand
(see Figure 30 for the case that the connected sum edge Daog# DK (n) belongs to
a tree T” which will be deformed into the basis 7).

FIGURE 30. A basis T” containing the connected sum edge Da# DK (n)

By the definition of the cross index and Lemma 9.3, we have
e(D',T") > (') + 3n,

showing that the based diagram (Do(n); To) belongs to the set [D(Go(n),~)]. By
the unknotting number u(K(n)) < n, we have

Uy, (Go(n)) = uy r(Go(n)) < n.
We modify the spatial graph G(n) on S? to construct a spatial graph G (n) on
F by taking in B a 1-handle H connecting the 2-cell Ag C S? and a 2-cell A; C F
and then adding d parallel arcs in H to Go(n) for d = |v1(Go(n))|. See Figure 31
for this situation.
The shrinked spatial graph G1(n)/A; is identical to the shrinked spatial graph
Go(n), so that by definition we have

uy,0(G1(n)) < uy,r(Go(n)) < n.
Let G = G1(n). We show that us(G) > n. Let ug(G) = ug(G) for a shrinked
spatial graph G = G/A for a 2-cell A in F. Assume that ug(G) = n* and a §-
unknotted spatial graph G* is obtained from the spatial graph G byA n* crossing

changes on the edges o (kK = 1,2,...,m) attaching to a basis T in G. To orient
the edges ay, (kK =1,2,...,m), the following two cases are considered.

Case (1). The connected sum edge Dapg#DK (n) belongs to the edges ap (k =
1,2,...,m).

Case (2). The connected sum edge Dag# DK (n) belongs to the basis T'.

In Case (1), we orient all the edges o (k =1,2,...,m) in any orientation. In
Case (2), the connected sum edge Dag# DK (n) splits T into two subtrees T™) and
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FIGURE 31. A spatial graph G1(n) on F'

T®). For the edges oy (k= 1,2,...,u) connecting T and T®), we orient by the
orientations starting from the vertices in T™) to the vertices in T(® and for the
remaining edges ai (k = u+ 1,u+2,...,m) we orient in any orientation. Then

the epimorphism x : Hi(E(G)) — Z is defined by sending every oriented meridian
to 1 € Z. By Lemma 6.1, we have

m(G, T x) = m(G*, Ty x| < n,
where x* denotes the induced epimorphism x* : Hi(E(G*)) — Z. We note that
m(G*,T; x*) = m — 1 since 71 (E(G*)) is a free group of rank m and hence
M(G*,T; x*) = Hi(E(G*)) = A™ L,
We calculate the number m(G, T x). The spatial graph Gy(n)/A; = Go(n) has

the basis inherited from T and the oriented edges inherited from the oriented edges
ap (k=1,2,...,m) attaching to T. We have

AL (A (A ()™, in Case (1)
AL (A/(A ()", in Case (2),

where A (t) = t? —t + 1. Hence, in either case, we have

M(Go(n), Tsx) = Hi (B(Go(n)) = {

m(Go(n), T;x) =m —1+n.

Then we have the following lemma (proved later).

LEMMA 9.4. There is a short exact sequence
0— M(Go(n),T;X) — M(G,T;X) — M —=0

for a Z-torsion-free, A-torsion module M such thatt—1: M — M is an automor-
phism.

Let DM be the maximal finite A-submodule of a finitely generated A-module
M (see [9]). The following lemma is also proved later although it is implicitly shown
in [10].
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LEMMA 9.5. Let M’ be a A-submodule of a finitely generated A-module M. Let
b and b be the minimal numbers of A-generators of M’ and M, respectively. If the
mazimal finite A-submodule D(M/M') of M/M' is 0, then we have b’ < b.

By Lemmas 9.4 and 9.5, we have
m(Go(n), T;x) < m(G,T;x),
because DM = 0, so that
n = (m—14+n)—(m-—1)
m(Go(n), T; x) = m(G*, T; x")
m(G, T; x) —m(G", T;X7)

n*.

INIA

Hence ug(G) > n and
45(G) = u(G) = 1,(G) = ur(G) = u+(G) = .

This completes the proof of Theorem 9.2 except the proofs of Lemmas 9.3, 9.4 and
9.5. O

The proofs of Lemmas 9.3, 9.4 and 9.5 are given as follows.

PrROOF OF LEMMA 9.3. It is well-known that the span of the Jones polyno-
mial Vi (t) of the knot K" is smaller than or equal to ¢(D”) (see Murasugi [24],
Kauffman [7]). Since

Vien(t) = Ve ()" - Ve (t),  Vie(t) =t +¢° —t!
by taking a positive trefoil knot as K, we see that ¢(D") > 3n. O

ProoF oF LEMMA 9.4. The spatial graph Gis a degree d vertex connected
sum of the spatial graph Go (n) and a f4-curve O relative to the vertex vy obtained
from vy (Go(n)) and a vertex vy of © (see [23]). In precise, G is the union of
Go(n) = cl(Go(n)\By N Go(n)) C B¢ and © = cl(©\By N ©) C BS where B; is
a 3-ball regular neighborhood of v; in $3 for i = 1,2. Then the exterior E(G)
is the union of the exteriors E(Go(n)) and E(©) with as the intersection part a
compact dth punctured 2-sphere S(d) in the boundaries dE(Go(n)) and AE(0). Let
S(d)® = cl(DE(O)\S(d)). Let E(Go(n)), E(©), S(d) and S(d)¢ be the connected
lifts of E(Go(n)), E(©), S(d) and S(d)¢ to the infinite cyclic covering E(G) of
E(G), respectively. By excision, there is a natural isomorphism

Ha(E(G), E(Go(n)) 2 Ha(E(©), 5(d))-
Since H:(E(0©),S5(d)) = H1(E(©),5(d)¢) = 0, we see from the Wang exact se-

quence that M = H,(E(©),S(d)) and M¢ = H,(E(©),S5(d)) are finitely gener-
ated A-modules such that t—1: M — M and t—1: M° — M¢€ are automorphisms,
implying that M and M€ are A-torsion modules whose Z-torision parts 7(M) and
T(M*€) are equal to the maximal finite A-modules DM and DM€, respectively (see

[9]). By the second duality theorem in [9],
7(M) = DM = Ext) (M€/Tory(M®); A) = 0.
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(Note: Though we have also 7(M€¢) = DM€ = 0, we do not use this fact.) Then
the homology exact sequence of the pair (E(G), E(Go(n)) induces a desired exact
sequence. O

PROOF OF LEMMA 9.5. For a A-epimorphism f : A® — M, let
B = f~H(M') C A",
which is a finitely generated A-module mapped onto M’ by f. Since the quotient
A-module A?/B’ is isomorphic to M/M’, which has a A-projective dimension < 1
since the maximal finite A-submodule D(M/M’) of M/M’ is 0 (see [9]). Hence
B’ = A¢ for some nonnegative integer ¢, implying that b’ < ¢/ < b. O

10. Knotting dynamics of a spatial graph with degree one free vertices

In this section, we consider a spatial graph G with degree one vertices vy, va,. . .,
vg(d > 1) neither of which is not attached to any surface. These degree one vertices
are referred to as free vertices. We explain here knotting dynamics of a spatial graph
G with degree one free vertices by applying the knotting notions on the spatial
graphs without degree one vertices associated with G. This notion is introduced in
[17, 18]. We need to impose a mild restriction on a spatial graph with degree one
free vertices. A spatial graph G with degree one free vertices is normal if G has the
following properties (1) and (2) where V = {vy,va,...,v4}:

(1) There is a set X = {x1,22,...,vq} of mutually distinct d points in G\V such
that the line segments |v;z;| (i = 1,2,...,d) are mutually disjoint and intersect G
only in the set VU X. (We call the set X a coupling with V.)

(2) There are only finitely many equivalence classes of the spatial graphs (without
degree one vertices)

d
Gx =G| vixi]
i=1
for all couplings X with V.

Every polygonal spatial graph G with degree one free vertices which is not
in a plane is normal and if G is normal in a plane C R?, then the spatial graph
Gx without degree one vertices is always a ['-unknotted spatial graph for every
coupling X with V. For every normal spatial graph G with degree one free vertices
and every coupling X with V, the unknotting number u(Gx) of the spatial graph
G x without degree one vertices is defined in Section 4. An analysis on the dynamics
of the invariant u(Gx) for every coupling X with V' will be useful in studying a
knotted structure of the normal spatial graph G with degree one free vertices. The
unknotting number u(G) of a normal spatial graph G with degree one free vertices
is defined to be

u(G) = max{u(Gx)| X is a coupling with V'}.
Let g be the number of distinct equivalence classes on the spatial graphs Gx for
all couplings X with V', and ng the number of distinct equivalence classes of spatial
graphs Gx with u(Gx) > 0 for all couplings X with V. The knotting probability of
a normal spatial graph G with degree one free vertices is defined by the fraction

p(@) = =€,

ng
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and we say that G is a (p(G) x 100)%-knotted graph. For example, we consider a
spatial polygonal (normal) arc G with ordered vertices

U1 = (0707O)a P11 = (3a 150)7 D2 = (37
b3 = (2737 1)7 Ps = (13271)7 Vg = (13

which is illustrated in Figure 32.

FI1GURE 32. A normal spatial arc

It turns out that the spatial graphs Gx for all couplings X = {x1,22} with
V = {v1,v9} are classified into three equivalence classes consisting of an unknotted
handcuff graph, an unknotted #-curve, and a knotted handcuff graph of unknotting
number one caused from the observation that the line segment |vyz1| taking z; in
an open line segment (pa,ps) or (p2,q) with the midpoint ¢ of the line segment
|p1p2| meets at an interior point of the triangle |voxopy| taking xo = ps. This check
is relatively easily done because the spatial graph Gx is a f-curve or a handcuff
graph for every normal spatial arc G and every coupling X with V', so that Gx is
unknotted if and only if Gx is equivalent to a graph in a plane C R3. Thus, we
have the unknotting number u(G) = 1 and the knotting probability p(G) = % In
other words, the normal spatial arc G is a %%—knotted arc with u(G) = 1.

In similar ways, the y-unknotting number u,(Gx), the I'-unknotting number
u'(Gx), and the (v, T)-unknotting number u. r(Gx) and their related notions are
defined for every normal spatial graph G with free degree one vertices. Detailed
studies on the knotting probability of a normal spatial arc will be done elsewhere.
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