CLASSIFICATION OF PRETZEL KNOTS

By Akio KAWAUCHI (Received February 13, 1984)

A pretzel knot is a knot given by a knot diagram consisting of a row of 2-strand braids. Fig. 1 shows a pretzel knot with a row of braids of q_1 -, q_2 -,..., q_m -half twists, which we denote by $k(q_1, q_2, ..., q_m)$. We assume that $q_i \neq 0$, i=1, 2, ..., m. Let $q_{j_1}, q_{j_2}, ..., q_{j_n} (j_1 < j_2 < \cdots < j_n)$ be the non-unit integers in the q_j 's. Let $p_i = q_{j_i}$, i=1, 2, ..., n. Let $b = \sum_{j=1}^m q_j - \sum_{i=1}^n p_i$. By turning, if necessary, the braids of p_i -half twists, we can deform $k(q_1, q_2, ..., q_m)$ into a knot with diagram, illustrated in Fig. 2, which we denote by $k(-b; p_1, p_2, ..., p_n)$. Since it is a knot, only the following two cases occur:

- (1) All of the p_i 's and n+b are odd and $n \ge 0$,
- (2) Exact one of the p_i 's is even and b is arbitrary and $n \ge 1$.

Fig. 2

We say that $k(-b; p_1, p_2,..., p_n)$ is odd (or even, resp.) if it is in the case (1) (or (2), resp.). Two oriented knots k, k' are equivalent and denoted by $k \cong k'$, if there is an orientation-preserving auto-homeomorphism of S^3 sending k to k' orientation-preservingly. We orient $k(-b; p_1, p_2,..., p_n)$ by the orientation indicated in Fig. 2. When $(p'_1, p'_2,..., p'_n)$ is a cyclic translation of $(p_1, p_2,..., p_n)$, we write $(p'_1, p'_2,..., p'_n) \cong (p_1, p_2,..., p_n)$. Then we have easily $k(-b; p'_1, p'_2,..., p'_n) \cong k(-b; p_1, p_2,..., p_n)$. The inverse, the reflection and the reflected inverse of $k(-b; p_1, p_2,..., p_n)$ are equivalent to $k(-b; p_n,..., p_2, p_1)$, $k(b; -p_1, -p_2,..., -p_n)$ and $k(b; -p_n,..., -p_2, -p_1)$, respectively. For even pretzel knots, one can show that $k(-b; p_n,..., p_2, p_1) \cong k(-b; p_1, p_2,..., p_n)$. Fig. 3

also shows that $k(-b; p_1, ..., p_i, ..., p_n) \cong k(-b'; p_1, ..., p'_i, ..., p_n)$ if for some i, $|p_i| = |p'_i| = 2$ and $\varepsilon(p_i)(b'-b) = \varepsilon(p'_i)(b-b') = 1$, where $\varepsilon(p) = p/|p|$. Then according to if |b| < |b'| or |b'| < |b|, $k(-b; p_1, ..., p_i, ..., p_n)$ or $k(-b'; p_1, ..., p'_i, ..., p_n)$ is said to have a minimal presentation. Unless otherwise stated, only pretzel knots with minimal presentations will be considered for pretzel knots with braids of ± 2 -half twists. We define the Euler number $\varepsilon(k) \neq 0$ and for $n \leq 2$ the character $\varepsilon(k) \neq 0$ of $k = k(-b; p_1, p_2, ..., p_n)$ by

$$e(k) = b + \sum_{i=1}^{n} 1/p_i$$
, and $c(k) = -1/e(k)$ (if $n \le 1$) or $(bp_1 + 1)/p_1p_2e(k)$ (if $n = 2$).

Non-zero rational numbers x, x' are equivalent and denoted by $x \cong x'$, if the irreducible fractions q/p, q'/p' (p, p'>0) of x, x' have p=p' and $q^{\pm 1} \equiv q'$ (mod p). A knot k is simple if the exterior $E(k) = S^3$ -Int N(k), N(k) being the regular neighborhood of k, has no incompressible imbedded torus that is not boundary-parallel (cf. [J]). In this note, we shall prove the following three theorems:

THEOREM I. The pretzel knots $k = k(-b; p_1, p_2,..., p_n)$ and $k' = k(-b'; p'_1, p'_2,..., p'_n)$ are equivalent if and only if one of the following cases occurs:

- (1) Both n and n' are ≤ 2 and $c(k) \cong c(k')$,
- (2) Both k and k' are odd, $n = n' \ge 3$, b = b' and $(p'_1, p'_2, ..., p'_n) \cong (p_1, p_2, ..., p_n)$,
- (3) Both k and k' are even, $n = n' \ge 3$, b = b' and $(p'_1, p'_2, ..., p'_n) \cong (p_1, p_2, ..., p_n)$ or $(p_n, ..., p_2, p_1)$.

THEOREM II. Every pretzel knot is simple.

THEOREM III. A pretzel knot is equivalent to a torus knot if and only if it is equivalent to k(-p; -) for some odd $p, k(0; 3\varepsilon, 3\varepsilon, -2\varepsilon)$ or $k(0; 3\varepsilon, 5\varepsilon, -2\varepsilon), \varepsilon = \pm 1$.

It is directly checked that $k(p\varepsilon; -)(p>0)$, $k(0; 3\varepsilon, 3\varepsilon, -2\varepsilon)$ or $k(0; 3\varepsilon, 5\varepsilon, -2\varepsilon)$ are equivalent to the torus knots of type $(p, 2\varepsilon)$, $(3, 4\varepsilon)$ and $(3, 5\varepsilon)$, respectively, $\epsilon = \pm 1$ (cf. Fig. 4).

To obtain Theorem III, we shall also determine the pretzel knots whose branched double covering spaces are homeomorphic to those of torus knots. Note that a knot is a torus knot iff the exterior is a Seifert manifold (cf. Burde/Murasugi [B/M]). Then according to Thurston [TH], the pretzel knot exterior is a hyperbolic manifold except the torus knots of Theorem III. Theorem I is obtained by adding several remarks to Parris's arguments in [P], but for the sakes of convenience and clarity, we shall give here a full proof. After having done this work, the author learned from Boileau [B] that Bonahon/Boileau/Siebenmann have obtained similar results*) for the Montesions knots (and links) containing the pretzel knots, by using different methods. Some results of this note will be used in [K/K/S]. Spaces and maps will be considered in the piecewise-linear category.

1. Proof of Theorem I. Let $k=k(-b; p_1, p_2,..., p_n)$ and $G=\pi_1(S^3-k)$. Following Reidemeister [R], Trotter [TR] and [P], we consider the quotient $G_*=G/\langle m^2=1\rangle$, where m is a meridian element of k. Let $x_1, x_2,..., x_r, r=n+|b|$, be the meridian elements of k about the maximal points in Fig. 2, in the direction from the bottom to the top. We have

$$G_* = (x_1, x_2, ..., x_r | x_1^2 = x_2^2 = \dots = x_r^2 = 1,$$

$$(x_1 x_2)^{p_1} = \dots = (x_n x_{n+1})^{p_n} = (x_{n+1} x_{n+2})^{\varepsilon} = \dots = (x_r x_1)^{\varepsilon},$$

where $\varepsilon = \varepsilon(b)$ (if $b \neq 0$). (When b = 0, we understand that $x_{n+1} = x_1$ and the relation $(x_{n+1}x_{n+2})^{\varepsilon} = \cdots = (x_rx_1)^{\varepsilon}$ does not appear.) Let C be the cyclic subgroup of G_* generated by $(x_1x_2)^{p_1} = \cdots = (x_rx_1)^{\varepsilon}$. Since C is normal in G_* , we can consider the quotient $G_{**} = G_*/C$. We have

^{*)} H. Zieschang has also obtained them.

$$G_{**} = (x_1, x_2, ..., x_n | x_1^2 = x_2^2 = ... = x_n^2 = (x_1 x_2)^{p_1} = ... = (x_n x_1)^{p_n} = 1).$$

Note that $H_1(G_*; Z) = H_1(G_{**}; Z) = Z_2$. Let QG_* , QG_{**} be the commutator (index 2) subgroups of G_* , G_{**} , respectively. Writing $a_i = x_i x_{i+1}$, $a_r = x_r x_1$, we have

$$QG_* = (a_1, a_2, ..., a_r | a_1^{p_1} = a_2^{p_2} = \cdots = a_n^{p_n} = a_{n+1}^{\varepsilon} = \cdots = a_r^{\varepsilon}, a_1 a_2 \cdots a_r = 1),$$

$$QG_{**} = (a_1, a_2, ..., a_n | a_1^{p_1} = a_2^{p_2} = \cdots = a_n^{p_n} = a_1 a_2 \cdots a_n = 1).$$

Clearly, G_* and QG_* are invariants of k. Similarly, G_* , G_{**} , QG_* and QG_{**} are defined for $G' = \pi_1(S^3 - k')$ with $k' = k(-b'; p_1', p_2', ..., p_n')$.

LEMMA 1.1. If $k \cong k'$, then n and n' are ≤ 2 or ≥ 3 at the same time.

PROOF. For $n \le 2$, QG_* is abelian (cyclic). We show that QG_* is non-abelian for $n \ge 3$. It suffices to show that QG_{**} is non-abelian for $n \ge 3$. According to if $\sum_{i=1}^{n} 1/|p_i|$ is > n-2 (then, n=3), = n-2 or < n-2, we can construct an n-sided convex polygon $P = (v_1 v_2 \cdots v_n)$ in the spherical, Euclidean or hyperbolic plane $(S^2, E^2 \text{ or } H^2)$ so that the interior angle at the vertex v_i is $\pi/|p_i|$ and for the geodesics $\ell_1, \ell_2, \ldots, \ell_n$ determined by the edges $v_n v_1, v_1 v_2, \ldots, v_{n-1} v_n, \ell_i \cap \ell_j \ne \phi$ iff $j \equiv i \pm 1 \pmod{n}$. Then G_{**} is a discrete group of isometries of S^2 , E^2 or H^2 such that the generators x_1, x_2, \ldots, x_n correspond to the reflections in $\ell_1, \ell_2, \ldots, \ell_n$ (see Coxeter/Moser [C/M], Magnus [M]). Suppose that $\sum_{i=1}^{n} 1/|p_i| \le n-2$. Then G_{**} and hence QG_{**} are infinite groups. Since $H_1(QG_{**}; Z)$ is finite, QG_{**} is non-abelian. Suppose that $\sum_{i=1}^{n} 1/|p_i| > n-2$. Then n=3 and $\{|p_1|, |p_2|, |p_3|\} = \{2, 3, 3\}$ or (2, 3, 5). For example, by Fox [F1] the natural map $QG_{**} \to H_1(QG_{**}; Z)$ has a non-trivial kernel, implying that QG_{**} is non-abelian. Similarly, QG'_* is abelian or non-abelian according to if $n' \le 2$ or ≥ 3 . The result follows.

For $n \le 2$, k is a 2-bridge knot. Let (α, β) be a normal form of k due to Suhubert [SC2]. Then $c(k) \cong \beta/\alpha$. In fact, Fig. 5 shows that for n=2 and

 $b \neq 0$, $\beta/\alpha \cong 1/(p_1 + 1/(b + 1/p_2)) = (p_1b + 1)/p_1p_2e(k)$ and for n = 1 and $b \neq 0$, $\beta/\alpha \cong 1/(p_1 + 1/b) = b/(p_1b + 1) \cong -p_1/(p_1b + 1) = -1/e(k)$. The other case (n = 0) or b = 0 is easier checked.

PROOF of THEOREM I for $n \le 2$. By Lemma 1.1, $n' \le 2$. Schubert's classification of 2-bridge knots [SC2] and the above remark imply that $k \cong k'$ iff $c(k) \cong c(k')$, completing the proof.

To conclude the proof of Theorem I, it suffices to show the "only if" part, assuming that $n, n' \ge 3$, since the "if" part was observed in the Introduction.

LEMMA 1.2. If $k \cong k'$ and n, $n' \geq 3$, then n = n', b = b' and $\{p_1, p_2, ..., p_n\} = \{p'_1, p'_2, ..., p'_n\}$. In particular, e(k) = e(k') and k, k' are odd or even at the same time.

PROOF. The double covering spaces $S^3(k)_2$, $S^3(k')_2$ of S^3 branched along k, k' are Seifert manifolds over S^2 with invariants $(b; (p_1, 1), (p_2, 1), ..., (p_n, 1))$, $(b'; (p'_1, 1), (p'_2, 1), ..., (p'_{n'}, 1))$, respectively (cf. Montesions [MO]). Note that there is an orientation-preserving homeomorphism $h: S^3(k)_2 \cong S^3(k')_2$. If $\pi_1(S^3(k)_2)$ is infinite, then by Orlik/Voget/Zieschang [O/V/Z] or Conner/ Raymond [C/R] h is homotopic to a fiber-preserving homeomorphism. By Neumann/Raymond [N/R, Theorem 1.1] (where we understand $(p_i, 1)$ as $(|p_i|, 1)$ $\varepsilon(p_i)$) and b as (1, b)), we have n = n', $p_i = p'_i$ and b = b', noting our assumption on minimal presentations and changing the indices of p_1 , p_2 ,..., p_n , if necessary. Assume that $\pi_1(S^3(k)_2)$ is finite. Since $\pi_1(S^3(k)_2) = QG_*$, QG_{**} is finite. So, n=3 and $\{|p_1|, |p_2|, |p_3|\} = \{2, 3, 3\}$ or $\{2, 3, 5\}$ (cf. the proof of Lemma 1.1). Similarly, n'=3 and $\{|p'_1|, |p'_2|, |p'_3|\} = \{2, 3, 3\}$ or $\{2, 3, 5\}$. By Seifert [SE], the orders of $H_1(S^3(k)_2; Z)$, $H_1(S^3(k')_2; Z)$ are $|p_1p_2p_3e(k)|$, $|p'_1p'_2p'_3e(k')|$, respectively. Since they are equal, it follows that $(b', p'_1, p'_2, p'_3) = (b\varepsilon, p_1\varepsilon, p'_2)$ $p_2\varepsilon$, $p_3\varepsilon$) for $\varepsilon = \pm 1$, noting our assumption on minimal presentations and changing the indices of p_1 , p_2 , p_3 , if necessary. If $\varepsilon = -1$ occurs, then $S^3(k)_2$ admits an orientation-reversing auto-homeomorphism. But, [N/R, Theorem 8.2] shows that $S^{3}(k)_{2}$ never does, for $H_{1}(S^{3}(k)_{2}; Q) = 0$. Thus, $\varepsilon = 1$. This completes the proof.

PROOF of the "only if" part of THEOREM I for $n \ge 3$. When n = 3 and k is odd with $(p_1, p_2, p_3) \cong (p_3, p_2, p_1)$ or even, then the result follows from LEMMA 1.2, since $\{p_1, p_2, p_3\} = \{p'_1, p'_2, p'_3\}$ implies $(p'_1, p'_2, p'_3) \cong (p_1, p_2, p_3)$ or (p_3, p_2, p_1) . So, assume that n = 3 and k is odd with $(p_1, p_2, p_3) \not\cong (p_3, p_2, p_1)$ or $n \ge 4$. Then $\sum_{i=1}^{n} 1/|p_i| < n-2$ and G_{**} is a discrete group of isometries of H^2 as in the proof of LEMMA 1.1. Note that $\ell_i \cap \ell_j = \phi$ iff $x_i x_j$ is of infinite order in G_{**} . QG_{**} is a discrete group of orientation-preserving isometries of H^2 and it is well-known (easily proved) that the center of QG_{**} is trivial. Since $C \subseteq$ (the center of QG_{*}) and $QG_{*}/C = G_{**}$, we see that C is equal to the center of QG_{*} . It follows that

 $G_{**} = G_*/C$ is an invariant of k. Assume that $k' \cong k$. Then by Lemma 1.2, n' = n and b' = b. We have an isomorphism $G'_{**} = (x'_1, x'_2, ..., x'_n | x'_1{}^2 = x'_2{}^2 = \cdots = x'_n{}^2 = x$ $x_n'^2 = (x_1'x_2')^{p_1'} = \cdots = (x_n'x_1')^{p_n'} = 1) \cong G_{**}$. Identify x_i' with the isomorphic image of it. Since $x'_1, x'_2, ..., x'_n$ are mutually conjugates in $G'_{**} \cong G_{**}$, we see that $x'_1, x'_2, ..., x'_n$ act on H^2 orientation-reversingly, so that $x'_1, x'_2, ..., x'_n$ are reflections in some geodesics ℓ_1' , ℓ_2' ,..., ℓ_n' . Noting that x_1' , x_2' ,..., x_n' are mutually distinct and $x_i'x_j'$ is of infinite order unless $j \equiv i \pm 1 \pmod{n}$, we see that ℓ_1' , ℓ'_2, \dots, ℓ'_n are mutually distinct and $\ell'_i \cap \ell'_j = \phi$ unless $j \equiv i \pm 1 \pmod{n}$. Since $(x_1'x_2')^{p_1'} = \cdots = (x_n'x_1')^{p_n'} = 1$, we see that ℓ_i' and ℓ_{i+1}' meet at a point ℓ_i' , i = 11, 2,..., $n(\ell'_{n+1} = \ell'_1)$. The ℓ'_i 's and the v'_i 's determine an *n*-sided convex polygon P'. Since the interior angle of P' at v_i is a multiple of $\pi/|p_i|$ and by Lemma 1.2 $\{p_1', p_2', \dots, p_n'\} = \{p_1, p_2, \dots, p_n\},$ it follows that (the total curvature of P') \leq $\sum_{i=1}^{n} (\pi - \pi/|p_i|) =$ (the total curvature of P). Let D, D' be the finite regions in H^2 bounded by P, P', respectively. By the Gauss/Bonnet theorem, (the area of D') \leq (the area of D). Since D is a fundamental region of G_{**} and D' is a union of isometric copies of D, it follows that D' is an isometric copy of D, that is, tD' = Dfor some $t \in G_{**}$. Write $tx_i't^{-1} = x_{j_i}$, i = 1, 2, ..., n. We have $(j_1, j_2, ..., j_n) \cong$ (1, 2, ..., n) or (n, ..., 2, 1). By composing the isomorphism $G'_{**} \cong G_{**}$ to the inner automorphism induced by t^{-1} , we consider that $x_i = x_{j_i}$, i = 1, 2, ..., n. If k is even, we can assume by using an equivalence $k(-b; p_1, p_2,..., p_n) \cong k(-b;$ p_n, \ldots, p_2, p_1) that $(j_1, j_2, \ldots, j_n) \cong (1, 2, \ldots, n)$. The following two lemmas will complete the proof:

LEMMA 1.3. If k is odd, then we have necessarily $(j_1, j_2, ..., j_n) \cong (1, 2, ..., n)$.

LEMMA 1.4. If $(j_1, j_2,..., j_n) \cong (1, 2,..., n)$, then $(p'_1, p'_2,..., p'_n) \cong (p_1, p_2,..., p_n)$.

PROOF of LEMMA 1.3. Suppose $(j_1, j_2, ..., j_n) \not\cong (1, 2, ..., n)$. Then $(j_1, j_2, ..., j_n) \cong (n, ..., 2, 1)$. By changing the indices of p_{j_i} , x_{j_i} cyclically, we can assume that $x_i' = x_{n+2-i}$ and $|p_i'| = |p_{n+1-i}|$, i = 1, 2, ..., n $(x_{n+1} = x_1)$. Let L, L' be the longitude elements of k, k' in G_{**} , G_{**} , respectively. The equivalence $k' \cong k$ means that $uL'u^{-1} = L$ for some $u \in G_{**}$. We can write L, L' as follows ([TR], [P]):

$$L = [(x_1 x_2)^{-d_1} (x_2 x_3)^{-d_2} \cdots (x_n x_1)^{-d_n}]^2,$$

$$L' = [(x_1' x_2')^{-d_1'} (x_2' x_3')^{-d_2'} \cdots (x_n' x_1')^{-d_n'}]^2,$$

where $d_i = (|p_i| - 1)/2 = (|p'_{n+1-i}| - 1)/2 = d'_{n+1-i}$, i = 1, 2, ..., n. Then we find $w \in G_{**}$ such that $wLw^{-1} = L^{-1}$. We show that there are no such elements in G_{**} . This is due to [TR, p. 279], but we give the proof. Note that L is a translation algoing ℓ_1 through a distance equal to twice the perimeter of P in the direction from v_1 to v_n (cf. [TR], [P]). Regard L as a real Möbius transformation acting

on the Riemann sphere $C \cup \{\infty\}$ and H^2 as the upper half plane. Since L is of infinite order and fixes the geodesic ℓ_1 setwise, L must be a hyperbolic element (see Lehner [LE, p. 8]). By applying a real Möbius transformation, we can assume that the fixed points of L are 0 and ∞ , so that there is a constant r>0 with L(z)=rz for all $z \in H^2$ and ℓ_1 is the y-axis within H^2 . First assume $w^2 \neq 1$. Using that $w^2Lw^{-2}=L$, we see that the fixed points of w^2 are 0 and ∞ (cf. [LE, p.9]) and hence there is a constant r'>0 such that $w^2(z)=r'z$ for all $z\in H^2$. Then $w(z) = \sqrt{r'z}$ or $-\sqrt{r'\bar{z}}(\bar{z}) = the$ complex conjugation of z) for all $z \in H^2$, according to if w is orientation-preserving or -reversing. [To see this, note that w(z) can be written as (az+b)/(cz+d) or $-(a\bar{z}+b)/(c\bar{z}+d)$ for real a, b, c, d with ad-bc=1, according to if w is orientation-preserving or -reversing.] We have $wLw^{-1}=L\neq L^{-1}$, a contradiction. Thus, $w^2=1$. Since $p_1, p_2, ..., p_n$ are odd, w must be orientation-reversing. We can write $w(z) = -(a\bar{z} + b)/(c\bar{z} + a)$ for real a, b, c with $a^2 - bc = 1$. Using that $(wL)^2 = 1$, L(z) = rz and $r \ne 1$, we have a=0 and $w(z)=b^2/\bar{z}$. This implies that w is a reflection in the geodesic $S^+=$ $\{z \in C | |z| = |b|, \text{ Im } z > 0\}$. Since S^+ meets ℓ_1 orthogonally, at most one of the p_i 's must be even, which is a contradiction. This completes the proof.

PROOF of LEMMA 1.4. The proof is essentially due to [P]. By changing the indices of p_{j_i} and x_{j_i} cyclically, we can assume that $x_i' = x_i$ in G_{**} and $|p_i'| = |p_i|$, i = 1, 2, ..., n. For a generator g of C, we have

- (1) $x_i' = x_i g^{m_i} = g^{-m_i} x_i, i = 1, 2, ..., n,$
- (2) $(x_1'x_2')^{p_1'} = (x_2'x_3')^{p_2'} = \cdots = (x_n'x_1'g^{-\varepsilon b})^{p_n'} = g^{\varepsilon}, \ \varepsilon = \pm 1,$
- (3) $(x_1x_2)^{p_1} = (x_{23})^{p_2} = \cdots = (x_nx_1g^{-b})^{p_n} = g$

in G_* . Note that QG_* is torsion-free [PROOF. $QG_* = \pi_1(S^3(k)_2)$ and $S^3(k)_2$ is a Seifert Z_2 -homology 3-sphere (cf. the proof of LEMMA 1.2). By [SE], $S^3(k)_2$ is irreducible. By the sphere theorem $S^3(k)_2$ is aspherical, for QG_* is infinite. So, QG_* is torsion-free (cf. Hempel [H])]. Thus, C is infinite cyclic, because C is non-trivial in QG_* . We assume that $|p_i'|$, i=1, 2, ..., n-1, are odd (≥ 3) and $|p_n'| \geq 2$. Using that C is the center of QG_* , we see that

$$g^{\varepsilon} = (x_1' x_2')^{p_1'} = (g^{-m_1} x_1 x_2 g^{m_2})^{p_1'} = (x_1 x_2)^{p_1'} g^{p_1'(m_2 - m_1)}$$

If $p_1' = \varepsilon_1 p_1$, $\varepsilon_1 = \pm 1$, then $\varepsilon = \varepsilon_1 + p_1' (m_2 - m_1)$. For $|p_1'| \ge 3$, we have $\varepsilon = \varepsilon_1$ and $m_1 = m_2$. Similarly, we have $p_i' = \varepsilon p_i$ for i = 1, 2, ..., n-1, and $m_1 = m_2 = \cdots = m_n$. Note that

$$(x'_n x'_1)^{p'_n} = g^{\varepsilon b p'_n + \varepsilon}$$
 and $(x_n x_1)^{p_n} = g^{b p_n + 1}$.

If $p'_n = \varepsilon_n p_n$, $\varepsilon_n = \pm 1$, then $\varepsilon \varepsilon_n p_n b + \varepsilon = \varepsilon_n p_n b + \varepsilon_n$. For $|p_n| \ge 2$, $\varepsilon_n = \varepsilon$. In conclusion, we have $p'_i = \varepsilon p_i$, i = 1, 2, ..., n, and $b = \varepsilon b$. Suppose $\varepsilon = -1$. Then b = 0 and $p'_i = -p_i$, i = 1, 2, ..., n. If k is odd, then $e(k) = -e(k') \ne 0$. By Lemma 1.2, e(k) = e(k'), a contradiction. If k is even, then p_n and p'_n are the unique

non-zero even numbers in the p_i 's and the p_i 's, respectively. By Lemma 1.2, $p_n = p'_n$, a contradiction. Therefore, $\varepsilon = 1$. This completes the proof.

2. Proof of Theorem II.

PROOF of THEOREM II for $n \le 3$. When $n \le 3$, the bridge index of k is ≤ 3 . If k is not simple (i.e., k has a non-trivial companion), then by Schubert [SC, 1] k must be the sum of two non-trivial 2-bridge knots, so that $S^3(k)_2$ is not irreducible. But, it is a Seifert Z_2 -homology 3-sphere and by [SE] irreducible, which is a contradiction. This completes the proof.

For $n \ge 4$ we shall use a concept of simple tangles by Soma [SO]. Let a_1 , a_2 be disjoint arcs properly imbedded in a 3-ball B. The union $t = a_1 \cup a_2$ is called a *tangle* in B. Two tangles t_1 , t_2 are *equivalent* and denoted by $t_1 \cong t_2$, if there is an orientation-preserving auto-homeomorphism of B sending t_1 to t_2 setwise. A tangle t is *simple*, if t is prime and B-t has no incompressible imbedded torus. Note that t is prime iff the double covering space $B(t)_2$ of B branched along t is irreducible and not homeomorphic to a solid torus (cf. Lickorish [LI]). We use the following three lemmas:

LEMMA 2.1. Let $t=a_1 \cup a_2$ be a prime tangle in B. Assume that there is a disk D in B with $a_1 \subset \partial D$ and $\operatorname{cl}(\partial D - a_1) \subset \partial B$ such that a_2 and $\operatorname{Int} D$ intersect transversally in a single point and $\pi_1(B-D \cup a_2)$ is free. Then t is simple.

LEMMA 2.2. Let a tangle $t \subset B$ be a sum of a trivial tangle $t_0 \subset B_0$ and a prime tangle $t_1 \subset B_1$ along a disk $D^* = (\partial B_0) \cap (\partial B_1)$ such that $D^* - t_0 \cap D^*$ is incompressible in $B_0 - t_0$. Then t is simple if and only if t_1 is simple.

LEMMA 2.3. A knot is simple if it is a sum of two simple tangles.

PROOF of LEMMA 2.1. The proof is implicitly contained in [SO]. Suppose that there is an incompressible torus T in B-t. T splits B into two parts E_1 , E_2 with $\partial E_1 = T$, $\partial E_2 = T \cup \partial B$. Note that $t \subset E_2$. T intersects D, since otherwise, we would have a monomorphims $\pi_1(T) = Z \times Z \rightarrow \pi_1(B-D \cup a_2) = a$ free group, which is impossible. Let $D_0 = D - D \cap a_2$. Since D_0 is incompressible in B-t, we can assume that $D \cap T$ consists of essential loops in both T and D_0 . Let ℓ be a loop in $D \cap T$, innermost in D. Let D' be the disk in D bounded by ℓ . Note that $a_2 \cap D \subset D' \subset E_2$. Let N(D') be a collar of D' in E_2 such that $a'_2 = a_2 \cap N(D')$ is a proper unknotted arc in N(D'). Then a'_2 is unknotted in the 3-ball $E_1 \cup N(D')$, for otherwise a_2 and hence $t = a_1 \cup a_2$ has a local knot, contradicting the primeness of t. So, E_1 is a solid torus which contradicts the incompressibility of T in B-t. The proof is completed.

PROOF of LEMMA 2.2. The "if part" is proved in [SO]. To see the "only

if" part, we take a torus T in $B_1 - t_1$. Since B - t is simple, T is compressible in B - t. Let D be a compressible disk. Using that $D^* - t_0 \cap D^* = D^* - t_1 \cap D^*$ is incompressible in both $B_0 - t_0$ and $B_1 - t_1$, we can deform D (by an isotopy of B keeping $T \cup t$ fixed) so that $D \subset B_1 - t_1$. Thus, T is compressible in $B_1 - t_1$ and t_1 is simple, completing the proof.

LEMMA 2.3 is proved in [SO].

PROOF of THEOREM II for $n \ge 4$. Denote by $t(-b; p_1, ..., p_m)$ the tangle illustrated in Fig. 6(a), where the p_i 's are non-zero, non-unit integers and odd except for some one. We shall show that $t(0; p_1, ..., p_m)$ is simple for $m \ge 2$. The proof will be then completed by LEMMA 2.3, because for $n \ge 4$ $k(-b; p_1, p_2, ..., p_n)$ is a sum of the tangles $t(0; p_1, ..., p_{n-2})$ and $t(-b; p_{n-1}, p_n)$, and $t(-b; p_{n-1}, p_n) \ge t(0; p_{n-1}, p_n)$. The tangle $t = t(0; p_1, ..., p_m)$ $(m \ge 2)$ is prime, since $B(t)_2$ is a bounded Seifert-manifold with non-abelian fundamental group that is irreducible and not homeomorphic to $S^1 \times B^2$. Note that t is a sum of the trivial tangles $t(0; p_1), ..., t(0; p_m)$. By Lemma 2.1, t(0; 2, p) with p odd is simple (cf. Fig. 6(b)). Now we apply Lemma 2.2 to each arrow of the following sequence: t(0; 2, p) with p odd $\to t(0; 2, p, p')$ with p, p' odd $\to t(0; p, p', p'')$ with p, p' odd and p'' even $\to t(0; p', p'')$ with p' odd and p'' even. Since $t(0; p_1, p_2) \to t(0; p_2, p_1)$, it follows that $t(0; p_1, p_2)$ is always simple. For $m \ge 3$ we further apply Lemma 2.2 to each arrow of the following sequence: $t(0; p_1, p_2) \to t(0; p_1, p_2, p_3) \to \cdots \to t(0; p_1, p_2, ..., p_m)$. The proof is completed.

Fig. 6

- 3. **Proof of Theorem III.** Let $k_{p,q}$ be a torus knot of type (p, q), where we can assume up to equivalence that p is odd>1, $q \ne 0$ and (p, q) = 1. Then $k_{p,q}$ is a trivial knot iff $q = \pm 1$. For q > 1, $S^3(k_{p,q})_2$ is so-called the Brieskorn manifold M(p, q, 2), which is a Seifert manifold with an invariant given as follows (cf. [N/R, Theorems 1.1, 2.1]):
- (1) (d; (p, p'), (q, q'), (2, r')), where q is odd, |p'| < p/2, (p, p') = 1, |q'| < q/2, (q, q') = 1, |r'| = 1 and d + p'/p + q'/q + r'/2 = 1/2pq, or
- (2) (d; (p, p'), (p, p'), (q', q'')), where q is even, q = 2q', |p'| < p/2, (p, p') = 1, $|q''| \le q'/2, (q', q'') = 1$ and d + 2p'/p + q''/q' = 1/pq'.

Note that for q > 1, $\pi_1(S^3(k_{p,q})_2)$ is abelian iff q = 2. Since $k_{p,2} \cong k(p; -)$, we see from Schubert's classification of 2-bridge knots the following lemma:

LEMMA 3.1. For $k=k(-b; p_1,..., p_n)$ with $n \le 2$ and $k_{p,q}$ with p odd>1 and $q \ne 0$, the following are equivalent:

- (1) $k \cong k_{p,q}$,
- (2) $S^3(k)_2 \cong S^3(k_{p,q})_2$ by an orientation-preserving homeomorphim,
- (3) $k \cong k_{p,q}$ where $q = \pm 1, \pm 2$,
- (4) $k \cong k(p^*; -)$ for some odd p^* .

LEMMA 3.2. For $k = k(-b; p_1,..., p_n)$ with $n \ge 3$ and $k_{p,q}$ with p odd > 1 and $q \ne 0$, there is an orientation-preserving homeomorphism $S^3(k)_2 \cong S^3(k_{p,q})_2$ if and only if one of the following cases occurs $(\varepsilon = \varepsilon(q))$:

- (1) $k \cong k(0; 3\varepsilon, 5\varepsilon, -2\varepsilon), k_{p,q} \cong k_{3,5\varepsilon}$
- (2) $k \cong k(0; -3\varepsilon, -7\varepsilon, 2\varepsilon), k \cong k_{3,7\varepsilon}$
- (3) $k \cong k(-\varepsilon; -3\varepsilon, -3\varepsilon, -4\varepsilon), k_{p,q} \cong k_{3,8\varepsilon}$
- (4) $k \cong k(0; -(2a+1)\varepsilon, -(2a+1)\varepsilon, a\varepsilon), k_{p,q} \cong k_{|2a+1|,2|a|\varepsilon}$ for an integer a with $|a| \ge 2$.

PROOF. It suffices to give the proof for q>0 (i.e., $\varepsilon=1$) by reversing, if necessary, the orientation of S^3 . Using that $\pi_1(S^3(k)_2)$ is non-abelian, we see that $q \ge 3$. If $S^3(k)_2 \cong S^3(k_{p,q})_2$, then there is a fiber-preserving homeomorphism $S^3(k)_2 \cong S^3(k_{p,q})_2$ as Seifert manifolds (cf. the proof of Lemma 1.2). First, let q be odd. Then we may have that n=3, $1/p_1=p'/p$, $1/p_2=q'/q$, $1/p_3=r'/2$ and b=d, so that |p'|=|q'|=|r'|=1. The inequality $|2d+r'|pq \le 2p+2q+1$ is obtained from the identity 2pqd+2p'q+2pq'+r'pq=1. So, |2d+r'|=1 and $(p-2)(q-2) \le 5$. Taking a minimal presentation of k, we have b=d=0. Assuming p < q, we have (p, q) = (3, 5) or (3, 7). If (p, q) = (3, 5), then p' = (3, 5)q'=1, r'=-1, and $k \cong k(0; 3, 5, -2)$. If (p, q)=(3, 7), then p'=q'=-1, r'=1, and $k \cong k(0; -3, -7, 2)$. Next, let q be even. Then we may have that n=3, $1/p_1=1/p_2=p'/p$, $1/p_3=q''/q'$ and b=d, so that |p'|=|q''|=1. Note that pis odd ≥ 3 and $q' \geq 2$. The inequality $0 < (p-2)(q'-1) \leq 3 - (|d|-1)pq'$ is obtained from the identity pq'd+2p'q'+pq''=1. Then $|d| \le 1$. When |d|=1, (p-2). $(q'-1) \le 3$, i.e., (p, q') = (3, 2), (3, 4) or (5, 2). If q'=2, then $|d+q''/2| \le 1/2p +$ 2/p = 5/2p < 1. By taking a minimal presentation of k, we can reduce this case to the case b=d=0. If (p, q')=(3, 4), then (p, q)=(3, 8), d=1, p'=q''=-1, and $k \cong k(-1; -3, -3, -4)$. Assume that b = d = 0. Then 2p'q' + pq'' = 1. Since p, q' > 0, we have p' = -q'' and 2q''q' + pp' = -1. Let a = q''q'. Then $k \cong$ k(0; -(2a+1), -(2a+1), a) and $k_{p,q} \cong k_{|2a+1|, 2|a|}$ and $|a| \ge 2$. The converse is clear. This completes the proof.

PROOF of THEOREM III. For $n \le 2$, it is due to LEMMA 3.1. Let $n \ge 3$. From the Introduction and LEMMA 3.2, it suffices to prove that $k(0; -3\varepsilon, -7\varepsilon, 2\varepsilon)$ $\not\cong k_{3,7\varepsilon}$, $k(-\varepsilon; -3\varepsilon, -3\varepsilon, -4\varepsilon) \not\cong k_{3,8\varepsilon}$, $k(0; -(2a+1)\varepsilon, -(2a+1)\varepsilon, a\varepsilon) \not\cong k_{|2a+1|,2|a|\varepsilon}$ for a=2 or $|a| \ge 3$. To do this, we use the following classical lemma

(See Fox [F2, pp. 140-141] for a proof):

LEMMA 3.3 Let γ be the crossing number of a knot diagram of a non-trivial knot, and δ , the degree of the Alexander polynomial. Then $\gamma > \delta$.

Note that $\delta(k_{p,q}) = (|p|-1)(|q|-1)$ and $\gamma(k(-b; p_1,..., p_n)) = |b| + \sum_{i=1}^{n} |p_i|$. Then the above non-equivalences are easily proved. This completes the proof.

References

- [B] C. M. Boileau: Groupe des symétries des noeuds de bretzel et de Montesions (preprint).
 [B/M] G. Burde and K. Murasugi: Links and Seifert fiber spaces, Duke Math. J., 37 (1970), 89-93.
- [C/M] H. S. M. Coxeter and W. O. J. Moser: Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag (1957).
- [C/R] P. E. Conner and F. Raymond: Deforming homotopy equivalences to homemorphisms in aspherical manifolds, Bull. Amer. Math. Soc., 83 (1977), 36-85.
- [F1] R. H. Fox: On Fenchel's conjecture about F-groups, Mat. Tidsskr. B (1952), 61-65.
- [F2] R. H. Fox: A quick trip through knot theory, Topology of 3-Manifolds and Related Topics, Prentice-Hall (1962), 120–167.
- [H] J. Hempel: 3-Manifolds, Ann. of Math. Studies, 86, Princeton University Press (1976).
- [J] W. Jaco: Lectures on Three-Manifold Topology, Conference Board of Math. Science, Regional Conference Series in Math. 43 (1980).
- [K/K/S] A. Kawauchi, T. Kobayashi and M. Sakuma: On 3-manifolds with no periodic maps, Japan. J. Math. 10 (1984), 185-193
- [LE] J. Lehner: A Short Course in Automorphic Functions, Athena Series, Holt, Reinhart and Winston (1966).
- [LI] W. B. R. Lickorish: Prime knots and tangles, Trans. Amer. Math. Soc., 267 (1981),
- [MA] W. Magnus: Noneuclidean Tesselations and Their Groups, Pure and Applied Mathematics, 61, Academic Press (1974).
- [MO] J. Montesions: Variedades de Seifert que son recubridores cicliocs ramificados de dos hajas, Bol. Soc. Mat. Mexicana, 18 (1973), 1-32.
- [N/R] W. D. Neumann and F. Raymond: Seifert manifolds, plumbing, μ -invariant and orientation reversing maps, Lecture Notes in Math., 664, Springer-Verlag (1977), 163–196.
- [O/V/Z] P. Orlik, E. Vogt and H. Zieschang: Zur topologie gefaserter dreidimensionaler Manigfaltigkeiten, Topology 6 (1967), 49-64.
- [P] R. L. Parris: Pretzel knots, Thesis, Princeton University (1978).
- [R] K. Reidemeister: Knotentheorie, Ergeber. Math., 1 (1932).
- [SC1] H. Schubert: Über eine Numerische Knoteninvariante, Math. Z., 61 (1954), 245-288.
- [SC2] H. Schubert: Knoten mit zwei Brücken, Math. Z., 65 (1956), 133-170.
- [SE] H. Seifert: Topology of 3-dimensional fibered spaces, Pure and Applied Mathematics, 89, Academic Press (1980), 360-423.
- [SO] T. Soma: Simple links and tangles, Tokyo J. Math., 6 (1983), 65-73.
- [TH] W. Thurston: Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381.
- [TR] H. F. Trotter: Non-invertible knots exist, Topology 2 (1964), 275-284.

Akio KAWAUCHI

22

Department of Mathematics Osaka City University Sugimoto-cho, Sumiyoshi-ku Osaka, Japan.