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A pretzel knot is a knot given by a knot diagram consisting of a row of
2-strand braids. Fig. 1 shows a pretzel knot with a row of braids of ¢q,-, ¢,-,...,
q,-half twists, which we denote by k(q,, 45,..., 4,,)- We assume that ¢;#0,
i=1,2,...,m. Letgq;, q;,. q;(j1<j2<--<j,) be the non-unit integers in the
q;'s. Let pi=gq;, i=1,2,..,n. Let b=3" q,—3 %, p; By turning, if
necessary, the braids of p;-half twists, we can deform k(q,, 45,..., 4,,) into a knot
with diagram, illustrated in Fig. 2, which we denote by k(—b; py, P2>-.-> Pu)-
Since it is a knot, only the following two cases occur:

(1) All of the p;’s and n+ b are odd and n>0,
(2) Exact one of the p;’s is even and b is arbitrary and n>1.
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We,say that k(—b; py, pas-.., pa) is 0dd (or even, resp.) if it is in the case (1)
(or (2), resp.). Two oriented knots k, k' are equivalent and denoted by k=~k’,
if there is an orientation-preserving auto-homeomorphism of S3 sending k to k'
~ orientation-preservingly. We orient k(—b; py, p,,..., p,) by the orientation in-
dicated in Fig. 2. When (p;, p3,..., p,) is a cyclic translation of (py, Ps,--.» Pu)»
we write (P, P3---» P2)=(Py, Pgse--» o). Then we have easily k(—b; p}, ph,...,
P =k(—b; py, pas-.., po). The inverse, the reflection and the reflected inverse
of k(—b; py, ps,..., p,) are equivalent to k(—b; p,,..., P2, P1)>» k(b;—pi,
—D2,..., —p,) and k(b; —p,,..., —p,, —p,), respectively. For even pretzel
knots, one can show that k(—b; p,,..., P2, P)=k(—b; py, P2»-.., pn)- Fig. 3

Fig. 2
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also shows that k(—b; Pir-es Piseers P ZK(—=b"; P1seevs Phsevvs Pn) if for some i,
|pd=1pil=2 and &(p,) (b’ —b)=e(p}) (b—b")=1, where &(p)=p/|lp|. Then accord-
ing to if |b|<|b’| or |b'|<|b|, k(= b3 P1s---s Piseeos py) or k(—=b'; pys...s Piserer Pu)
is said to have a minimal presentation. Unless otherwise stated, only pretzel
knots with minimal presentations will be considered for pretzel knots with
braids of +2-half twists. We define the Euler number e (k)(#0) and for n<2
the character ¢ (k)(#0) of k=k(—b; py, P2s---» Pn) bY

e(k)=b+ ¥, 1/p;, and
c(k) = — 1je(k)(if n<1) or (bp;+1)/p;pse (k) (if n=2).

Non-zero rational numbers x, x' are equivalent and denoted by x=x’, if
the irreducible fractions g/p, q'/p’ (p, p'>0) of x, x' have p=p’ and qgfl=q’
(mod p). A knot k is simple if the exterior E(k)=S3-Int N(k), N(k) being the
regular neighborhood of k, has no incompressible imbedded torus that is not
boundary-parallel (cf. [J]). In this note, we shall prove the following three
theorems:

THEOREM I. The pretzel knots k=k(—b; pi, Pas---> Pu) and k'=k(—b';
P\, Da»e-e» Do) are equivalent if and only if one of the following cases occurs:
(1) Both n and n’ are <2 and c(ky=c(k’),
(2) Both k and k' are odd, n=n'>3, b=>b and (P}, P> Pn) =(P1s P2seees Pu)s
(3) Both k and k' are even, n=n'>3, b=>b" and (P}, Ps---s D) Z(P1s P2s-++> Pn)
or (pm'--’ P2 pl)'

THEOREM II. Every pretzel knot is simple.

THeOREM I1I. A pretzel knot is equivalent to a torus knot if and only if
it is equivalent to k(—p; —) for some odd p, k(0; 3¢, 3¢, —2¢) or k(0; 3¢, 3¢,
—2¢), e=*1.

It is directly checked that k(pe; —)(p>0), k(0; 3¢, 3¢, —2¢) or k(0; 3¢, 5e, —2¢)
are equivalent to the torus knots of type (p, 2¢), (3, 4¢) and (3, 5¢), respectively,
€ = + 1(cf. Fig. 4).
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To obtain THeOREM III, we shall also determine the pretzel knots whose
branched double covering spaces are homeomorphic to those of torus knots.
Note that a knot is a torus knot iff the exterior is a Seifert manifold (cf. Burde/
Murasugi [B/M]). Then according to Thurston [TH], the pretzel knot exterior
is a hyperbolic manifold except the torus knots of THEOREM III. THEOREM I is
obtained by adding several remarks to Parris’s arguments in [P], but for the sakes
of convenience and clarity, we shall give here a full proof. After having done
this work, the author learned from Boileau [B] that Bonahon/Boileau/Siebenmann
have obtained similar results® for the Montesions knots (and links) containing
the pretzel knots, by using different methods. Some results of this note will be
used in [K/K/S]. Spaces and maps will be considered in the piecewise-linear
category.

1. Proof of Theorem I. Let k=k(—b; py, ps,..., p,) and G=m,(S3—k).
Following Reidemeister [R], Trotter [TR] and [P], we consider the quotient
G,=G[{m?=1), where m is a meridian element of k. Letx,, x,,..., X,, r=n+1b|,
be the meridian elements of k about the maximal points in Fig. 2, in the direction
from the bottom to the top. We have

G* = (xls X2seeey xrlx% = x% =ee= x? =1,

(X1 x)Pt = o= (X, X1 )P* = (X4 1 X4 2)° == (%,X)?),

where e=e(b) (if b#0). (When b=0, we understand that x,,,=x,; and the
relation (x,41X,4,)*="---=(x,x,)* does not appear.) Let C be the cyclic sub-
group of G, generated by (x;x,)P1=---=(x,x,)®%. Since C is normal in G,, we
can consider the quotient G4, =G,/C. We have

*) H, Zieschang has also obtained them.
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Goag = (X1s X2y0ees XplXF =x3 =00 = x% = (X4 X)Pt = 0o = (X, %) = 1).

Note that H(G4: Z)=H(Gyy: Z)=Z,. Let QG,, QGy, be the commutator
(index 2) subgroups of G, Gy, respectively. Writing a;=X;X;\, a,=XXy,
we have

0G, =(ay, ay,..., qla}* = ap =-=aj" = @44y == a;, A,y "0, = 1),
0G,x =(ay, a3,..., a,la}' = af2 =---=ajn = a,a-+a, = 1).

Clearly, G, and QG, are invariants of k. Similarly, Gi, Gy, QG and QG
are defined for G'=m,(S3—k’') with k'=k(—b"; pi, P2ss D7)

LemMA 1.1. Ifk=Kk’, then nand n’ are <2 or >3 at the same time.

ProoF. For n<2, QG, is abelian (cyclic). We show that QG, is non-
abelian for n>3. It suffices to show that QG,, is non-abelian for n>3. Ac-
cording to if ¥7_, 1/|p] is >n—2 (then, n=3), =n—2 or <n—2, we can con-
struct an n-sided convex polygon P=(v,v,-:+v,) in the spherical, Euclidean or
hyperbolic plane (S, E? or H?) so that the interior angle at the vertex v; is n/|pil
and for the geodesics £,, ¢,,..., £, determined by the edges v,vy, V1V35. 05 Uy 1V
¢in€;#¢ iff j=i+1 (modn). Then Gy, is a discrete group of isometries of
S2, E2 or H? such that the generators X, X,..., X, correspond to the reflections in
4y, €3,...y €, (see Coxeter/Moser [C/M], Magnus [M]). Suppose that 3>/, 1/
|pl<n—2. Then G, and hence QG are infinite groups. Since H,(QGy4; Z)
is finite, QG is non-abelian. Suppose that 3.7, 1/|p)|>n—2. Then n=3 and
{Ipsls |Pal, IPal} =42, 3, 3} or (2, 3,5}. For example, by Fox [F1] the natural
map QG.s— H(QG,4; Z) has a non-trivial kernel, implying that QG is non-
abelian. Similarly, QG is abelian or non-abelian according to if n'<2 or >3.
The result follows.

For n<2, k is a 2-bridge knot. Let (a, ) be a normal form of k due to
Suhubert [SC2]. Then c(k)=f/a. In fact, Fig. 5 shows that for n=2 and
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b#0, Bla=1/(ps+1/(b+1/p,))=(p,b+1)/p,p,e(k) and for n=1 and b#0,
Bla=1/(p,+1/b)=b/(p;b+ 1)~ —p,/(p,b+1)=—1/e(k). The other case (n=0
or b=0) is easier checked.

ProoF of THEOREM I for n<2. By Lemma 1.1, n’<2. Schubert’s classifi-
cation of 2-bridge knots [SC2] and the above remark imply that k=~ k’ iff ¢ (k)=
c(k’), completing the proof.

To conclude the proof of THEOREM I, it suffices to show the “only if”’ part,
assuming that n, n’ >3, since-the “if*’ part was observed in the Introduction.

LEmMMA 1.2. If k=k’ and n, n’' >3, then n=n', b=>" and {p,, pss-.., Pu} =
{pP%, D%---» Pu}. In particular, e(k)=e(k’) and k, k' are odd or even at the
same time.

Proor. The double covering spaces S3(k),, S3(k’), of S3 branched along
k, k' are Seifert manifolds over S? with invariants (b; (py, 1), (p3, 1),..., (s, 1),
'; (p1, 1), (p5, 1),..., (P, 1)), respectively (cf. Montesions [MO]). Note that
there is an orientation-preserving homeomorphism h: S3(k), =S3(k’),. If
n,(S3(k),) is infinite, then by Orlik/Voget/Zieschang [O/V/Z] or Conner/
Raymond [C/R] h is homotopic to a fiber-preserving homeomorphism. By
Neumann/Raymond [N/R, Theorem 1.1] (where we understand (p;, 1) as (|p,],
&(py) and b as (1, b)), we have n=n’', p,=p; and b=1>’, noting our assumption on
minimal presentations and changing the indices of p,, p,,..., p,, if necessary.
Assume that 7,(S3(k),) is finite. Since 7,(S3(k),)=0QG,, QG is finite. So,
n=3 and {|p,l, Ipsl, |psl}=1{2, 3, 3} or {2, 3, 5} (cf. the proof of LEMMA 1.1).
Similarly, n’=3 and {|pil, |p5l, |p3l} =42, 3, 3} or {2, 3,5}. By Seifert [SE],
the orders of H,(S%k),; Z), H((S*k'),; Z) are |pip,pse(k)l, |pip>pse(K')l,
respectively. Since they are equal, it follows that (b', p}, p3, p3)=(be, p,e,
P26, psg) for e= + 1, noting our assumption on minimal presentations and changing
the indices of py, p,, ps, if necessary. If e=—1 occurs, then S3(k), admits an
orientation-reversing auto-homeomorphism. But, [N/R, Theorem 8.2] shows that
S3(k), never does, for H,(S3(k),; 0)=0. Thus, e=1. This completes the proof.

PRrOOF of the “only if** part of THEOREM I for n>3. When n=3 and k is
odd with (py, p,, p3)=(ps, P2, p1) OF even, then the result follows from LEMMA 1.2,
since {py, P2, Ps}={p}, P2, p3} implies (p}, p3, P)=(p1> P2s P3) OF (D3, P2 Py)-
So, assume that n=3 and k is odd with (p,, p,, p3)Z(ps, P2, p;) or n=>4. Then
>ry 1/Ipil<n—2 and G,, is a discrete group of isometries of H? as in the proof
of LeMMA 1.1.  Note that £;n £;=¢ iff x,x; is of infinite order in G4 QG4 is
a discrete group of orientation-preserving isometries of H? and it is well-known
(easily proved) that the center of QG is trivial. Since C < (the center of QG,)
and QG,/C=G,,, we see that C is equal to the center of QG,. It follows that
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Gux=G,/C is an invariant of k. Assume that k'=~k. Then by LEMMA 1.2,
n'=n and b’=>b. We have an isomorphism Gy =(x], X3,..., Xp|x’=x5=--.=
X r=(xyx)Pi=-=(x;x)?r=1)=G,,. Identify x; with the isomorphic image
of it. Since x}, x5,..., x,, are mutually conjugates in Gy,G,,, we see that
X}, X5,..., X, act on H? orientation-reversingly, so that xi, x5,..., x; are reflec-
tions in some geodesics 41, ¢5,..., £,. Noting that xj, x5,..., x, are mutually
distinct and xjx’; is of infinite order unless j=i+1 (mod n), we see that £,
£5,..., ¢, are mutually distinct and 4;n£;=¢ unless j=i+1 (modn). Since
(xixy)pPi=---=(x,x)P.=1, we see that ¢; and ¢;,; meet at a point v;, i=
1, 2,....,n(€y4;=4£7). The £;’s and the v;’s determine an n-sided convex polygon
P’. Since the interior angle of P’ at v} is a multiple of =n/|p;| and by LEMMA 1.2
{P%s Phoeees Put ={P1s D2>---» Pn}, it follows that (the total curvature of P)<
S r_, (n—mn/|p;|)={(the total curvature of P). Let D, D’ be the finite regions in H?
bounded by P, P’, respectively. By the Gauss/Bonnet theorem, (the area of D) <
(the area of D). Since D is a fundamental region of G, and D’ is a union of
isometric copies of D, it follows that D’ is an isometric copy of D, that is, tD'=D
for some t€ Gy, Write txjt™'=x;, i=1,2,...,n. We have (j,jyssJu) =
1, 2,...,n)or (n,..., 2, 1). By composing the isomorphism G, = G, to the inner
automorphism induced by ¢!, we consider that x;=x;, i=1,2,...,n. If kis
even, we can assume by using an equivalence k(—b; py, pas..., p)=k(—b;
Dus--+» P2> P1) that (G, jasers j)=(1, 2,..., n). The following two lemmas will
complete the proof :

LemMAa 1.3, If k is odd, then we have necessarily (j, ja,..-» ju =(1, 2,..., n).

LEMMA 14, If (g jareos i) =(1, 2,cin),  then (P, Pyees PL)E
(pla D2s--s pn)

Proor of LeMMa 1.3. Suppose (jy, jar---> Ju) (1, 2,..., n). Then (jy, ja,---»
Jjn=M,..., 2, 1). By changing the indices of p;, x;, cyclically, we can assume that
X;=Xp4,—;and |pil=|pus -, i=1, 2,..., n(x,+1=x;). Let L, L' be the longitude
elements of k, k" in Gy, Glx, Tespectively. The equivalence k'~ k means that
uL'u~'=L for some u € G,,. We can write L, L’ as follows ([TR], [P]):

L = [(x;x5)"91(x,x3) %2+ (x,%) 9" ]3,
L' = [y i(xgx) - (xpx ) 407,

where d;=(pl — 1)/2=(pr+1-id —D/2=dp11-p i=1,2,...,n. Then we find we
Gy such that wLw—1=L"1. We show that there are no such elements in G,,.
This is due to [TR, p. 279], but we give the proof. Note that L is a translation
algong ¢, through a distance equal to twice the perimeter of P in the direction
from v, to v, (cf. [TR], [P]). Regard L as a real Md&bius transformation acting
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on the Riemann sphere C U {c0} and H? as the upper half plane. Since L is of
infinite order and fixes the geodesic ¢, setwise, L must be a hyperbolic element
(see Lehner [LE, p. 8]). By applying a real Mobius transformation, we can as-
sume that the fixed points of L are 0 and oo, so that there is a constant r >0 with
L(z)=rz for all ze H? and ¢, is the y-axis within H2. First assume w2#1.
Using that w2Lw~2=L, we see that the fixed points of w? are 0 and oo (cf. [LE,
p.91) and hence there is a constant »'>0 such that w?(z)=r'z for all ze H2
Then w(z)=,/r'z or —./r'Z(Z=the complex conjugation of z) for all ze H?,
according to if w is orientation-preserving or -reversing. [To see this, note that
w(z) can be written as (az+b)/(cz+d) or —(aZ+b)/(cz+d) for real a, b, c, d
with ad —bc=1, according to if w is orientation-preserving or -reversing.] We
have wLw'=L#L"!, a contradiction. Thus, w?=1. Since p;, Pzs.--» Pn
are odd, w must be orientation-reversing. We can write w(z)= —(aZ+ b)/(cZ+a)
for real a, b, ¢ with a2—bc=1. Using that (wL)?=1, L(z)=rz and r#1, we have
a=0 and w(z)=>b?%/z. This implies that w is a reflection in the geodesic S*=
{ze C||z|=|b|, Imz>0}. Since S* meets ¢, orthogonally, at most one of the
pis must be even, which is a contradiction. This completes the proof.

PrOOF of LEMMA 1.4. The proof is essentially due to [P]. By changing the
indices of p;, and x;, cyclically, we can assume that x;=x; in G, and |pj|=
|pil, i=1, 2,..., n. For a generator g of C, we have
(1) xj=xgm=g™x,i=1,2,..,n,

(@ (xixp)Pi=(xpx3)Pi=" = (x,Xx1g7**)Pr =g e= %1,

(3 (xyx2)P =(x3)P2 ="+ =(x,%,9"0)Pn=¢g

in G,. Note that QG, is torsion-free [PROOF. G, =7,(S3(k),) and S3(k), is a
Seifert Z,-homology 3-sphere (cf. the proof of LemMa 1.2). By [SE], S3(k), is
irreducible. By the sphere theorem S3(k), is aspherical, for QG, is infinite. So,
Q0G, is torsion-free (cf. Hempel [H])]. Thus, C is infinite cyclic, because C is
non-trivial in QG,. We assume that [pj|, i=1, 2,...,n—1, are odd (=3) and
|pal=>2. Using that C is the center of QG,, we see that

g° = (x1x2)Pi = (g7mx1x,g™)Pi=(xX,)Pi gpilma—m)

If pi=¢;p:, &,==1, then e=¢, +pj(m,—m,). For |pij|>3, we have e=¢,
and m;=m,. Similarly, we have p;=¢p, fori=1,2,...,n—1,and m;=m,=..-=
m,. Note that

ne

(x"'x'l)P,’, — gebp,’,+e and (x"xl)pn = gbp..+1.

If p,=¢,pn, €,=*1, then eg,p,b+e=¢,p,b+e, For |pl>2, g,=e. In con-
clusion, we have p;=ep; i=1,2,...,n, and b=eb. Suppose eé=—1. Then
b=0and p;=—p; i=1,2,...,n. If kis odd, then e(k)= —e(k’)#0. By LEMMA
1.2, e(k)=e(k’), a contradiction. If k is even, then p, and p, are the unique
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non-zero even numbers in the p,’s and the pj’s, respectively. By LEMMA 1.2,
P,=P,, a contradiction. Therefore, e=1. This completes the proof.

2. Proof of Theorem II.

ProoF of THEOREM II for n<3. When n<3, the bridge index of k is <3.
If k is not simple (i.e., k has a non-trivial companion), then by Schubert [SC, 1]
k must be the sum of two non-trivial 2-bridge knots, so that S3(k), is not ir-
reducible. But, it is a Seifert Z,-homology 3-sphere and by [SE] irreducible,
which is a contradiction. This completes the proof.

For n>4 we shall use a concept of simple tangles by Soma [SO]. Let
a,, a, be disjoint arcs properly imbedded in a 3-ball B. The union t=a,Ua,
is called a tangle in B. Two tangles ¢,, t, are equivalent and denoted by ¢, =1,,
if there is an orientation-preserving auto-homeomorphism of B sending ¢; to 1,
setwise. A tangle t is simple, if ¢ is prime and B—t has no incompressible
imbedded torus. Note that ¢t is prime iff the doulbe covering space B(t), of B
branched along ¢ is irreducible and not homeomorphic to a solid torus (cf.
Lickorish [LI]). We use the following three lemmas:

LemMMA 2.1. Let t=a, Ua, be a prime tangle in B. Assume that there is
a disk D in B with a, =éD and ¢l (0D —a,)<0B such that a, and Int D intersect
transversally in a single point and n,(B—D U a,) is free. Then t is simple.

LEMMA 2.2. Let a tangle t<B be a sum of a trivial tangle t,<B, and a
prime tangle t, =B, along a disk D*=(0B,) N(0B,) such that D*—t,nD* is
incompressible in By—t,. Then t is simple if and only if t, is simple.

LeEMMA 2.3. A knot is simple if it is a sum of two simple tangles.

ProoF of LEMMA 2.1. The proof is implicitly contained in [SO]. Suppose
that there is an incompressible torus Tin B—t. T splits B into two parts E, E,
with 0E, =T, 0E,=TU 0B. Note that tcE,. T intersects D, since otherwise,
we would have a monomorphims 7,(T)=Z x Z—n,(B—D U a,)=a free group,
which is impossible. Let Dg=D—D na,. Since D, is incompressible in B—t,
we can assume that D n T consists of essential loops in both T and D,. Let ¢
be aloopin D n 7, innermost in D. Let D’ be the disk in D bounded by £. Note
that a,nDcD'<E,. Let N(D') be a collar of D’ in E, such that ay=a,n
N(D’) is a proper unknotted arc in N(D'). Then a; is unknotted in the 3-ball
E, U N(D), for otherwise a, and hence t=a, U a, has a local knot, contradicting
the primeness of ¢. So, E, is a solid torus which contradicts the incom-
pressibility of Tin B—t. The proof is completed.

PrOOF of LEMMA 2.2. The “if part’ is proved in [SO]. To see the “only
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if** part, we take a torus T'in B;—t,. Since B—t is simple, T is compressible in
B—t. Let D be a compressible disk. Using that D¥—t,nD*=D*—t, nD*
is incompressible in both B;—1t, and B, —1t,, we can deform D (by an isotopy of
B keeping TU t fixed) so that D= B, —t,. Thus, Tis compressible in B, —t,; and
t, is simple, completing the proof.

LEmMMA 2.3 is proved in [SO].

ProOF of THEOREM II for n>4. Denote by #(—b; py,..., p,,) the tangle
illustrated in Fig. 6(a), where the p;s are non-zero, non-unit integers and odd
except for some one. We shall show that #(0; p,,..., p,,) is simple for m>2. The
proof will be then completed by LEMMA 2.3, because for n>4 k(—b; py, P2y-..s Pp)
is a sum of the tangles #0; p,,..., p,—,)and {(—b; p,_,, p,),and t(—b; p,_, P,) =
#(0; p,—y, py)- The tangle t=10; p,,..., p,) (m>2) is prime, since B(f), is a
bounded Seifert-manifold with non-abelian fundamental group that is irreducible
and not homeomorphic to S!' x B2. Note that 7 is a sum of the trivial tangles
1(0; py)s--., 1(0; p,). By LEmMMA 2.1, #(0; 2, p) with p odd is simple (cf. Fig. 6(b)).
Now we apply LEMMA 2.2 to each arrow of the following sequence: #(0; 2, p) with
p odd—#0; 2, p, p’) with p, p" odd—1(0; p, p’) with p, p’ odd—#0; p, p’, p")
with p, p’ odd and p” even—(0; p’, p") with p’ odd and p” even. Since 1(0; p,, p,)
=10; p,, p,), it follows that #0; p,, p,) is always simple. For m>3 we further
apply LEMMA 2.2 to each arrow of the following sequence: #(0; p,, p;)—
t(0; py, P2y P3)—++—=10; py, P2s-..y Pm)- The proof is completed.

P [] Pm| :=b:
(a)

3. Proof of Theorem III. Let k, , be a torus knot of type (p. g), where we
can assume up to equivalence that p is odd>1, ¢#0 and (p, g)=1. Then k,,
is a trivial knot iff g=+1. For ¢>1,83(k, ), is so-called the Brieskorn manifold
M(p, g, 2), which is a Seifert manifold with an invariant given as follows (cf.
[N/R, Theorems 1.1, 2.1]):

Fig. 6 (b)

(1) (@;(p, '), (4, 4), (2, 1)), where g is odd, |p’|<p/2, (p, P')=1, |q'|<q/2,
(g, 9")=1,|r'|=1and d+p'[/p+q’/q+r'|2=1/2pq, or
(2 (@ (P (p, P); (q', 4"), where q is even, g=24", |p'|<p/2, (p, P)=1,
19"1<4/2,(q', 9")=1 and d+2p'/p+q"[q'=1]pq’.

Note that for g>1, n,(S3(k,,),) is abelian iff g=2. Since k, , =k(p; -), we
see from Schubert’s classification of 2-bridge knots the following lemma:
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LemMA 3.1. For k=k(—b; py,..., py) With n<2 and k,, with p odd>1
and q#0, the following are equivalent:
1) kzk,,
(2) S3(k),=S%k,,,), by an orientation-preserving homeomorphim,
(3) k=k,, whereq==%1, £2,
(4 k=k(p*; -) for some odd p*.

LeMMA 3.2. For k=k(—b; py,..., P,) with n>3 and k, , with p odd>1 and
g#0, there is an orientation-preserving homeomorphism S3(k), =S¥k, ), if
and only if one of the following cases occurs (e=¢(g)):

(1) k=k(0; 3¢, S5e, —2¢), k, ,=Kkj s,

Q) k=k(0; -3¢, —7¢, 2¢), k=k; 4,

(3) kz=k(—g; —3e, —3e, —4e), k, =k g,

4) k=k(0; —(2a+1)e, —(2a+1)e, ae), k, ;=K 254 1),21ac for an integer a with
la] =2.

ProoF. It suffices to give the proof for g>0 (i.e., e=1) by reversing, if
necessary, the orientation of S3. Using that n,(S3(k),) is non-abelian, we see
that ¢>3. If S3(k), = S%k,,,),, thenthere is a fiber-preserving homeomorphism
S3(k), = S3(k, ), as Seifert manifolds (cf. the proof of LEMMA 1.2). First, let g
be odd. Then we may have that n=3, 1/p,=p'/p, 1/p,=4q'lq, 1/p3=r'/2 and
b=d, so that |p/|=|g’|=|r'|=1. The inequality |2d+r'|pg<2p+2q+1 is
obtained from the identity 2pqd+2p'q+2pq’+r'pg=1. So, |2d+r'|=1 and
(p—2)(g—2)<S5. Taking a minimal presentation of k, we have b=d=0.
Assuming p<g, we have (p, 9)=(3,5) or (3,7). If (p, 9)=(3,5), then p'=
g'=1, r=—1, and k=k(0; 3,5, —2). If (p,q)=(@3,7), then p=q9'=-1,
r'=1, and k=k(0; —3, —7,2). Next, let ¢ be even. Then we may have that
n=3,1/p;=1/p,=p'|p, 1/p3=4q"/q' and b=d, so that |p’|=|q"|=1. Note that p
isodd>3and ¢’>2. Theinequality 0<(p—2)g'—1)<3—(|d|—1)pq’ is obtained
from the identity pq'd+2p'q’+pq”=1. Then |d|<1. When |d|=1, (p—2)
(¢ —1<3, ie, (p, 4)=(3,2), (3,4 or (5,2). If ¢'=2, then [d+q"/2|<1/2p+
2/p=5/2p<1. By taking a minimal presentation of k, we can reduce this case to
the case b=d=0. If (p, ¢')=(3, 4), then (p, ¢)=(3, 8), d=1, p'=q"=—1, and
kxk(—1; =3, —3, —4). Assume that b=d=0. Then 2p’q’+pq"=1. Since
p, ¢'>0, we have p'=—gq" and 29"q'+pp’=—1. Let a=q"q". Then k>
k(0; —(2a+1), —(a+1), a) and k, =k 254120 and |a|>2. The converse
is clear. This completes the proof.

ProoF of THeoreM III. For n<2, it is due to LemMa 3.1. Let n>3.
From the Introduction and LEMMa 3.2, it suffices to prove that k(0; — 3¢, —7e, 2¢)
#ky g  k(—&; —3e, — 3, —4e) £ ks 5., k(0; — (2a + )e, — (2a+1)e, ag) #
Kj24+11,21ac fOor a=2 or la|=3. To do this, we use the following classical lemma
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(See Fox [F2, pp. 140-141] for a proof):

LEMMA 3.3 Let y be the crossing number of a knot diagram of a non-trivial
knot, and §, the degree of the Alexander polynomial. Then y>4.

Note that (k,,))=(lpl —1)(Iq| —1) and p(k(=b; py,..., p))=|b|+ Zi=4|pil.
Then the above non-equivalences are easily proved. This completes the proof.
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