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ABSTRACT

We show that certain satellite knots of every strongly negative-amphicheiral
rational knot are rational-slice knots. This proof also shows that the 0-surgery
manifold of a certain strongly negative amphicheiral knot such as the figure-
eight knot bounds a compact oriented smooth 4-manifold homotopy equivalent
to the 2-sphere such that a second homology class of the 4-manifold is repre-
sented by a smoothly embedded 2-sphere if and only if the modulo two reduction
of it is zero.

1. Statement of Result

A knot K in the 3-sphere S3 is a slice knot if K bounds a smooth proper disk D in
the 4-disk B4 bounded by S3. In this paper, we generalize the concept of a slice knot
to a concept on a rational knot, i.e., a knot K in a rational-homology 3-sphere S (= a
smooth oriented 3-manifold with the rational-homology of S3). A rational (4, 2)-disk
pair is a (4, 2)-dimensional manifold pair (B,D) such that B is a rational 4-disk,
namely a compact smooth oriented 4-manifold with the rational-homology of the 4-
disk B4, and D is a smooth proper disk in B. The boundary pair (S,K) = (∂B, ∂D)
is a rational knot, which we call a weakly rational-slice knot. We need a more detailed
concept of a weakly rational-slice knot. To state it, we note that there is a natural
isomorphism

H2(S, S\K) → H2(B,B\D)

on infinite cyclic groups which can be seen by taking a relative tubular neighborhood
of (D,K) in (B,S) and then considering excision isomorphisms. We denote by bH∗(•)
the quotient group of the integral homology group H∗(•) by the torsion subgroup
tH∗(•). Then we see that the natural homomorphism

bH1(S\K) → bH1(B\D)

is a monomorphism on infinite cyclic groups. For an integer d = 1, the knot
(S,K) is a d-rational-slice knot if it bounds a rational (4, 2)-disk pair (B,D) such
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that the cokernel of the natural monomorphism bH1(S\K) → bH1(B\D) is iso-
morphic to Zd(= Z/dZ). Let o(K) denote the homological order of the element
[K] ∈ H1(S), where the zero element is understood to have the order 1. A rational-
slice knot is a 1-rational-slice knot (S,K) with o(K) = 1, meaning that the knot
(S,K) bounds a rational (4, 2)-disk pair (B,D) which induces a meridian-preserving
natural isomorphsim bH1(S\K) → bH1(B\D) on the infinite cyclic groups with
meridian generators. We see that any rational-slice knot (S,K) is an algebraic-slice
knot, that is, a knot with a null-cobordant Seifert matrix in the sense of J. Levine
[10]. In fact, we can construct a Seifert surface F for K in S since o(K) = 1 and
hence a compact smooth oriented 3-manifold A in B bounded by the closed surface
F ∪ (−D) by applying the Pontrjagin-Thom construction to the natural isomorphism
H1(B\D) ∼= H1(S\K) ∼= Z. The existence of this 3-manifold A means that K is
an algebraic-slice knot (cf.[9, Theorem 12.2.3]). Let O be a link with components Oi

(i = 1, 2, . . . , s) in the 3-sphere S3, We deform the link O into a link Õ = ∪s
i=1Õi in an

unknotted solid torus V ⊂ S3. There are infinitely many ways of constructing links
Õ ⊂ V from O. The link Õ in V is an m-satellite link and denoted by Õ(m) if m is the
greatest common divisor of the integers mi = 0 (i = 1, 2, . . . , s) such that the cokernel

of the natural homomorphism H1(Õi) → H1(V ) is isomorphic to Zmi
for every i. Let

V (K) be a tubular neighborhood of a knot K in S. An m-satellite link of a link O in
S3 along a knot K in S is a link in S which is the image Õ(m; K) ⊂ V (K) ⊂ S of an
m-satellite link Õ(m) ⊂ V under a (meridian, longitude)-preserving and orientation-
preserving homeomorphism (called a faithful homeomorphism) V → V (K). A knot
K in S is strongly negative-amphicheiral if there is an orientation-reversing involution
τ on S such that τ(K) = K and the fixed point set Fix(τ) = S0 ⊂ K. In this
case, it turns out that there are two types of strongly negative-amphicheiral knots.
To state it, let (Sτ , Kτ ) be the orbit pair of the pair (S,K) under the action τ , and
τ ∗ : H1(Sτ\Kτ ) → Z2 the monodromy map of the double covering S\K → Sτ\Kτ .
We say that K is of type I or II according to whether the restriction of τ ∗ to the tor-
sion subgroup tH1(Sτ\Kτ ) is non-trivial or trivial, respectively. If S is a Z2-homology
3-sphere, then K is always of type II, as we shall show in Corollary 2.4. In Exam-
ple 2.5, we shall give an example of a strongly negative-amphicheiral knot K with
o(K) = 2 of type I in a rational-homology 3-sphere S with H1(S) = Z2 ⊕ Z2. The
following theorem is our main theorem.

Theorem 1.1. Let K be a strongly negative-amphicheiral knot with o(K) = r in a
rational-homology 3-sphere S. Let O be a slice knot in S3. If K is of type I, then every
mr-satellite knot K ′ = Õ(mr; K) for every non-negative integer m is a rational-slice
knot in S. If K is of type II, then every 2mr-satellite knot K ′ = Õ(2mr; K) for every
non-negative integer m is a rational-slice knot in S.

The following generalization of Theorem 1.1 taking O to be a general knot in S3

is obtained immediately from Theorem 1.1 since the knot O#(−Ō) in S3 is a slice
knot and we have

(Õ(m; K))#(−Ō) = ( ˜O#(−Ō))(m; K),

for the orientation-reversing mirror image −Ō of the knot O.
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Corollary 1.2. Let K be a strongly negative-amphicheiral knot with o(K) = r in
a rational-homology 3-sphere S. Let −Ō be the orientation-reversing mirror image
of any knot O in S3. If K is of type I, then the connected sum K ′#(−Ō) for every
mr-satellite knot K ′ = Õ(mr; K) for every non-negative integer m is a rational-slice
knot in S. If K is of type II, then the connected sum K ′#(−Ō) for every 2mr-satellite
knot K ′ = Õ(2mr; K) for every non-negative integer m is a rational-slice knot in S.

For a knot K in S3, let K(m) be the untwisted double of K for m = 0 or the
(m, 1)-cable knot along K for an integer m ̸= 0, which is regarded as a |m|-satellite
knot Õ(|m|; K) of a trivial knot O in S3 along the knot K in S3. Hence the following
corollary is direct from Theorem 1.1.

Corollary 1.3. Let K be a strongly negative-amphicheiral knot in S3. Then the
knot K(2m) in S3 is a rational-slice knot for every integer m.

Concerning this corollary, the author showed in 1980 that the knot K(2m) with
K the figure-eight knot, a famous strongly negative-amphicheiral knot is a rational-
slice knot by a slightly different method in an unpublished handwritten manuscript
[7], although by a result of K. Miyazaki [11] we see that K(2m) is not any ribbon
knot for every m > 0. It appears an unsettled problem to determine whether or not
K(2m) is a slice knot for any m (see Cha[1], Cha-Livingston-Ruberman [2]). As a
final remark of the first section, we observe that a link version of our main theorem
(Theorem 1.1) is directly obtained. A link L of the components Ki (i = 1, 2, . . . , s) in
S is a strongly rational-slice link in S if the knots Ki (i = 1, 2, . . . , s) have o(Ki) = 1
and bound mutually disjoint smooth proper disks Di (i = 1, 2, . . . , s) in a rational
4-disk B with ∂B = S such that there is a meridian-preserving natural isomorphsim
bH1(S\L) → bH1(B\ ∪s

i=1 Di) on the free abelian groups with meridian bases. In
the case that S = S3 and B = B4, a strongly rational-slice link is nothing but
a usual strongly slice link ([9]). If the components Ki (i = 1, 2, . . . , s) of a link
L in S are rational-slice knots by mutually disjoint smooth proper disks Di (i =
1, 2, . . . , s) in a rational 4-disk B with ∂B = S and ∂Di = Ki (i = 1, 2, . . . , s), then
the link L in S is a strongly rational-slice link in S. In fact, since there is a meridian-
preserving isomorphism bH1(S\L) → ⊕s

i=1bH1(S\Ki) on the free abelian groups
with the meridian bases, we obtain a meridian-preserving isomorphism bH1(S\L) →
bH1(B\ ∪s

i=1 Di) by composing the isomorphism ⊕s
i=1bH1(S\Ki) → ⊕s

i=1bH1(B\Di)
given obtained by the assumption of a rational-slice knot. Using this remark, we
obtain the following corollary as a link version of Theorem 1.1.

Corollary 1.4. Let K be a strongly negative-amphicheiral knot with o(K) = r
in a rational-homology 3-sphere S. Let O be a strongly slice link in S3, and m a
non-negative integer. If K is of type I, then every mr-satellite link L = Õ(mr; K)
is a strongly rational-slice link in S. If K is of type II, then every 2mr-satellite link
L = Õ(2mr; K) is a strongly rational-slice link in S.

The proof is given after the proof of Theorem 1.1. For example, although the Bing
double BD1(K) of the figure-eight knot K in S3 is NOT a strongly slice link by [1]
and [2], we can see from Corollary 1.4 that it is a strongly rational-slice link. In §2, we
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show some properties of rational-slice knots and strongly amphicheiral knots. In §3,
we study a composition of rational-homology cobordisms between rational-homology
handles. In §4, the proofs of Main Theorem (Theorem 1.1) and Corollary 1.4 are
given. In §5, we apply our result on a classical strongly negative-amphicheiral knot
to the existence of a certain compact smooth 4-manifold.

The author would like to thank the referee for making corrections of errors and
suggestions in an earlier version of this paper.

2. Some properties of rational-slice knots and strongly negative-amphicheiral
knots

The slope s(K) of a knot K in a rational-homology 3-sphere S is defined by the
identity

s(K) = −λS([K], [K]) ∈ Q/Z

for the linking pairing λS : H1(S) × H1(S) → Q/Z and the homology class [K] ∈
H1(S). A knot K in S with s(K) = 0 is called a flat knot in S (see [8]). We have
the following lemma:

Lemma 2.1. If K is a weakly rational-slice knot or a strongly negative-amphicheiral
knot in a rational-homology 3-sphere S, then K is flat in S.

Proof. Let (S,K) be a weakly rational-slice knot bounding a pair (B,D) such
that D is a smooth proper disk in a rational 4-disk B. We take a rational 2-cycle
D̂Q = D− cQ in B by taking a rational 2-chain cQ in S with ∂cQ = K. We take slight

translations K ′, D̂′
Q, D′ and c′Q of K, D̂Q, D and cQ respectively such that

(1) the rational 2-cycle D̂′
Q = D′−c′Q with ∂D′ = ∂c′Q = K ′ intersects D̂Q transversely,

(2) the rational 2-chain c′Q and the knot K ′ are in a slight translation S ′ of S into the
interior of B,
(3) the knot K ⊂ S is identified with K∗ = D ∩ S ′ ⊂ S ′ and K∗ ∩ K ′ = ∅.
Then we have the rational intersection number

IntB(D̂Q, D̂′
Q) = IntB(D − cQ, D′ − c′Q)

= IntB(D,D′) − IntB(D, c′Q) − IntB(cQ, D′) + IntB(cQ, c′Q)

= IntB(D,D′) − IntB(D, c′Q).

Since H2(B; Q) = 0, we have IntB(D̂Q, D̂′
Q) = 0 and the rational linking number

LinkS′(K∗, K ′) = IntB(D, c′Q) = IntB(D,D′),

so that

s(K) = −LinkS′(K∗, K ′) (mod 1) ≡ −IntB(D,D′) ≡ 0 (mod 1).

For a strongly negative-amphicheiral knot (S,K), let τ be an orientation-reversing
involution on S with Fix(τ) = S0 ⊂ K. Then we have a simple loop ℓ on a τ -invariant
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tubular neighborhood V (K) such that τ(ℓ) ∩ ℓ = ∅ and ℓ is isotopic to K in V (K).
Applying τ to the rational linking number LinkS(ℓ, τ(ℓ)), we have LinkS(ℓ, τ(ℓ)) =
−LinkS(τ(ℓ), ℓ) because τ reverses the orientation of S, and hence LinkS(ℓ, τ(ℓ)) = 0,
showing that s(K) = 0.

Let E = cl(S\V (K)) be the exterior of K in S. It is shown in [8] that if s(K) = 0
and o(K) = r, then there is a compact connected oriented proper surface F in E such
that the boundary ∂F consists of r parallels of a longitude of V (K) which are unique
up to isotopies of E, so that we can specify a unique meridian-longitude system for
every flat knot K in S. In our argument, the 0-surgery manifold M of a flat knot K in
S which we can consider by a unique meridian-longitude system plays an important
role. This manifold M is constructed as follows: Let X = S × [−1, 1] ∪ B2 × B2 be
a 4-manifold obtained by attaching the solid torus (∂B2) ×B2 to V (K) × 1 ⊂ S × 1
with the 0-framing. Then the boundary ∂X consists of S × (−1) (regarded as −S)
and M . A rational-homology handle is a closed oriented 3-manifold with the rational-
homology of S1 × S2. The following lemma shows that the 0-surgery manifold of a
flat knot in a rational-homology 3-sphere is a rational-homology handle.

Lemma 2.2. Let E and M be the exterior and the 0-surgery manifold of a flat knot
K in S with o(K) = r, respectively. Then we have the following natural short exact
sequences

0 → Z → H1(E) → H1(S) → 0 and 0 → Zr → H1(E) → H1(M) → 0,

where Z and Zr are generated by the meridian and the longitude of K, respectively.

Proof. We note that Hi(S,E) ∼= Hi(M,E) ∼= Hi(S
1 × B2,S1 × S1) is isomorphic

to 0 for i = 1 and Z for i = 2. Since H2(S) = 0, we obtain the first short exact
sequence from the homology sequence for the pair (S,E). We also obtain the exact
sequence Z → H1(E) → H1(M) → 0 from the homology sequence for the pair
(M,E), where the map Z → H1(E) sends a generator of Z to the longitude of K
in E with homological order r in H1(E) since o(K) = r, which induces the exact
sequence 0 → Zr → H1(E).

We say that a rational-homology handle M is the boundary of a rational-homology
circle Y of degree r(= 1) if Y is a compact oriented smooth 4-manifold with ∂Y = M
such that the pair (Y,M) has the rational-homology of (S1 × B3,S1 × S2) such that
the cokernel of the natural monomorphism bH1(M) → bH1(Y ) is isomorphic to Zr.
The following lemma is fundamental to our construction.

Lemma 2.3. Let K be a strongly negative-amphicheiral knot in a rational-homology
3-sphere S. Then, according to whether K is of type I or II, the 0-surgery manifold M
of K bounds a rational-homology circle Y of degree 1 or 2 such that H1(Y,M) ∼= Z2,
respectively.

Proof. Since K is a strongly negative-amphicheiral knot, there is an involution τ
on S such that τ(K) = K and Fix(τ) = S0 ⊂ K. The involution τ induces a free
involution τM on M . Let Mτ be the orbit manifold of M under the action of τM .
Let p : M → Mτ be the double covering projection. Since K is a flat knot in S
by Lemma 2.1, we see from Lemma 2.2 that M is a rational-homology handle. Let
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V ′ = B2 × (∂B2) ⊂ M be the dual solid torus of V (K), and V ′
τ the orbit solid Klein

bottle of V ′ under the action of τM . We note that the natural sequence

0 → H1(V
′) → H1(M) → H1(M,V ′) → 0

is a short exact sequence by Lemma 2.2 and H1(M,V ′) is a torsion group. Since
every element of H1(Mτ , V

′
τ ) is generated by simple proper arcs in cl(Mτ\V ′

τ ), and the
preimage p−1(a) of a simple proper arc a consists of two simple proper arcs a′, a′′ in
cl(M\V ′), we see that the covering homomorphism p∗ : H1(M,V ′) → H1(Mτ , V

′
τ ) is

onto (in fact, we have p∗([a
′]) = [a]). This means that the natural sequence

0 → H1(V
′
τ ) → H1(Mτ ) → H1(Mτ , V

′
τ ) → 0

is also a short exact sequence and H1(Mτ , V
′
τ ) is a torsion group, where the injectivity

of the map H1(V
′
τ ) → H1(Mτ ) follows from the fact that H1(Mτ ) must be an infinite

group because Mτ is a closed non-orientable 3-manifold. Thus, Hi(Mτ ; Q) ∼= Q for
i = 0, 1 and H3(Mτ ; Q) = 0. Since the Euler characteristic χ(Mτ ) = 0, we have that
H∗(Mτ ; Q) = H∗(S

1; Q). The double covering p : M → Mτ induces an exact sequence

H1(M)
p∗−→ H1(Mτ ) −→ Z2 → 0.

Let Y be the twisted line-bundle of Mτ , in other words, the mapping cylinder of the
double covering p : M → Mτ . We note that the boundary ∂Y of Y is the manifold
M . Because Mτ is a strong deformation retract of Y , we have the following short
exact sequence

0 → H1(M)
i∗−→ H1(Y ) −→ Z2 → 0

for the inclusion i : M ⊂ Y . In particular, we have H1(Y,M) ∼= Z2. Using that
Mτ has the rational-homology of S1, we see that M is the boundary of a rational-
homology circle Y . To determine the degree of Y , we consider the following exact
sequence

H1(E)
(p|E)∗−→ H1(Eτ )

τ∗
−→ Z2 → 0,

where we note that the homomorphism τ ∗ : H1(Eτ ) → Z2 is identified with the map
τ ∗ : H1(Sτ\Kτ ) → Z2. By Lemma 2.2, we note that bH1(E) ∼= Z and there is a
natural isomorphism bH1(E) → bH1(M). The natural map H1(Eτ ) → H1(Mτ ) is
onto because H1(Mτ , Eτ ) = H1(Vτ , ∂Vτ ) = 0, which implies that we have a natural
isomorphism bH1(Eτ ) → bH1(Mτ ). Let K be of type I. Then (p|E)∗ induces an
isomorphism bH1(E) ∼= bH1(Eτ ), which induces an isomorphism p∗ : bH1(M) ∼=
bH1(Mτ ). This implies that Y is of degree 1. Let K be of type II. Then we have the
following short exact sequence

0 → bH1(E)
(p|E)∗−→ bH1(Eτ ) → Z2 → 0,

which implies a short exact sequence

0 → bH1(M)
p∗−→ bH1(Mτ ) → Z2 → 0.
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This implies that Y is of degree 2.

The following corollary which is direct from Lemma 2.3 is promised in the intro-
duction.

Corollary 2.4. Let K be a strongly negative-amphicheiral knot in a Z2-homology
3-sphere S. Then K is of type II.

Proof. In the proof of Lemma 2.3, we showed that the p∗ : H1(M,V ′) → H1(Mτ , V
′
τ )

is onto. By the excision isomorphism, this implies that (p|E)∗ : H1(E, ∂E) →
H1(Eτ , ∂Eτ ) is onto. Since H1(E, ∂E; Z2) = 0, we have H1(Eτ , ∂Eτ ; Z2) = 0. The
image of the natural homomorphism H1(∂Eτ ; Z2) → H1(Eτ ; Z2) is Z2 by the Z2-
Poincaré duality, and thus we have H1(Eτ ; Z2) ∼= Z2. In the proof of Lemma 2.3,
we have bH1(Mτ ) ∼= Z, so that bH1(Eτ ) ∼= Z and tH1(Eτ ) is an odd-torsion group.
Hence the restriction of τ ∗ to the torsion subgroup tH1(Eτ ) = tH1(Sτ\Kτ ) is a trivial
homomorphism.

Here is an example of a strongly negative-amphicheiral knot in a rational-homology
3-sphere of type I.

Example 2.5. For the projective plane P2, let p : M = S1×S2 → Mτ = S1×P2 be
the double covering, which induces an isomorphism p∗ : H1(M) → bH1(Mτ ), showing
that the twisted line bundle Y of Mτ is a rational-homology circle of degree 1 bounded
by M . We look for a knot K ′

τ in Mτ representing a generator of bH1(Mτ ) such that
K ′ admits a solid Klein bottle tubular neighborhood in Mτ . Then the preimage
K ′ = p−1(K ′

τ ) is a τM -invariant knot in M representing the 2 times of a generator
of H1(M) ∼= Z. We replace a τM -invariant tubular neighborhood V (K ′) = S1 × B2

in M with a solid torus B2 × ∂B2 to obtain a rational-homology 3-sphere S with
H1(S) ∼= Z2 ⊕ Z2, where we note that any meridian of V (K ′) represents an order
2 element of H1(cl(M\V (K ′))). The involution τM on M induces an orientation-
reversing involution τ on S which makes the knot K = 0 × ∂B2 invariant with
Fix(τ) = S0 ⊂ K. Thus, K is a strongly negative-amphicheiral knot in S with
o(K) = 2. Since Y is a rational-homology circle of degree 1 bounded by M , the knot
K must be of type I by the proof of Lemma 2.3..

3. Composing rational-homology cobordisms between rational-homology
handles

Two rational-homology handles M and M ′ are rational-homology cobordant of de-
gree (r, r′) for positive integers r, r′ > 0 if there is a compact oriented 4-manifold
C with boundary ∂C = (−M) ∪ M ′ such that the inclusions M ⊂ C and M ′ ⊂ C
induce rational isomorphisms H∗(M ; Q) ∼= H∗(C; Q) and H∗(M

′; Q) ∼= H∗(C; Q), re-
spectively and monomorphisms bH1(M) → bH1(C) and bH1(M

′) → bH1(C) with
the cokernels isomorphic to Zr and Zr′ , respectively. The triad (C; M,M ′) is called a
rational-homology cobordism. The following lemma shows how the indices of rational-
homology cobordisms change by a composition of rational-homology cobordisms be-
tween rational-homology handles.

Lemma 3.1. Let (C; M,M ′) and (C ′; M ′.M ′′) be rational-homology cobordisms
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between rational-homology handles of indices (r, a) and (b, r′′), respectively. Let d be

the greatest common divisor of a and b, and a = dã, b = db̃. Then the composite
rational-homology cobordism (C ∪C ′; M,M ′′) sticked along M ′ is of degree (rb̃, r′′ã).

Proof. The Mayer-Vietoris sequence

H1(M
′) → H1(C) ⊕ H1(C

′) → H1(C ∪ C ′) → 0

induces a short exact sequence

0 → bH1(M
′) → bH1(C) ⊕ bH1(C

′) → Ĥ1(C ∪ C ′) → 0,

where Ĥ1(C ∪ C ′) denoted the quotient group of H1(C ∪ C ′) by a torsion subgroup.
Let eM ′ , eC and eC′ be generators of the infinite cyclic groups bH1(M

′), bH1(C) and
bH1(C

′), respectively such that the map bH1(M
′) → bH1(C) ⊕ bH1(C

′) sends eM ′

to aeC − beC′ = d(ãeC − b̃eC′). Let j : bH1(C)⊕ bH1(C
′) → bH1(C ∪C ′) ∼= Z be the

natural epimorphism. Then we have dj(ãeC − b̃eC′) = 0 and hence j(ãeC) = j(b̃eC′).

Let a∗ and b∗ be integers such that ãa∗ + b̃b∗ = 1. Then we show that j(b∗eC + a∗eC′)
is a generator of bH1(C ∪ C ′). In fact,

j(eC) = j(a∗ãeC) + j(b∗b̃eC) = j(a∗b̃eC′) + j(b∗b̃eC) = b̃j(b∗eC + a∗eC′),

and similarly, j(eC′) = ãj(b∗eC+a∗eC′). Since the natural monomorphisms bH1(M) →
bH1(C∪C ′) and bH1(M

′′) → bH1(C∪C ′) send some generators eM and eM ′′ to rj(eC)
and r′′j(eC′), respectively, we see that the degree of the rational-homology cobordism

(C ∪ C ′; M,M ′′) is (rb̃, r′′ã).

In Lemma 3.1, let M ′′ = S1 × S2. Then we can obtain a rational-homology circle
Y ′ bounding M ′ by sticking S1 × B3 and C ′ along M ′′. The following corollary is
direct from Lemma 3.1.

Corollary 3.2. Let (C; M,M ′) be a rational-homology cobordism between rational-
homology handles M and M ′ of degree (r, a), and M ′ the boundary of a rational-
homology circle Y ′ of degree b. Let d be the greatest common divisor of a and b,
and b = db̃. Then the rational-homology handle M is the boundary of the composite
rational-homology circle Y = C ∪ Y ′ (sticked along M ′) of degree rb̃.

4. Proof of Main Theorem

Throughout the whole section, the proofs of the main theorem(Theorem 1.1) and
Corollary 1.4 will be made. Let X = S × [0, 1] ∪ B2 × B2 be the surgery trace from
S = S × 0 to the 0-surgery manifold M of (S,K) done by using the fact that it is
a flat knot by Lemma 2.1. Let D = K × [0, 1] ∪ B2 × 0 be a proper disk in X. For
the rational-homology circle Y constructed in Lemma 2.3, we construct a 4-manifold
B = X ∪ Y sticked along M . Then ∂B = S and B is a rational 4-disk. By Lemma
2.3, according to whether K is of type I or II, the knot (S,K) is a 1-rational-slice or 2-
rational-slice knot with o(K) = r by the rational (4,2)-disk pair (B,D), respectively.
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Let N(D) = D × B2(∼= B4) be a tubular neighborhood of D in X. According to
whether K is of type I or II, let K ′ = Õ(mr; K) or Õ(2mr; K) be any mr-satellite
knot or any 2mr-satellite knot of O along K in S, respectively. Then o(K ′) = 1.
Since K ′ is equivalent to the slice knot O in S3 = ∂N(D) by definition, the knot K ′

bounds a smooth proper disk D′ in N(D). We shall show that the knot (S,K ′) is a
rational-slice knot (meaning a 1-rational-slice knot with o(K ′) = 1) by the rational
(4,2)-disk pair (B,D′). Let m = 0. In this case, the knot K ′ bounds a Seifert surface
F ′ in V (K) and the union −F ′ ∪ D′ bounds an oriented 3-manifold in N(D). Then
bH1(S\K ′) ∼= Z and bH1(B\D′) ∼= Z are generated by meridians and we have a
natural isomorphism bH1(S\K ′) → bH1(B\D′). Thus, (B,D′) is a desired smooth
rational disk-pair bounding (S,K ′). Let m ̸= 0. Let C = cl(X\N(D′)). Since the
knot (S,K ′) is a flat knot by Lemma 2.1, the manifold M ′ = ∂C\M is the 0-surgery
manifold of (S,K ′). We prove the following lemma later.

Lemma 4.1. According to whether K is of type I or II, the triad (C; M ′,M) is a
rational-homology cobordism of degree (1,m) or (1, 2m), respectively.

Since M is the boundary of a rational-homology circle Y of degree 1 or 2 re-
spectively according to whether K is of type I or II, we see from Corollary 3.2 and
Lemma 4.1 that M ′ bounds a rational-homology circle C ∪ Y of degree 1, meaning
that (B,D′) is a desired smooth rational disk-pair bounding (S,K ′). This completes
the proof of Theorem 1.1 assuming the proof of Lemma 4.1.

Proof of Lemma 4.1. Let n = m or 2m according to whether K is of type I or
II. The boundary ∂C consists of M and the 0-surgery manifold M ′ of K ′ in S. By
excision, we have H2(X,S) ∼= Z with [D] a generator and Hq(X,S) = 0 for q ̸= 2.
Similarly, we have H2(D

′∪S, S) ∼= Z with [D′] a generator and Hq(D
′∪S, S) = 0 for

q ̸= 2. Hence we have a natural exact sequence

0 → H2(D
′ ∪ S, S) → H2(X,S) → H2(X,D′ ∪ S) → 0.

The homology class [D′] ∈ H2(X,S) is equal to nr[D] because K ′ is an nr-satellite
knot of O along K, and hence by Poincaré duality and excision we have the following
homology group:

H3−q(C,M) ∼= Hq(C,M ′) ∼= Hq(X,D′ ∪ S) =

{
Znr (q = 2)

0 (otherwise),

showing that the triad (C; M ′,M) is a rational-homology cobordism. By Lemma 2.2,

bH1(M
′) ∼= bH1(C) ∼= bH1(M) ∼= Z.

Since H1(C,M ′) = 0, the natural homomorphism H1(M
′) → H1(C) is onto so that

the induced homomorphism bH1(M
′) → bH1(C) is an isomorphism on infinite cyclic

groups. Since o(K ′) = 1, the knot K ′ bounds a Seifert surface F ′ in S. We note
that any loop in the exterior E ′ = cl(S\N(K ′)) interscting F ′ with the intersection
number 1 represents a generator g′ of bH1(M

′) ∼= bH1(C) ∼= Z by non-singularity
of the intersection pairing Int : bH1(M

′) × bH2(M
′) → Z since the surface F ′ ∩ E ′
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with F ′ ∩ ∂V (K ′) a longitude of K ′ extends to a closed connected oriented surface
in M ′. Similarly, since K is flat and o(K) = r, we see that r-parallel copies of the
longitude of K on ∂V (K) bound a connected oriented proper surface F in the exterior
E = cl(S\N(K)) which represents a generator of H2(E, ∂E) ∼= Z and extends to a
closed connected oriented surface in M (cf.[8]). Let ℓ be a loop in E intersecting
F with the intersection number 1, which represents a generator g of bH1(M) ∼= Z.
Taking V (K ′) in the interior of V (K), we shall show that there is a Seifert surface
F ′′ of K ′ in S constructed from n-paralell copies of the surface F ⊂ E by adding a
compact surface in V (K). To see this, by the definition of an nr-satellite knot, we note
that the meridian of V (K) meets any Seifert surface F ′ of K ′ with the intersection
number nr, which is the intersection number of the meridian of V (K) and the closed
1-manifold F ′ ∩ ∂V (K). We modify F ′ so that the closed 1-manifold F ′ ∩ ∂V (K)
consists of parallel simple loops with the same orientation in ∂V (K). Then the
closed 1-manifold F ′ ∩ ∂V (K) is isotopic to nr-parallel copies of the longitude of K
on ∂V (K) which is the boundary of n-parallel copies of F ⊂ E by uniqueness of a
characteristic surface for E in [8]. Then a desired Seifert surface F ′′ of K ′ is obtained
from F ′ by replacing the surface F ′ ∩ E with n-parallel copies of F ⊂ E after an
isotopic deformation of F ′ ∩ V (K) in V (K) keeping K ′ fixed. Since the intersection
numer IntE′(ℓ, F ′′) = n, the homomorphism bH1(M) → bH1(C) sends a generator g
of bH1(M) to the element ng′ for a generator g′ of bH1(C) ∼= bH1(M

′). This shows
that (C; M ′,M) is a rational-homology cobordism of degree (1, n).

This completes the proof of Theorem 1.1.

The proof of Corollary 1.4 is given here.

Proof of Crollary 1.4. In the proof of Theorem 1.1, let L = ∪s
i=1Li = Õ(mr; K)

or Õ(2mr; K) be any mr-satellite link or any 2mr-satellite link of an s-component
strongly slice link O = ∪s

i=1Oi along K in S according to whether K is of type I
or II. Then o(Li) = 1 for every i. Since L is nothing but the strongly slice link O
in S3 = ∂N(D), the knot components Li bounds mutually disjoint smooth proper
disks Di (i = 1, 2, . . . , s) in N(D). By the proof of Theorem 1.1, the existence of
(B,Di) means a rational-slice knot (S, Li) for every i, and hence the remark following
Theorem 1.1 shows that L is a strongly rational-slice link in S.

5. Applying our result to the existence of a certain compact smooth 4-
manifold

For a (2k − 1)-knot K in S2k+1 with k = 1, a compact smooth (2k + 2)-manifold
W homotopy equivalent to S2k is constructed as the union B2k+2∪B2k×B2 attaching
the submanifold (∂B2k) × B2 to a tubular neighborhood N(K)(= K × B2) of K in
S2k+1 = ∂B2k+2, where we take the 0-framing on N(K) for k = 1. The boundary
M = ∂W has the same homology as S2k × S1. It is well-known that if K is a
slice knot, then every homology class of H2k(W )(∼= Z) is represented by a 2k-sphere
smoothly embedded in W . On the other hand, for some non-slice knots K, every
non-zero homology class of H2k(W ) cannot be represented by any 2k-sphere smoothly
embedded in W . In [6], we showed not only this result for every k = 1, but also gave,
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for every k = 2, a compact smooth (2k + 2)-manifold W homotopy equivalent to
S2k such that a homology class w ∈ H2k(W ) is represented by a 2k-sphere smoothly
embedded in W if and only if the modulo two reduction w2 ∈ H2k(W ; Z2) of w is
0. Using our construction in Lemma 2.3, we have a result, filling up the absence of
k = 1. To describe it, we say that a knot polynomial A(t) is of m-slice type (for
an integer m) if A(tm) = ±tiF (t)F (t−1) for an integer i and an integral polynomial
F (t). The polynomial A(t) of every strongly negative-amphicheiral knot in S3 is
of 2m-slice type for every integer m, because it is shown in [4] that A(t) has the
identity A(t2) = ±tiF (t)F (t−1) for an integer i and an integral polynomial F (t) with
F (t−1) = ±tjF (−t) for an integer j. Incidentally, we mention that this identity holds
for every negative-amphicheiral knot in S3, conjectured by the author in [5] and proved
by R. Hartley in [3](cf.[9]) (although we do not use this fact). If a knot polynomial
A(t) is of (2m + 1)-slice type for an integer m, then |A(−1)| is a square. Thus, the
polynomial A(t) = t2 − 3t + 1 of the figure-eight knot which is a strongly negative-
amphicheiral knot is not of (2m+1)-slice type for any integer m. More generally, it is
suggested by the referee that if the polynomial A(t) of a strongly negative-amphicheiral
knot in S3 is of degree 2, then A(t) is not of (2m + 1)-slice type for any integer m. In
fact, in this case, A(t) has the form A(t) = ±(a2t2 − (2a2 + 1)t + a2) for a non-zero
integer a, so that |A(−1)| = 4a2 + 1 is not a square. Using this notion, we have the
following theorem:

Theorem 5.1. Let K be a strongly negative-amphicheiral knot in S3 whose poly-
nomial A(t) is not of (2m + 1)-slice type for any interger m. Then the 0-surgery
manifold M of K bounds a compact smooth 4-manifold W homotopy equivalent to
S2 such that a homology class w ∈ H2(W ) is represented by a 2-sphere smoothly
embedded in W if and only if the modulo two reduction w2 ∈ H2(W ; Z2) of w is 0.

Proof. Let Y be the 4-manifold in Lemma 2.3 with ∂Y = M and H1(Y,M) ∼= Z2.
Since K is of type II and H1(M) ∼= Z, we have H1(Y ) ∼= Z. Let ℓ be a loop in Y
representing a generator of H1(Y ). Let N(ℓ) ∼= S1 × B3 be a regular neighborhood
of ℓ in Y . We do a surgery on Y replacing N(ℓ) with B2 × S2 to obtain a 4-manifold
W with ∂W = M and H1(W ) = 0. Since the Euler characteristic χ(W ) = 2, we
see that H∗(W ) ∼= H∗(S

2). By a careful choice of ℓ, we show that W is simply
connected, which is sufficient to see from J. H. C. Whitehead’s theorem that W is
homotopy equivalent to S2. Since the orbit manifold Mτ of M under the action of
a free involution τM on M induced from τ is a strong deformation retract of Y , it is
sufficient to specify a loop ℓ in the manifold Mτ which is a union of Eτ and a solid
Klein bottle with the boundaries pasted. Let ℓ be a loop P1 in the boundary P2 of
a neighborhood of the image of a fixed point of Fix(τ) in S3

τ , which is regarded as a
loop in the Klein bottle ∂Eτ . We note that H1(Eτ ) ∼= Z and ℓ represents a generator.
The fundamental group π1(W,x) is isomorphic to the group π = π1(Mτ , x)/⟨[ℓ] = 1⟩
which obtained from the fundamental group π1(Mτ , x) by adding the relation [ℓ] = 1.
Since the element [ℓ]2 is represented by the image of a meridian of E in the group
π1(Eτ , x) and the group π1(E, y)/⟨[m] = 1⟩ for a meridian m is the trivial group, we
see that π1(Eτ , x)/⟨[ℓ]2 = 1⟩ is isomorphic to Z2, so that π = {1}. This implies that
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W is homotopy equivalent to S2. By the excision isomorphism, we have

H2(W,B2 × S2) ∼= H2(Y,N(ℓ)) ∼= H2(Y, ℓ) ∼= H2(Y ) ∼= Z2,

which shows that ±2e ∈ H2(W ) for a generator e ∈ H2(W ) is represented by the
2-sphere 0 × S2, which is embedded smoothly in W . By tubing some parallels of
0 × S2 in B2 × S2, we see that the element 2me ∈ H2(W ) for every integer m is
represented by a 2-sphere smoothly embedded in W . If (2m + 1)e ∈ H2(W ) for an
integer m is represented by a smoothly embedded 2-sphere in W , then we obtain a
rational-homology cobordism (C;S1 × S2,M) of degree (1, 2m + 1) by removing an
open tubular neighborhood of the 2-sphere from W , and it is shown in [6] that the
polynomial A(t) is of (2m + 1)-slice type, which contradicts our assumption. Thus,
the element (2m + 1)e ∈ H2(W ) for any integer m cannot be represented by any
2-sphere smoothly embedded in W .
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