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The purpose of this paper is to study how a cyclic action on a Z2-homol
ogy 3-sphere contributes to the Rochlin invariant of the Z2-homology 
3-sphere. Let S be a Z2-homology 3-sphere with Zn-action. The induced 
projection pr: SS=S/Zn is clearly the composite of a sequence of the 
induced projections of cyclic actions on Z2-homology 3-spheres, arising in 
the following four cases (1)-(4):(1) Free cyclic action of an order which is a 
power of 2, (2) Non-free involution, (3) Free cyclic action of odd-prime order, 
(4) Non-free cyclic action of odd-prime order. Therefore, the problem is 
reduced to the actions on Z2-homology 3-spheres of the cases (1)-(4). In each 
case, we shall establish a congruence in Q/Z containing the Rochlin invari
ant and the Atiyah-Singer invariant of the action. Then one could derive 
from these congruences a general congruence for any cyclic action on any 
Z2-homology 3-sphere, although we do not state it in this paper.

In Section 1 we introduce a notion of the slope with value in Q/ZU {oo} 
of a knot in an oriented 3-manifold. A geometric meaning of the slope dis
cussed there will be used often in this paper. In Section 2 we shall discuss 
an invariant of a knot in a Z2-homology 3-sphere, generalizing the Robertello 
invariant of a classical knot by Robertello [30] or a knot in a Z-homology 
3-sphere by Gordon [12]. This enables us to calculate the Rochlin invariant 
from a novel viewpoint. In Section 3 several elementary calculations of the 
Rochlin invariants will be made. In Section 4 we shall discuss the Atiyah
Singer invariant of a cyclic action on a closed oriented 3-manifold. It is 
well-known for a free cyclic action. We shall also define it for a certain 
semi-free cyclic action on a closed oriented 3-manifold, e.g., for any semi-free 
cyclic action on any rational homology 3-sphere. Section 5 is devoted to a 
remark concerning a cyclic action of odd order on a spin 4-manifold. In 
Sections 6, 8, 9, 10, 11 and 12, our desired congruences will be established . 
Section 6 deals with the case of a free involution. In Section 7 is given the 
application of the result of Section 6. Section 8 is concerned with the case 
of a non-free involution, and Section 9 with the case of a free cyclic action 
of order four. Section 10 takes care of the case of a free cyclic action of an
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order which is a power of 2 greater than four, Section 11 the case of a free 

cyclic action of odd-prime order, and Section 12 the case of a non-free cyclic 

action of odd-prime order.

Throughout this paper the following conventions will be adopted unless 

otherwise specified: Spaces and maps are in the piecewise-linear category. 

Manifolds are orientable and oriented suitably. Cyclic groups acting on 

manifolds are written as multiplicative groups. Actions on manifolds are 

orientation-preserving actions. Actions are faithful (i.e., each element of 

the group of action except for the identity acts non-trivially). Let X be an 

oriented manifold. In case dX~z 0, the boundary aX is oriented by the orien

tation induced from X. -X is the same manifold as X but with the opposite 

orientation. Let X•~[-1,1] have an orientation whose boundary has an 

orientation such that the natural injections X•~1X and X•~(-1)-X are 

orientation-preserving.

•˜ 1. The slope of a knot in a 3-manifold

Let k be a knot (i.e., an imbedded oriented 1-sphere) in an oriented 

3-manifold M with a tubular neighborhood TcInt M. A meridian, m, of T 

(or k) is an oriented, simple closed curve on aT, bounding an oriented disk 

D in T with intersection number D. k=+1. A longitude, l, of T (or k) is any 

oriented, simple closed curve on aT, homotopic to k in T. Then [m], [l] E H1 

(dT; Z) form a basis with intersection number [m]•E[l]=+1 with respect to 

the orientation of aT induced from T C M. An m. l. pair of T (or k) is a pair 

(m, l) of a meridian m and a longitude l of T (or k) such that the intersection 

m (1 £ is one point. A link (i.e., an imbedded, closed, oriented, possibly dis

connected 1-manifold), PC M, is parallel on T (or k) if PC aT and any two 

(oriented) components of P are isotopic on 3T. The number of the compo

nents of a link L is denoted by #L. For a knot k in M, o(k) denotes the 

order of the element [k] E H,(M; Z), called the order of the knot k in M. 

Note that o(k)=1 if [k]=0.

LEMMA 1.1. Given a knot k c M of finite order with tubular neighborhood 
T, there exists exactly one (up to isotopy) parallel link P on T such that

(1) [P]=o(k)[k] in H1(T; Z),
(2) P bounds a compact oriented surface in E=M-Int T.

The link P, any component K of P and any compact oriented surface in 

E, bounded by P are called the characteristic parallel link, the characteristic 
knot and a characteristic surface for the knot k in M, respectively. In case 
o(k)=1, P is a longitude of T and we see that k bounds a surface in M, 
obtained by extending any characteristic surface for the knot k, called a
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Seifert surface in the classical knot theory.

PROOF OF LEMMA 1.1. We may assume aM=0 . Then consider the 
following commutative diagram with natural homomorphisms:

Since i*o(k)[k]=0 in H1(M; Z), we find x E H2(M, T; Z) such that a'x= 
o(k)[k]. Let x' E H2(E, aE; Z) be the preimage of x under the excision isomor

phism e. Choose a compact 3-submanifold X of E so that aE is a component 
of aX and x' is the image of some x" € H2(X, aE; Z) under the natural homo
morphism H2(X, aE; Z)--*H2(E, aE; Z). Let A= aX  aE. By Poincare duality,

We have a piecewise-linear map f:(X, A)(S1,{pt}) corresponding to x" . By 

t-regularity, there is a point q(•‚pt) E S1 such that f-1(q)=F is a compact 

oriented surface in X with 6FC aE. We have [F]=x" in H1(X, aE; Z), so that 

[F]=x' in H2(E, aE; Z). By construction, [3F] = o(k) [k] in H1(T; Z). If 3F 

has a component null-homologous in 3T, then aF has necessarily a compo

nent c bounding a disk D in aT such that Int D (1 aF= 0. By pushing D into 

Int E, we obtain a new surface F1 with 3F1= aF c. Clearly, [6F1] = [3F] in 

H1(T; Z). By induction, we can assume that 3F has no component null

homologous in aT. Then if we neglect the orientations of the components 

of 3F, any two components would be isotopic. So, if aF has two components, 

not isotopic with respect to the orientation induced from F, then 3F has 

necessarily two (oriented) components whose union bounds an oriented 

annulus A(^' 51 X [0, 1]) in aT such that Int A (1 aF= 0. By pushing A into 

Int E, we obtain a new surface F2 with 3F2= aF dA. Clearly, [dF2] = [SF] in 

H1(T; Z). By induction, we obtain a compact oriented proper surface F* in 

E such that the link aF* = P is a parallel link on T and [P]=o(k)[k] in 

H1(T; Z). P has (1) and (2). To prove the uniqueness of P, we use the 

following lemma:

LEMMA 1.2. Any 1-cycle c1 in aT with intersection number c1•EP•‚0 in aT 

represents an element of infinite order in H1(E; Z).

By Lemma 1.2, o(m)= co in H1(E; Z), where m is the meridian of T. This 

implies that the boundary homomorphism a: H2(M, E; Z)--H1(E; Z) coming 

from the pair (M, E) is injective, so that the natural homomorphism H2(E; Z)
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H2(M; Z) is onto. To prove the uniqueness of P, let P' be another parallel 
link on T which bounds a surface F' in E such that [P']=o(k)[k] in H1(T; Z). 
Since H2(E; Z)H2(M: Z) is onto, we see that [F]-[F'] e H2(M, T; Z) is re

presented by a 2-cycle c2 in E. Hence [F]=[F']+[c2] in H2(E, dE; Z). Thus, 
we have

in H1(aE; Z). Put r=#P and r'=#P'. Write [P]=ra[m]+rb[l] and [P']=

r'a'[m]+r'b'[l] for an m.l. pair (m, l) of T. Since [P]=[P'], we have that ra

=r'a' and rb=r'b'. But, (a, b)=(a', b')=1, so that r=(ra, rb)=(r'a', r'b')=r', 

that is, a=a' and b=b'. This implies that P and P' are isotopic on 6T. This 

completes the proof except for the proof of Lemma 1.2.

PROOF OF LEMMA 1.2. Let c'1 be a 1-cycle in E obtained by pushing c1 

into Int E. Let F be a compact oriented surface in E bounded by P. The 

intersection number, F•Ec'1 (in E)=aF. c1 (in aE)= c1. P (in aT) ~ 0. This im

plies that [c1]=[c'1] is an element of infinite order in H1(E; Z), proving Lemma 

1.2.

COROLLARY 1.3. The characteristic parallel link P up to orientation o f P 

is determined uniquely by the space E=M-Int T.

PROOF. It suffices to show that assuming aM=0, [P] is a generator of G

=Im [a : H2(E, aE; Z)-*H,(aE; Z)] Z (G Z follows from Lemma 1.2). Clearly, 

0 * [P] e G. Suppose [P] is not a generator. Write [P]=ng for an integer 

n>1 and a generator g of G. Since [P]=o(k)[k] in H1(T; Z), the image g' of 

g under the composite GC H1(aE; Z)-±H1(T; Z) has g'=n'[k] for some n' with 

0<n'<o(k). The natural homomorphism H1(T; Z)H1(M; Z) maps g' to 0. 

So, the order of k must be at most n'<o(k), a contradiction. Therefore, [P] 

is a generator of G, completing the proof.

Let K be the characteristic knot of a knot k c M of finite order. Write 

[K]=a[m]+b[l]=a'[m']+b'[l'] in H1(aT; Z) for any m. l. pairs (m, l), (m', l') of 

T. Clearly, b=b'. By definition, [m]=[m'] and [i']=[l]+c[m] for an integer 

c, so that a=a'+bc. Thus, a/b=(a'/b)+c= a'/b' in Q/Z. We showed that 

a/b e Q/Z is a knot type invariant of k in M.

DEFINITION 1.4, a/b e Q/Z is called the slope of the knot k c M of finite 

order and denoted by s(h) = s(k c M). If s(k)=0, then we say the knot k is 

flat. When k is a knot of infinite order, we say the slope of k is infinite and 

denote s(k) = oo.

A flat knot has properties analogous to those of a classical knot. For
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example, any flat knot has a unique m. l. pair with the longitude, being the 

characteristic knot. A normal presentation of the slope s(k) of a knot k of 

finite order is a rational number a/b with coprime integers a_??_0 and b>0 

such that s(k)=a/b(mod 1).

The following shows that the complement M-k never contributes to the 

slope s(k).

PROPOSITION 1.5. Let E be an oriented 3-manifold with 3E, a torus. 

Suppose the natural homomorphism H1(dE; Q)- H1(E; Q) is not injective. 

Then for each s E Q/ZU {oo} there exists a knot k C M with s(k)=s such that 

M-Int T is homeomorphic to E.

REMARK 1.6. When E is compact, the homomorphism H1(aE; Q)-~ 

H1(E; Q) is not injective, since by Poincare duality it is Q-dual to the 

boundary homomorphism a : H2(E, 6E; Q)-+H1(aE; Q).

PROOF OF PROPOSITION 1.5. Since H1(aE; Q)-+H1(E; Q) is not injective, 

there is a knot k,~ c M* of finite order such that M*-Int (k*)=E. Let 

K be the characteristic knot (caT(k)) of k*. For s * oo choose coprime 

integers a, b so that s=a/b (mod 1), b>0. For s = oo, let a=1, b=0. Take 

simple closed curves m, l on aE so that m f £ is one point with [l]•E[m]=+1 

on aE and [K]=a[m]+b[l]. Construct an oriented 3-manifold M=E U S1 X D2 

identifying aE with S1 X 6D2 so that m=p x aD2 (p E 51) and ~= 51 X q (q E aD2). 

Let k= S1 X 0 C M. When s oo, we see easily that k has the slope s. For 

s= oo, by Lemma 1.2 o(l)=oo in H1(E; Z). From the Mayer-Vietoris sequence 

we see that o(k)=o(e)= oo in H1(M; Z) and s(k)= oo =s. This completes the 

proof.

COROLLARY 1.7. The space M o f a knot k with s(k)= oo, constructed from 

E of Proposition 1.5 is unique in the following sense: For another space M' 

of a knot k' with s(k')=oo, constructed from E and a homeomorphism h: 

EE, there exists a homeomorphism h: M'M extending h.

PROOF. To be s(kcM)= oo, it is necessary that the attaching homeo

morphism a(S1 X D2)- dE sends the meridian of S1•~D2 to a curve isotopic to 

the characteristic knot K (in the proof of Proposition 1.5)
, which is unique 

up to orientation by Corollary 1.3. The construction must be as in the 

proof of Proposition 1.5. It is easy to see that the homeomorphism type of 

M does not depend on a choice of the longitude l. This completes the proof.

Let M be an oriented 3-manifold. Let vH1(M) be the torsion part of 

H1(M; Z). The linking pairing ~is: rH1(M) x rH1(M)-+Q/Z is defined as usual 

(cf. Seifert-Threlfall [33]).
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LEMMA 1.8. For any knot kcM of finite order, we have

PROOF. Let P be the characteristic parallel link of k C M. Let r=#P. 

Write [P]=ra[m]+rb[l] for an m. l, pair (m, l) of T=T(k). An integral 2-chain 

F in M with aF= rbk can easily be constructed by using a characteristic 

surface F bounded by P in E=M-Int T. By definition, ~([k1, [k])= F. £/rb 
'(

mod 1), where F•El is the intersection number in M. But, F•El=F•El(in E)=

P•El(in aE)=-ra (Note that m•El=-1 in aE). So, ~b([k], [k])=-ra/rb=-a/b=

-s(k). This completes the proof .

The following corollaries for knots of finite order are easily obtained 

from Lemma 1.8 and the well-known properties of the linking pairing.

COROLLARY 1.9. The slope s(k c M) depends only on the homology class 

[k] e H1(M; Z). More generally, for two knots k C M, k' C M' and a homeo

morphism f: MM' of degree E(e= ± 1) such that f*[k]=•}[k'], we have 

s(k c M)= es(k' c M').

COROLLARY 1.10.

COROLLARY 1.11. The knot k c M is flat if o(k) is odd and k c M is 

amphicheiral (i.e., ] an orientation-reversing homeomorphism of M onto itself 

sending k to •}k).

COROLLARY 1.12. For the knot sum k4k' c M$ M' of any two knots k c M 

and k' c M', we have s(kk' C MM')= s(k c M) +s(k' c M').

COROLLARY 1.13. Let n be the order (_??_1) of s(kcM) in Q/Z. The knot 

sum of n copies of the knot k C M is flat.

COROLLARY 1.11 was used implicitly in the proof of Theorem 5.1 in [18], 

which provides a key to the argument of [19].

•˜ 2. A generalization of the Robertello invariant of a classical 

knot

Let M be a closed oriented 3-manifold with H1(M; Z2)=0. Each compo

nent of M is a Z2-homology 3-sphere. The Rochlin invariant (or p-invariant), 

p(M), of M is defined by

for any compact oriented spin (w2=0) 4-manifold W with a W= M (e.g. [13]). 
Throughout this section, S denotes a Z2-homology 3-sphere. Let k be a knot
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in S. A pair D C W of a proper disk D in a compact oriented 4-manifold W is 

admissible for a knot k C S, when S is a component of 6W, 0D= k, H1(6 W; Z2) 

= 0 and the Z2-intersection number [D+2]•Ex= x•Ex for all x e H2(W; Z2), where 

D2 is a (mod 2) 2-cycle obtained from D by attaching a (mod 2) 2-chain c2 in 

S with 6c2= -k. For each knot k C S, there is an admissible pair D C W with 

D being locally flat. [PROOF. Let a/b be a normal presentation of s(k) with 

a odd. Note that b is odd. Let (m, l) be an m. l. pair of T=T(k) such that 

[K]=a[m]+b[l] in H1(OT; Z) for the characteristic knot K of k in S. Con

struct W=S•~[-1, 1] U D2 X D2 identifying T•~1 with aD2 X D2 so that m•~1

=p x aD2, £ X 1= aD2 X q (p, q E aD2). Let E=S-Tnt T. Since [K]=0 in 

H1(E; Z2), we have [l]=[m]•‚0 in H1(E; Z2)=Z2. It follows that H1(0 W; Z2)=0 

and the pair D= k x [ -1, 1] U D X O C W is admissible for k X(-1) C S X(-1).] 

Let D+Q be a rational 2-cycle in W obtained from D by attaching a rational 

2-chain cQ in S with acQ =  k.

DEFINITION 2.1. o(k) = 8(k C S) = ([D]2-sign W)/16  4u(0 W) E Q/Z for any 

admissible pair DC W for kcS with a locally flat disk D. ([DQ]2 is the Q 

intersection number of [D+Q] E H2(W; Q).)

This invariant was defined by Robertello [30] for a classical knot and by 

Gordon [12] for a knot in a Z-homology 3-sphere. In their cases, it takes 

the value 0 or 1/2, but in our general case, it takes more values depending 

on the slope of the knot.

To check the well-definedness, let D' C W' be another admissible pair 

with a locally flat disk D'. The union =D U -D' is a locally flat 2-sphere 

in a compact oriented 4-manifold W"= WU  W', identifying two copies of 

S. Note that [~'] • x= x • x for all x E H2(W"; Z2), since H2(S; Z)=0. Then the 

Rochlin theorem ([10], [13], [22], [23], [31]) asserts that

in Q/Z. (We understand that p(a W") = 0 if 0W" = c.) But, []2= ~'[DQ ] 2 
  D~+ 2 _ D+ 2 D~+ 2 (since H 2(S; Q)=0), sign W"=sign W-sign W' and 

p(a W") = p(a W  S)  p(a W' -5), where we count [-D'+Q]2, [D'+Q]2 in W'. It 
follows that ([D]2-sign W)/16-p(OW)=([DQ ]2-sign W')/16-p(OW') in Q/Z, 
showing the well-definedness of O(k C S).

LEMMA 2.2. For the knot sum k1k2CS1S2 of two knots kzcS27 i=1, 2, 
o(k1k2 C S1S2)= o(k1 c S1) +o(k2 C S2)• 

This follows easily from the definition of 5-invariant.

LEMMA 2.3. Let D c W be an admissible pair for a knot k C S. Suppose 
D has just one non-locally flat point represented by a classical knot ko C S3.
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Then we have

PROOF. The inclusion (D, aD) c (W, S) is homotopic to a locally flat im
bedding i : (D, dD)--~(W, S) such that a(iD c W) = (k ko c S S3 = S) (cf. Fox

- Milnor [9]). Since [D]=[iD] in H2(W, S; Z) and H1(S; Z2)=H2(S; Z2)=0, we 
have [D+2=[iD+2] in H2(W; Z2), so that iD c W is admissible for the knot k#k0. 
Using H1(S; Q)=H2(S; Q)=0, we have also [D+Q]=[iD+Q] in H2(W; Q). Now 
the result follows from the definition of o-invariant and Lemma 2.2.

By Remark 1.6 and Corollary 1.7 we can obtain from the knot comple
ment E=S-Int T(k) a unique (up to homeomorphism) closed connected 
oriented 3-manifold M such that H1(M; Z) is infinite. Then, since H1(E; Z2)
=Z2, we have that H1(M; Z)/(odd torsion) ~' Z. Such a manifold is called a 

Z2-homology handle [18]. Let Z<t> be the integral group ring of the infinite 

cyclic group <t> generated by t. Let A(t) be the Alexander polynomial of M 
in Z<t> associated with an epimorphism r : ir1(M)-*<t> (See [20]), and A(t)2 be 
its modulo 2 reduction in Z2<t>. A(t) has the properties that A(t)=A(t-1) up 

to a multiple of t and A(1) is odd, so that we can deduce that A(t)2= A(t-1)2 
up to a multiple of t and A(1)2=1 e Z2, by a method analogous to [21]. In 

particular, A(t) (up to a multiple of t) does not depend on any choice of r and 
is an invariant of M. In [18], we defined an invariant E(M), being 0 or 1, of 
M such that

(I) (M) = 0 if and only if M is the boundary of a compact, connected, 
oriented spin 4-manifold W with an isomorphism

H1(M; Z)/(odd torsion)H1(W; Z)/(odd torsion) (~ Z),

induced by inclusion, and

(II) A(t)2 = s (M) (t2 + 1) + tin Z2Ct>/(t4 + 1) up to a multiple of t.
We have also the following (cf. [28], [12]):

LEMMA 2.4, e (M)/2= (A(1)2A(-1)2 -1)/16 in Q/Z.

PROOF. Write A(t)=a0+a1(t+t-1)+...+am(tm+t-m), a~ e Z. Since A(1) 
is odd, a0 is odd. Further,

A(1)-A(-1)=4(a1+a3+...+am'),

where m' is the greatest odd number such that m'< m. Using that ao is odd, 
A(t)2 is written in Z2<t>/(t4+1) as follows:

1+(a1+a3+...+am')(t+t-1).
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So, we have e(M)=a1 + a3 + • • • + ate, (mod 2). Using (A(1)-A(-1))/4=a1+a3

+... +am' we see that

Since A(1)-A(-1) (mod 4), let A(-1)=4a+A(1) for some a e Z. Then 
A(1)A(-1)=4aA(1)+A(1)2 and hence

for as desired.

The following theorem characterizes the a-invariant of a flat knot.

THEOREM 2.5. For any flat knot k C S with Z2-homology handle M, we 

have a(kc S) = e(M)/2 E {0,1/2} c Q/Z.

PROOF. Let (m, l) be an m. l. pair of T(k) with l=K(k) the characteristic 

knot of k. Suppose e (M)=0. Then M bounds a compact connected oriented 

spin 4-manifold W such that H1(M; Z)/(odd torsion) ~H1(W; Z)/(odd torsion). 

Construct W*=S•~[-1, 1] U D2 X D2, identifying T(k)•~1 with aD2 X D2 so that 

in 
_X 1=p x aD2, £ X 1= D2 X q, p, q E aD2. Clearly, a W*  S X (-1) = M. Then 
W= W* U  W, with the two copies of M identified, is a spin 4-manifold with 

boundary SX (-1)~ -S. Note that D=k X [-1, 1] U D2 X OC W is admissible 

for k x (-1) C S X (-1). Since [D+Q]2=0 and p (S X (-1)) _  sign W/16, it 

follows that a(k c S)=  a(k x (-1) C S X (-1)) = 0. Next, let e (M) =1. Let 

k0 c S3 be a classical knot with knot polynomial, congruent to t2+t+1 in 

Z2<t>/(t4+1). By Robertello [30], we have o(ko C S3)= 1/2. Let M' be the Z2

- homology handle of the knot sum k#ko c SS3= S which is also a flat knot. 

By an argument analogous to the proof of Theorem 5.1 of [18], we have e (M')

=0. Hence a (k#ko C S) = a (kc S) + a (k0c 53)= 0
, so that a (k c S) = a (k0 c S3)= 

1/2. This completes the proof.

LEMMA 2.6. Let k be a knot of finite order in the interior o f an oriented 

3-manifold M. Let a/b be a normal presentation o f the slope s (k c M). Let 

(m, l) be an m. l. pair of T=T(k) such that [K]=a[m]+b[l]. Construct W= 

MX [-1, 1] U D2 X D2, identifying T•~1 with aD2 X D2 so that m X 1-p X aD2, 

£ X 1=aD2 X q, p, q e aD2. Let D=k X[-1, 1] U D2 X 0 be a disk. We have 

[D+Q]2=-a/b, and [D+Q]2(mod 1)=s(kx(-1)cMX(-1))=-s(kcM).

PROOF. D'= £ X [-1, 1] U D2 X q is a disk with 6D'=£ X (--1). Let c be 

a rational 2-chain in S X (-1) with ac=  k x (-1). Then,
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(in MX(-1))=2X(-1)•c (in MX(-1))=c•€X(-1)(in M•~(-1)).

Now let c be the rational 2-chain (-1/rb)F•~(-1) with F being as used in 

the proof of Lemma 1.8. Then,

This completes the proof.

Since the characteristic knot of any knot of finite order is flat, the 
following theorem gives a reduction of the o-invariant of any knot in S to 
that of a flat knot in S.

THEOREM 2.7. For any normal presentation a/b of the slope s(kcS) with 
a odd, we have

in Q/Z, where K is the characteristic knot of k in S.

PROOF. Let (m, l) be an m. l, pair of T=T(k) so that [K]=a[m]+b[l]. 

Construct W= SX [-1, 1] U D2 X D2, identifying T•~1 with aD2 X D2 so that 

m x 1=p x aD2, £ X 1= aD2 X q, p, q e aD2. Since a, b are odd, we have H1(a W; 

Z2)=0. Note that D=kx [--1,1] U D2 X oC W is admissible for (k x (-1)c 

SX (-1))=(-kc -S). So,

Let D' be a disk obtained from the knot K X 1 C T(k) X 1 c a(D2 X D2) by taking 

a cone with vertex in Tnt (D2•~D2). D' = K X [ -1, 1] U D' is a disk in W with 

just one non-locally flat point represented by the torus knot ka, b C S3 of type 

(a, b). From the composite isomorphism

and [K]=b[k] in H1(T; Z), we see that [D']=b [D] in H2(W, S; Z). Since b is 
odd, D' C W is admissible for (K x (-1) C S X (-1)) = ( KC -5). By Lemma 
2.3,

The knot polynomial A(t) of ka,b with a, b odd has |A(•}1)|=1(cf. [9]), so that 

o (ka,b c S')= 0 (cf. Lemma 2.4 and Theorem 2.5). Thus, we have
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But, [D+Q]2=a/b by Lemma 2.6. Since [D']=b[D] in H2(W, S•~(-1); Z), we 

have [D'+Q]=b[D+Q] in H2(W; Q), so that [D'+Q]2=b2[D+Q]2=-ab. The result 

follows.•˜

3. Several elementary calculations of the Rochlin invariants

Let Ti be oriented solid tori with m. l. pairs (mi, li), i=1, 2. Let h: aTl-~ 

aT2 be an orientation-reversing homeomorphism such that h*[m1]=a[m2]+b[l]

(b•‚0). The adjunction space T1 U h T2 is the lens space -L(b, a)=L(b, -a)

=L(-b, a). Our orientation convention coincides with that of [13] (or [12]). 

For example, the boundary of a disk bundle over a 2-sphere with Euler 

number b(•‚0) is -L(b, 1).

The following reciprocity law is obtainable by a long, elementary 

number-theoretic calculation, arising from the Atiyah-Singer index theorem 

(cf. [14], [29]), but we shall prove it here by a different simple method using 

the o-invariant.

LEMMA 3.1 (Reciprocity Law). For coprime odd a, b>0,

PROOF. Write -L(b, a)= Tl U 1ZT2 by h in the above remark. Construct 

W = - L (b, a) X [-1, 1] U D2 X D2, identifying T2•~1 with aD2 X D2 so that 

m2 X 1=p x 017, £2 X 1= aD2 X q, p, q e aD2. Note that a W =  L(b, a) X (-1) + 

(-L(a, b)) = L(b, a) + L (a, b). Let k be a core of T2. D =  k x [-1, 1] U D2 X 

0C W is admissible for kcL(b, a). By Lemma 2.6, [D+Q]2=-a/b and hence 

sign W=-1. It follows that

By Theorem 2.7, O(kcL(b, a))=S(KcL(b, a))-{-(ab-a/b)J16, since s(kcL(b, a)) 
_ -a/b, where K is the characteristic knot of kcL(b, a). K bounds a disk 

in L(b, a), so 8(KcL(b, a))=0. We have

This completes the proof.

Using the fact that L(b, a)^'L(b, a') if and only if a•}1. a' 1 (mod b), one 

can compute the p-invariant of any lens space L(b, a) with b odd from this 

reciprocity law.
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COROLLARY 3.2 [13]. For coprime integers n, a with a•‚0 and odd n> 1
,

where a/n is the Legendre-Jacobi symbol (cf. [14]).

PROOF. We use the induction on n . It is true for n=1. Let n>1. 
Write a=n1n+a1, 0<|a1|<n, a1, odd. For a1>0 , by Lemma 3.1 and the in
duction hypothesis,

By the formula we have that

in Q/Z. Therefore,

For a1<0, by the above calculation, we obtain

so that

Since we see that

in Q/Z. Therefore,
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This completes the proof.

THEOREM 3.3. Suppose a flat knot k' in a Z2-homology 3-sphere S' is ob
tained from a knot k in a Z2-homology 3-sphere S so that

S'-IntT(k")=S-IntT(k)

and

[m']=c[m]+d[l],

[l']=[K(k)]=a[m]+b[l],

ad-bc=-1,

in H1(aT(k); Z) for m. l. pairs (m, l), (m', l') o f T(k), T(k') , respectively. Then b 
is odd and

PROOF. Note that [m']•‚0, [l']=0 in H1(S-IntT(k); Z2)=Z2 . By Mayer

- Vietoris sequence, b is odd if and only if H1(S; Z2)=0 . So, b is odd. Let
-L(b

, a)=T0 U hTi by an orientation-reversing homeomorphism h: To-T, 

such that

h*[m0]=a[m1]+b[l1],

h*[l0]=c[m1]+d[l1].

Let ki be a core of Ti. Let T* be a small regular neighborhood of m' in S

- Int T(k). Regard T* as a framed solid torus with framing determined by the 

annulus T * (1 aT(k). Next, push T* into S-T(k) . Then consider the mani

fold W= SX [-1, 1] U  W U D2 X D2, identifying T(k)•~1 with T1 so that m•~1

=m1, l•~1=l1, and identifying the framed T*•~1 with aD2 X D2 having the 

product framing, where W is a simply connected, compact spin 4-manifold 

with aW= -L(b, a) (cf. [16], [24]). The identifications m•~1=m1
, l•~1=l1 

imply the identifications m'•~1=hl0, K(k)•~1=l'•~1=hm0 (up to isotopy of 

aT (k)). Then note that a W= S X (-1) + S' =  S+ S' and H2(W; Q)=H
2(-W; 

Q)EE QE I3 One factor Q is represented by a closed surface F, extending a 

characteristic surface F for k x 1 c S X 1 and contained in the 3-manifold M 

= a(S X [-1, 1] U  W)  S X (-1) . M i s a Z2-homology handle obtained from 

S-Int T(k). The other factor Q is represented by a rational cycle suspend

ing a core of T*•~1. An intersection matrix on H2(W; Q) is non-singular 

and is a block sum of an intersection matrix on H2(-W; Q) and 0 1 
x, since 

FC M implies [F]2=0. So, sign W=-sign W. Now suppose d is even . We
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show that W is spin. Note that H2(W; Z2)=H2( W ; Z2) Q Z2 Ef3Z2 and the 

first factor of Z20 Z2 is represented by . and the second, a Z2-cycle c2 sus

pending a core of T*•~1. Since FCM, [F]2=0 in H2(W; Z2). Using the fact 

that d is even, we see that the Z2-linking number in S of a core of T* and a 

curve on aT* giving the framing of T* is 0 (mod 2) (Recall the construction 

of T*). So, [c2]2=0 in H2(W; Z2). Since  W is spin, it follows that W is spin. 

Therefore,

and

Next, let d be odd. Let k" c S" be a flat knot obtained from the flat knot 
k' c S' such that S"-IntT(k")=S'-IntT(k'), K(k")=K(k')=l"=l', and [m"]=

[m']+[l'] in H1(aT(k'); Z), where (m", l") is an m. l. pair of T(k"). We 

proceed to the proof by assuming the following lemma:

LEMMA 3.4.

Since [m"]=(c+a)[m]+(d+b)[l], [l"]=a[m]+b[l] and d+b is even, we 
see from the above argument that p(S")=p(S)+p(L(b, a)). By Lemma 3.4,

Using that 2a(k' C S')= 0 by Theorem 2.5, we have

for any given d. This completes the proof except for the proof of Lemma 3.4.

PROOF OF LEMMA 3.4. Let T" be a small regular neighborhood of m" in 

S'-IntT(k') with framing determined by the annulus T" (1 6T(k'). Push T" 

into S'-T(k'). Construct W= S' X [-1, 1] U D2 X D; U D2 X D2, identifying 

T(k')•~1 with aD2 X Dl so that m'•~1=p X aD~, £' X 1= 3D2 X q, (p, q e aD2) and 

identifying the framed T"•~1 with aD' X D2 having the product framing. Let 

D = k' X [-1, 1] U D2 X 01 be a disk. Note that a W= S' X (-1) + S"=  S' + S". 

By Lemma 2.6, [D+Q]2=0. Hence sign W=0, since H2(W; Q)= QEB Q and [D+Q] 

generates one factor Q and the intersection pairing on H2(W; Q) is non

singular. From construction, D C W is admissible for (k' X (-1) c S' x (-1)) 

=(-k'c -S'). So,

and
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This proves the lemma.

The following is a generalization of a result of Gordon [12].

COROLLARY 3.5. Let ki be a flat knot in a Z2-homology 3-sphere Si with an 
m. l. pair (mi, li) on T(ki) such that li= K(ki), i=1, 2. Let S=S1-IntT(k1) U h 
S2-Int T(k2) be the adjunction space obtained by an orientation-reversing 
homeomorphism h: aT(k1)-6T(k2) such that

h*[l1]=a[l2]+b[m2],

h*[m1]=c[l2]+d[m2],

ad-bc=-1.

Suppose S is a Z2-homology 3-sphere. Then b is odd and

PROOF. Note that [mi]•‚0, [li]=0 in H1(Si-IntT(ki); Z2)=Z2. By 

Mayer-Vietoris sequence, we obtain that b is odd if and only in H1(S; Z2)=0. 

So, b is odd. Let S+1=S1-IntT(k1) U h,S1 XD2 by a homeomorphism h': aT(k1) 

--~a(51 X D2) such that

p e 51, q e aD2. By Theorem 3.3,

Similarly, let S2 = S 1 X D2 U h„S2  Int T (k2) = S2  Int T (k2) U h'/-1S XD2 by a 
homeomorphism h": a(S1 X D2)-~aT(k2) or h'1: aT(k2)-~a(S1 X D2) such that

h"*[S1•~q]=c[l2]+d[m2],

or

By Theorem 3.3,

Construct W= S X [-1, 1] U Si X [-1, 1] U S2 X [-1, 1], identifying, for each 

i,i=1,2, two copies of Si-IntT(ki) in S•~1 and S+i•~(-1). Note that W is 

spin with signature 0 (cf. Siebenmann [34]). Since a W= S X (-1) + Si + S2
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+L(b, a) (Note the orientation convention of L(b, a)), it follows that

Noting that L(b,-d)=L(b,a) and 2S(k. cSJ=0, we have that

This completes the proof.

The following is a generalization of Theorem 2.5.

COROLLARY 3.6. For any knot k in a Z2-homology 3-sphere S with Z2

homology handle M, we have o(K(k) C S) = (M)/2.

PROOF. Let k' c S' be a flat knot stated in Theorem 3.3 with an extra 

condition that d is odd. Let W be the 4-manifold constructed in the proof of 

Theorem 3.3. K(k•~(-1))=K(k)X(-1) bounds a locally flat disk D in W, 

coming from a meridian disk of T0. Because d is odd, we can see that DC 

W is admissible for K(k x (-1)) C S X (--1). Hence

for [D+Q]2=0

by Theorem 3.3.

Thus, o(K(k) c S) = o(k' c S') = e (M)/2 by Theorem 2.5, since k' c S' has M as 
its Z2-homology handle by Corollary 1.7. This completes the proof.

This corollary and Theorem 2.7 show that the 5-invariant of any knot in 
a Z2-homology 3-sphere is determined completely by the Z2-homology handle 
and the slope of the knot.

•˜ 4. The Atiyah-Singer invariant of a cyclic action on a 3-manifold 

   Let W be a compact oriented piecewise-linear w-manifold with piecewise

linear Zn-action, n>1. For t e Z,, we denote F(t, W) = {x e W tx= x} and 

F(Zn, W)= U (~l)6ZnF(t, W). The Zn-action on W is semi-free if F(Zn,W)=

F(t,W) for any t(•‚1) e Zn, and free if F(Zn,W)=c. When n is prime, the 

Zn-action is necessarily semi-free. By Smith theory ([2], [3]), F=F(Zn, W) is 

the disjoint union of compact, proper, simplicial Zn-homology submanifolds 

of even codimensions, since each t E Zn is orientation-preserving by assump

tion. In particular, when w<5, F consists of compact proper submanifolds 

of even codimensions. Thus, if F~~, then w>2, and according as w=2, 3, 

4, ... , each component of F is a point in Int W, a compact proper 1-manifold,
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(a point in Int W or a compact proper surface),.... If the Zn-action on W is 
semi-free and F is a locally flat (w-2)-submanifold of W, then the orbit space 
W=W/Zn is also a compact oriented piecewise-linear w-manifold with orien
tation induced from W and F=F/Zn is a locally flat (w-2)-submanifold of W 
and the natural projection pr: WW is a branched Zn-covering, branched 
over F, which is induced by an epimorphism 8: H1(W F; Z) ±Zn sending 
each meridian of F in W to a unit of Zn. The following is a well-known fact:

4.1. The collection of locally flat compact proper (w-2)-submanifolds F 
in a compact oriented w-manifold W with an epimorphism 0 : H1(W  F; Z)-±Zn, 
sending each meridian of F in W to a unit of Zn, corresponds, by the branched 
covering, to the collection of compact oriented w-manifolds W with semi-free 
Zn-action such that W/Zn=W and F(Zn, W)=F is a locally flat compact proper 
(w-2)-submanifold.

[Note that for each x E '(D2 C D)= (x x st(x, F)C st(x, W ))is an unknotted 
disk pair and the epimorphism 8: H1(W-F; Z)±Zn induces an epimorphism 
8': H,(D°-Dx-2; Z)=Z--~Z,,, giving a unique branched Zn-covering space of 
Dx, branched over Dwx-2, that is a w-ball.]

First we consider a closed connected oriented 3-manifold M with free 
Zn-action. It is known by Casson-Gordon [5] that M is the equivariant 
boundary of a compact connected oriented 4-manifold W with semi-free Zn

-action such that F=F=(Zn, W) is c or a locally flat closed orientable surface.

DEFINITION 4.2. a (Zn, M) =  sign W + n sign W-[F]2(n2-1)/3, where 
[F]2=0 when F=~iS.

The well-definedness of the above definition follows easily from the 
Novikov addition theorem of signatures [1] and the following well-known 
fact (derived from the Atiyah-Singer G-signature theorem [1]) (See [14], p. 
181):

4.3. For a closed connected oriented 4-manifold W with semi-free Zn
-action such that F=F(Zn, W) is ¢ or a locally flat closed orientable surface F, 
we have

-signW+nsignW-[F]2(n2-1)/3=0 .

Clearly, a (Zn, M) is an invariant of the equivariant, orientation-preser
ving homeomorphism type of (Zn, M). Two kind of finer invariants but 
depending on each t E Zn are widely known. One is the Atiyah-Singer 
a-invariant, a(t, M) (cf. [14], p. 72) and the other, the Casson-Gordon invari
ant, 6r(11 1, 0), 0<r<n, associated with the homomorphism B : H1(]1; Z) ±Zn
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corresponding to the covering pr: MM (cf. [5], p. 42). From the definitions, 
we see the following:

4.4.

When n=2, a(G2, M)=a(t, M)=a1(1V1, 8), t•‚1, is an integer and called the 

Browder-Livesay invariant (cf. [14]).

Next we consider a closed connected oriented 3-manifold M with semi

free Zn-action such that F(Zn, M) = L ~ c. Note that L is a link in M. We 

shall define an analogous invariant a(Zn, M) of the equivariant, orientation

preserving homeomorphism type of (Zn, M) only when each component of L 

is a knot of finite order in M. A difficult point is that a(Zn, M) does not 

depend on any particular choice of the orientations of the components of L.

LEMMA 4.5. Let M be a closed oriented 3-manifold with a semi-free or 

free Zn-action. Let k be a Zn-invariant knot in M such that k is a component 

of L=F(Zn, M) or k (1 L=~. Then k is of finite order in M if and only if k=

k/Zn is so in M=M/Zn. Further, in this case, we have

ns(kCM)=s(kCM) (if kCL), or

s(kcM)=ns(kcM) (if k(1 L=~S).

Thus, for example, if H1(M; Q)=0 and L=/=~b, then each component of L 

is a knot of finite order in M.

PROOF OF LEMMA 4.5. The projection pr: MM induces a homomor

phism pr*: H1(M; Z)-H1(M; Z) sending [k] to [k] (if kCL) or n[k] (if k (1 L= 

fi). Hence if k is of finite order in M, then so is k in M. Conversely, assume 

k is of finite order in M. By Lemma 1.1, k has a characteristic surface F in 

M-Int T(k) with characteristic parallel link P(k) c aT (k). We may assume 

that T (k) (1(L  k)= ~b and L-k intersects F transversally (when (L-k) f ' 

~c ). Then we see that the lift F of F is a compact orientable surface in 

M-IntT(k), T(k)=pr-1T(k). In fact, F is an unbranched Zn-covering space 

of F or a branched Zn-covering space of F branched over (L-k) f F, accord

ing as whether (L-k) (1 F is q5 or not. Let r=#P(k) and write [P(k)]=ra[m]

+rb[l] in H1(6T(k); Z) for an m. l. pair (m, l) of T (k) such that the lift m of m 

is connected and the lift of l has n components (when k c L), or the lift of m 

has n components and the lift, l of l is connected (when k (1 L= 0). (We find 

such a pair easily when k (1 L= 0 or by noting 4.1 when k c L.) First, consider 

the case that k c L. For a component l of pr-1(l), (m, l) is an m. l. pair of 

T (k) and we have [SF] = ra[m] + rbn[~] in H1(dT (k); Z). So, rbn[k]=rbn[l]=0 

in H1(M; Z), showing that k is of finite order in M. Note that k bounds a 

rational 2-chain (1/rbn) F with F, an integral 2-chain extending F. By Lemma 

1.8, s(kCM)_ -~b([k], [k])=-F•El/rbn (mod 1)=ra/rbn (mod 1)=a/bn (mod 1),
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so that ns(k C M) = a/b (mod 1) = s(k C 1V1). Next, consider the case that k (1 L 
_ ~l. For a component m of pr-1(m), (m, l) is an m. l. pair of T(k) and we have 

[SF] = ran[m] + rb[?] in H,(aT (k); Z). So, rb[k]=rb[l]=0 in H,(M; Z). By 
Lemma 1.8, s(k C M)=  c ([k], [k])=an/b(mod 1)=ns (k C M). This completes 
the proof.

We assume L=F(Zn, M) is a link in M with components k1,..., kr being 

knots of finite order. Let W be a compact connected oriented 4-manifold 

with semi-free Zn-action such that a (Z, W) _ (Zn, M) and F=F(Zn, W) is a 

locally flat, compact proper orientable surface. Such a 4-manifold always 

exists. For example, construct W, _  MX [-1, 1 ] U D2 X Di U ... U D2 X Dr 

identifying a Zn-invariant T(ki)•~1 with aD2 X D2 so as to admit a Zn-action 

such that F(Zn, W1)=D*1U ... D with D? = ki X [ -1,1] U D2 X Oz, a disk. M, 

= a w, -( M) X (-1) is a closed connected oriented 3-manifold with free Z,

action. By [5], -M, bounds a compact connected oriented 4-manifold W2 

with a semi-free Zn-action such that F(Zn, W2)=F*2 is ~5 or a locally flat, 

closed orientable surface. The manifold W*= W, U W2 is the desired one. 

Orient F and then k1,..., kr so that aF= L= k, U kr. Let F+Q be a ra

tional 2-cycle in W obtained from F by attaching rational 2-chains c1,..., cr 

in M with aci = -k1, i=1, 2, ..., r. Define

where LinkM(ki, kj) is the Q-linking number of ki and kj in M. This is called 
the total Q-linking number of the oriented link LCM. A(L)=0 if L is con
nected.

DEFINITION 4.6. a(Zn, M)=  sign W+ n sign W ([F]2 ]2 + 2(L)) (n2 -1)/3.

To check the well-definedness, let W* be the 4-manifold constructed 
above, so that a(Zn, W*)_ (Zn, M) and F*=F=(Zn, W*)=D*1U ... U D!' U F2 . 
Orient F* so that aF*_ -L= U=1-k1. Let W= W U -W*. W is a closed 
connected oriented 4-manifold with semi-free Zn-action such that F=F(Zn, W)
=FU F* is a locally flat, closed oriented surface. By 4.3,

-signW+nsignW-[F]2(n2-1)/3=0.

By the Novikov addition theorem, sign W=signW-signW* and sign W=
signW-signW*. We show that [F]2=[F+Q]2-[F*+Q]2, where we count [F*+Q]2 
in W*. Note that F is Q-homologous to a sum

F+Q+F*+Q+z1+...+ zr,

where zi are rational 2-cycles in MC W. Using a collar of M in W, we see
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that the Q-intersection numbers, [F+Q]. [F*+Q], [F+Q]•E[zi], [F*+Q]•E[zj] and [zi]•E[zj] 

are all 0 for all i, j. Thus, [F]2=[F+Q]2-[F*+Q]2 and

Since [F*+Q]2+22(L)=1[D Q ]2+[F2 ]2 is not altered by any change of the 

orientations of D*1,..., D*r (that is, k1, ..., k,), we have proven the well

definedness of tx(Zn, M). [Note that for i•‚j, [D*+iQ]. [D*+jQ] (in W*)=D*i• D*+jQ

(in W*)=ki• cj (in M)=LinkM(ki,-kj)=-LinkM(ki, kj), where c, is a rational 

2-chain in M with ac, _ - k,, and D*+jQ=D*j+cj.]

Consider an oriented link L= Ui=1 ki in a closed connected oriented 

3-manifold M such that each ki is a knot of finite order and L bounds a 

compact oriented surface F in M. Push Int(-F)•~(-1) into the interior of 

-M•~[-1, 1]. Let F' be the result. Let Wn be the natural branched Z
n

covering space of -M•~[-1, 1], branched over F', so that a Wn = Mn +n(-M), 

where Mn is the natural branched Zn-covering space of M, branched over the 

link L, constructed by splitting M along F.

PROPOSITION 4.7.

REMARK 4.8. In the case of the double branched covering space S(L)2 of 
a Z -homology 3-sphere S, branched over a link L, we have sign W2=6(L) and 

a(Z2, S(L)2) _  i(L) - A (L c S), where 6(L) is the Murasugi signature of L, that 
is, 6(L) = sign (A + A') for a link matrix A associated with a Seifert surface 
for L (cf. [17], [4]). It follows that i(L) +A(L c S) is an invariant of the un

oriented link type of L c S, since a(Z2, S(L)2) is such (cf. [27], [17]). See also 

[11] for an analogous invariant in case L is a knot.

PROOF OF PROPOSITION 4.7. Since the Zn-action on a Wn  Mn = n( M) 

is the cyclic translation of order n on n copies of -M, we obtain that

where F', L are the lifts of F', L, respectively. Let li be the longitude de
termined by F(1 aT(kz) of k.. Write [K(ki]=a[mi]+bi[li], where mi is a 
meridian of T(ki). Let ki, mi be the lifts of ki, mi, and li be a component of 
the lift of li. We see that (mi, li) is an m. l. pair of ki and [K(ki)]=ai[mi]+
bi[li] with ai, bi such that ai/bi=ai/nbi by the proof of Lemma 4.5, since by 
the proof of Corollary 1.3 [P(ki)]=u[P(ki)] for an integer u>0 in H1(aT(k2); Z), 

N where P(ki) is the lift of the characteristic parallel link P(ki) on T(ki). 

Clearly, [F'+Q]2=[F']• [F'+Q] (where [F'] E H2(Wn, Mn; Z)) =  22(L c Mn) 

~i=1 Link n (1z, ki). By the proof of Lemma 1.8, LinkMn(li, ki)=-ai/bi=-
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ai/nbi. But, -ai/bi=LinkM(ei, kJ=  LinkM(k~, kJ, because °i is homo

logous to U#1-k~ in M-k. Therefore,

This completes the proof.

LEMMA 4.9. Let M be a closed connected oriented 3-manifold with semi

free Znn'-action. If L=F(Znn', M)~~75, then assume that each component of L 
is a knot of finite order in M. Then

where Zn is a subgroup of Znn' of order n and Zn'=Znn'-/Zn.

PROOF. Let k1, ..., kk be the components of L. Let W be a compact 
connected oriented 4-manifold with semi-free Znn'-action such that a(Znn', W)=

(Znn', M) and F=F(Znn', W)=D1 U•• • U Dr U F2, where Di is a locally flat 
proper disk with aDi= ki and F2 is a locally flat closed orientable surface or 

~. Let W'=W/Zn, D'i=Di/Zn, F'2=F2/Zn, k'=k/Zn and W=W/Znn'. By de
finition,

Clearly, [F'2]2/n=[F2]2. We show that [D'+iQ]/n=[D+iQ]2 . To see this, let D'1* be 

a slight translation of D'1 so that D'*i fl Di=~i5 . dDi* gives a longitude l'i of 

k'i. Write [K(k'i)]=a'i[m'i]+b'i[l'i], where m'i is a meridian of k'i . Let (mi, li) be 

an m• l•Epair of ki obtained from the lift of (m'i
, l'i). [Note that the lift of D'*i 

has n components.] We have [K(ki)]=ai[mi]+bi[li] with ai
, bi such that ai/bi

=a'i/b'in (cf. the proof of Proposition 4 .7). By Lemma 2.6, [D+iQ]2=-ai/bi=

-a'i/b'in=[D'+iQ]2/n . Therefore,

The proof of the case L=c is easier. This completes the proof.

Consider two closed connected oriented 3-manifolds Mi, i=1, 2, with 
semi-free Zn-actions such that Li=F(Zn, Mi)~c5 and each component of Li is
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of finite order. Let ki be any component of Li. Construct a knot sum k1#k2 
CM1#M2 which admits a semi-free Zn-action induced by the Zn-actions on M1 
and M2, so that F(Zn, M1#M2)=(L1-k1) U k1#k2 U (L2-k2). By definition, we 
see the following:

LEMMA 4.10.

Actual calculations of the a-invariants will be made at another oppor

tunity.

•˜ 5. A cyclic action of odd order on a, spin 4-manifold

Let W be a compact oriented 4-manifold with semi-free Zn-action such 

that n is odd and F=F(Zn, W) is c or a locally flat surface. Let W=W/Zn 

and F=F/Zn (^' F). In case F~ ¢, F and F are orientable by 4.1, because a 

meridian of a non-orientable component of F represents an element x with 

2x=0 in H1(W-F; Z).

LEMMA 5.1. W is spin if and only if W is so.

PROOF. A compact 4-manifold X is spin if and only if its double D(X) 
= a(XX [-1, 1]) is so. Hence we may assume that a w= aF= ~5. First, sup

pose W is spin. By the Wu formula, w2(W) is equal to the second Wu class 
v2(W), so that v2(W)=0. Let pr: WW be the natural projection. A transfer 
argument shows that pr*: H*(W; Z2)H*(W; Z2) is injective, for n is odd. For 
any x e H2(W; Z2), pr*(v2(W) U x) =pr*(x U x)=pr*(x) Upr*(x)=v2(W) Upr*(x) 
=0, so that v2(W) U x=0. By Poincare duality, v2(W)=0. Thus, W is spin. 

Next, suppose W is spin. If F= ~iS, then W is spin, because the unbranched 
covering projection preserves the characteristic classes. Let F~q. Let N 
be a regular neighborhood of F, and E=W-IntN. Since W is spin, so are 

N and E. Let pr-1(E)=E. Since pr|E is an unbranched covering, v2(W)| E
=0. Let N; be a component of N and pr-1(Nj)=Nj. Note that Nj is a disk 

bundle over a component Fj of F with Euler number, say ej. Nj is a disk 
bundle over Fj with Euler number nej. Note that Nj is spin if and only 
if nej is even. Using that n is odd, we see that N is spin, i.e., v2(W)|N=0, 
and pr*: H1(aN; Z2)-~H1(aN; Z2) is an isomorphism. By the Mayer-Vietoris 

sequence of (W; E, N), we find u e H1(aN; Z2) such that a(u)= v2(W), where 
~: H1(aN; Z2)- H2(W; Z2) is the coboundary. We have u e H1(aN; Z2) such 
that pr*(u)=u. Consider the following commutative square:
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Then we see that pr*a(u)= v2(W). Then pr*(o(u) U x)=pr*(o(u)) Upr*(x)= 

v2(W) Upr*(x)=pr*(x) Upr*(x)= pr*(x U x). Since pr*: H*(W; Z2)~H*(W; Z2) 
is injective, a(u) U x= x U x for all x E H2(W; Z2). By definition, a(u)= v2(W). 

Since W is spin, a(y)= v2(W) = 0. So, v2(W) =pr*(a(u)) = 0. That is, W is spin. 
This completes the proof.

REMARK 5.2. When n is even, Lemma 5.1 is not true in general. Such 

examples are obtained easily in the case of a non-free Zn-action. To give an 

example of the case of a free Zn-action, let T be a solid torus with m•El• pairs 

(m, l), (m, l') such that [l'] =[l]+[m]. Let h: TT be a homeomorphism 

sending (m, l) to (m, l'). Let W and W be the mapping tori of h and hn, re

spectively. W and W are compact orientable 4-manifolds with natural Zn

- covering WW. W is not spin, but for even n, W is spin.

•˜ 6. The case of a free involution

Let S be a Z2-homology 3-sphere with a free involution, i.e., a free Z2

- action. Let S=S/Z2. Let k be a knot in S with [k]•‚0 in H1(S; Z2)=Z2. The 

slope s(k) has a normal presentation of the form a/2b (a, b are odd). [In fact, 

the linking pairing ~5, restricted to the 2-primary component H1(S)2 of H1(S; Z) 

is non-singular. For an odd b', 0~b'[k] E H1(S)2=Z2. So, b12~b([k], [k])= 

~b(b'[k], b'[k])=1/2. By Lemma 1.8, the assertion follows.] Construct W=S 

X [-1, 1] U D2 X D2, identifying T(k)•~1 with aD2 X D2 such that m•~1=p X aD2, 

£ X 1=aD2 X q (p, q E aD2) for an m• l• pair (m, l) of T(k) with [K(k)]=a[m]+

2b[l]. ~a W  S X (-1) is a Z2-homology 3-sphere. Denote it by S(k; -2b/a). 

Note that ±k= 0 X aD2 (CD2 X 6D2) c S(k; - 2b/a) has the slope -2b/a. We 

say the knot k with the orientation, specified by K(k)=K(k) is the dual knot 

of k C S with respect to the normal presentation a/2b of s(k). Let k' C S be 

another knot with [k']•‚0 in H1(S; Z2)=Z2, and a'/2b' be a normal presenta

tion of s(k').

LEMMA 6.1. p(S(k'; -2b'/a'))=p(S(k; --2b/a)) if a'b'~ab(mod 4).

PROOF. Let W' = S X [-1, 1] U D2 X D2, identifying T(k')•~1 with aD2 X D2 

so that m'•~1=p x aD2, £' X 1= aD2 X q (p, q E aD2) for an m•El•E pair (m', l') of 

T(k') with [K(k')]=a'[m']+2b'[l']. Construct W=W' U  W, identifying two 

copies of S•~(-1) in W' and W. Since ab>0, a'b'>0, by Lemma 2.6 we see 

that sign W=signW'=-1. Hence sign W=0. We show that W is spin. 

Let #P(k)=r, P(k')=r'. We have o(k)=2br and o(k')=2b'r'. Note that brk 

is Z-homologous to b'r'k' in S. Let c be a 2-chain in S•~(-1) with ac= 

brkx(-1)  b'r'k' X (-1). Letc=b'r'D'+c-brD be an integral 2-cycle in W, 

where D = k x [-1, 1] U D2 X 0 C W, D' = k' X [-1, 1] U D2 X 0 C W'. Let c2 be a
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Z2-cycle in S•~(-1) representing a generator of H2(S•~(-1); Z2)=Z2. The 

Z2-cycles c2 and c (mod 2) form a basis of H2(W; Z2)=Z2 Q Z2. Clearly, [c2]2=

0. We show that [c]2.0 (mod 2). Since H2(S; Q)=0, c is Q-homologous to 

b'r'D'+Q-brD+Q, hence by Lemma 2.6,

[C]2=b'2r'2(-a'/2b')-b2r2(-a/2b)

=(abr2-a'b'r'2)/2

•ß (ab-a'b')/2 (mod 2), for r2•ß1•ßr'2 (mod 4)•ß

0 (mod 2), for ab-a'b'•ß0 (mod 4).

Thus, W is spin and

This completes the proof.

DEFINITION 6.2. p(Z2, S)= p(S(k; -2b/a)) e Q/Z for any knot k in S with 

[k]•‚0 in H1(S; Z2) and any normal presentation a/2b of s(k) with ab-1(mod 

4).

Note that the slope s(k) of a knot k in S with [k]•‚0 in H1(S; Z2) has 

necessarily a normal presentation a/2b with ab 1(mod 4). [In fact, if ab! 

-1 (mod 4), then take (a+2b)/2b as the normal presentation of s(k).] By 

Lemma 6.1, p(Z2, S) is well-defined and is an invariant of the equivariant, 

orientation-preserving homeomorphism type of (Z2, S).

LEMMA 6.3. For any knot k in S with s(k)=1/2, we have

where k C S is a knot which is the lift of k.

PROOF. Let k c S(k;  2/1), k c S(k;  2/3) be the dual knots of k in S 
with respect to the normal presentations 1/2, 3/2 of s(k), respectively. s(k)=
-2/1=0, s(k)=-2/3. We may consider that E=S-IntT(k)=S(k; -2/1)-

IntT(k)=S(k; -2/3)-IntT(k) and that k, k, k have the same characteristic 
surface in E (cf. Corollary 1.3). We find m. l. pairs (m, l), (m, l) of T(k), T(k) 
such that

[m]=[m]-[l],

[l]=[K(k)]=-2[m]+3[l]

in H,(aE; Z). By Theorem 3.3,
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Here, ~c(L(3, -2))=p(L(3, 1))=(1  3)/16= -1/8 by Lemma 3.1. By Corollary 
1.7, the knots k c S and k C S(k;  2/1) have the same Z2-homology handle M. 
By Lemma 4.5, k c S is flat. We see easily that the Z2-homology homology 

N handle of k c S is a double covering space M of M. By Lemma 4.2 of [18], 
s(M)=e(M). Since k, k are flat, it follows from Theorem 2.5 that

This completes the proof.

COROLLARY 6.4. a(k CS) is invariant for any Z2-invariant flat knot k c S.

PROOF. By the natural projection SS, any Z2-invariant flat knot k in 

S corresponds to a knot k in S with s(k)=1/2 by Lemma 4.5. This corollary 
follows from Lemma 6.3, since both p(S(k; -2/1)) and ,a(S(k; -2/3)) are in
variat for any knot k in S with s(k)=1/2 by Lemma 6.1.

This corollary is generalized as follows:

LEMMA 6.5. o(K(k)CS)-{-(b2-1)/16 e Q/Z is invariant for any Z2-invariant 
knot k in S, where b is the order (> 1) of the slope s(k) e Q/Z.

PROOF. Let a/2b be a normal presentation of the slope s(k C S). Let 

(m, l) be an m. l. pair of T(k) such that [K(k)]=a[m]+2bl[]. Let (m, l) be an 
m. l. pair of the lift T(k) of T(k), obtained by the lift of (m, l), so that l is Z2

-invariant. We have [K(k)]=a[m]+b[l]. Let k' C aT(k) be a Z2-invariant knot 
in S such that [k']=2[m]+b[l](i.e., [k']=[m]+b[l]). The knot k' is flat. In 
fact, by Lemma 1.8, s(k')= c([k'], [k']) =  b2q([k], [k]) =-b2(-a/b)=0 in Q/Z. 
We show that

Then the assertion follows from Corollary 6.4. Construct W= S X [-1, 1] U 

D2 X D2, identifying T(k)•~1 with aD2 X D2 so that m X 1=p X aD2, L X 1= aD2 X q 

(p, q E aD2). D= k X[-1,1] C D2 X 0 C W is admissible for  k c S. So, 

a( k C  S) = ([DQ ] 2  sign W)/16 -(a W). The knot  k' C  S bounds a disk 

D' in W with just one non-locally flat point represented by a torus knot k2,b 

c S3 of type (2, b). D' C W is also admissible. Hence by Lemma 2.3, a( k' c 

 S) + a(k2 , b c S3) = ([DQ ]2  sign W)/16 -1i(a W). a(k2, b C S3) = (b2 -1)/16, for ex

ample, by Lemma 2.4 and Theorem 2.5, since the knot polynomial A(t) of k2,b 

has |A(1)|=1,|A(-1)|=b (cf. [7]). Note that [D+Q]2=-a/b, [D'+Q ]2=-ab and 

o(k C S) = a(K(k) C S) + (a/b  ab)/16 (cf. Lemma 2.6, Theorem 2.7). We have
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This completes the proof.

DEFINITION 6.6. o (Z2, S)== a (K(k) C S) + (b2 -1)/16 e {0,1/2} 1/2}c Q/Z for any 

Z2-invariant knot k C S, where b is the order (> 1) of s(k) e Q/Z.

By Lemma 6.5, o(Z2, S) is an invariant of the equivariant homeomorphism 

type of (Z2, S). Clearly, o(Z2,  S) _  o(Z2, S) = o(Z2, S).

PROPOSITION 6.7. Let k be a knot in S with [k]•‚0 in H1(S; Z2).

(1) ,u(S(k; -2b/a))=p(Z2f S)-{-1/8-}-8(Z2, S) for any normal presentation 
a/2b of s(kCS) with ab.-1 (mod 4),

(2) p(( )(k; -2b/a))=-,u(Z2i S)+ 1/8 for any normal presentation 
a/2b of s(kC-S) with ab--1 (mod 4),

(3)

PROOF. (1) follows from Lemma 6.3 since by Lemma 6.1 1i(S(k; -2b/a)) 

_ p(S(k';  2/3)) for any knot k' C S with s(k')=1/2. To see (2), it suffices to 

show that p(( )(k;  2/3))== -p ((k;  2/1)) + 1/8 for any knot k in S with 

s(k)=1/2. Write [K(k C S)] _ [m] +2[1 ~and [K(k C -5)] = 3 [in'] +2['] for m. l. 

pairs (m, l) and (m', l') of k C S and k C  S. Construct W= S X [-1, 1] U D2 

X Di and W' _ ( S) X [ -1,1] U D2 X D2, identifying T (k C S) X 1 with aD2 X Di 

and T (k C  S) X 1 with aD2 X D2 so that (m X 1, ? X 1) _ (p X aD~, aD2 X q1) and 

(in' X 1,1' X 1) _ (p' X aD2, aD2 X q2) (p, p', q, q' e dD2). Construct W= W' U W 

identifying S•~(-1) with (-S)•~(-1). By Lemma 2.6, sign W'=signW=-1, 

so that sign W=-2. Let D=k•~[-1, 1] U D2 X 01 C W, D' = k x [-1, 1] U D2 X 

°2C W'. The 2-sphere D' U  D has the self intersection number -2 in W, 

so that W is spin (cf, the proof of Lemma 6.1). Since aW=S(k; -2/1) U (-S) 

(k; -2/3), we have

showing (2). To see (3), note that p((  )(k;  2/3)) = p (Z2i  S) + 1/8 + o (Z2, 
-5) by (1) for any knot k C  S with s(k) =1/2 . But, p(( )(k,  2/3)) 

 p(Z2, S) + 1/8 by (2). Hence p (Z2, -S)=  p (Z2i S) + a (Z2f S). This com
pletes the proof.

LEMMA 6.8. Suppose H1(S; Zp)=0 for any prime p ± 3 (mod 8). Then 
o(Z2, S)=0.

PROOF. Let k C S be a Z2-invariant flat knot with k=k/Z2 C S= S/Z2. 
Let M be the Z2-homology handle of k C S (cf, the proof of Lemma 6.3). The 

Z2-homology handle of k C S is a double covering space, M of M. Let A(t), 

A(t) e Z<t> be the Alexander polynomials of M, M, respectively. Take the 
infinite cyclic covering MM associated with an isomorphism H1(M; Z)/(odd
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torsion)<t>. Clearly, M=M/<t2>. The Zp-reductions A(t)p, A(t)p of A(t), 
A(t) are given as follows:

A(t)p=the characteristic polynomial of t*: H1(M; Zp)H1(M; Zp),
A(t)p=the characteristic polynomial of t2*: H1(M; Zp)H1(M; Zp)

up to units of Zp<t>. Hence A(t2)p=A(t)pA(-t)p up to units of Zp<t>. 

H1(S; Zp)=0 implies H1(M; Zp)=Zp, so that by the Wang exact sequence 

t2*-1: H1(M; Zp)H1(M; Zp) is an isomorphism. So, A(1)p•‚0 in Zp. Noting 

that p ± 3 (mod 8), we see that |A(1)A(-1)|=pa11pa22...parr for prime numbers 

p, with p2= ± 1(mod 8) (ai> 0). Therefore, Lemma 4.2 of [18], Lemma 2.4 and 

Theorem 2.5 show that

in Q/Z. This proves Lemma 6.8.

The following is our main assertion of this section, but the proof will be 

given in Section 8.

THEOREM 6.9. For a Z2-homology 3-sphere S with free Z2 action,

in Q/Z.

Here are examples of irreducible Z2-homology 3-spheres with free Z2

action, which show the independence of the invariants a(Z2, S)/16( E Q/Z), 

2p (Z2, S) and o (Z2, S) appearing in Theorem 6.9.

EXAMPLES 6.10. Let kC 53 be a classical knot with m. l. pair (m, l) on 

T(k) such that l=K(k). Let n be an odd integer >0. Let (m, l') be an m. l. 

pair on T(k) such that [l]=2n[m]+[l']. Construct W= S3 X [-1, 1] U D2 X D2 

identifying T(k)•~1 with aD2 X D2 so that m X l= p x aD2, £' X 1=aD2 X q (p, q 

e aD2). Let S(k)2 be the double branched covering space of S3 branched 

over k, and W= S(k)2 X [-1, 1] U D2 X D2 be the double branched covering 

space of W branched over the disk D = k x [-1, 1] U D2 X 0. Note that S(k)2 

is a Z2-homology 3-sphere, so that S= a W S(k)2 X (-1) is a Z2-homology 

3-sphere which is the double covering space of S= a W S3 X (-1) with 

H1(S; Z)=Z2n. Also, note that a(Z2, S(k)2) = -a(k) by Remark 4.8, where a(k) 

is the knot signature of k, and k'=0 X aD2 C S has the slope -1/n. We have 

the following:

(1)
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(2)
(n-1 (mod 4))

(n--1 (mod 4))

(3)

(1) and (3) follow easily. To check (2), use Proposition 6.7.

(6.10.1) Let k be a trefoil with a(k) = ± 2 and n=8b-3 for any odd b > 1. 
S is a Seifert 3-manifold (cf. [25]), and therefore so is S. In particular, S is 
irreducible. We have a(Z27 S)/16 =1/8 and p(Z2, S) = o (Z2, S) = 0 (since o (k c S3) 
=1/2).

(6.10.2) Let k be a torus knot of type (a, 2) (a>0) with a(k) = a -1 and 
a -1 (mod 4). Let n=16b+a>0 for an non-zero integer b. S is a Seifert 
3-manifold (cf. [25]), and so is S and hence S is irreducible. We have 6(k)= 
n -1(mod 16) and o(k C S3) = (a2 -1)/16 = (n2 -1)/ 16 (mod 1). So, a(Z2, S)/16 = 
o(Z2, S) = 0 in Q/Z and 2p(Z2, S)= 1/4.

(6.10.3) Let k be a figure eight knot with 6(k) = 0 and o (k c S3)= 1/2. 
For n=16b+1 with any non-negative integer b, S is a Seifert 3-manifold 

(b=0) or a hyperbolic 3-manifold (b>0) by Thurston [35], and therefore so is 
S and hence S is irreducible. We have a(Z2, S)/16 = 2p(Z2, S) = 0 in Q/Z and 
o(Z2, S)=1/2.

LEMMA 6.11. For any two Z2-homology 3-spheres Si with free Z2-action, 

i=1, 2, there exists a Z2-homology 3-sphere S with free Z2-action such that

PROOF. Let ki be a knot in Si with s(ki)=1/2. Let ki C Si (ki, -2/1) be 
the dual knot of ki with respect to the normal presentation 1/2. Consider 
the knot sum k1k2c S1(k1, -2/1)S2(k2, -2/1) which is a flat knot. Let kc S 
be a knot with H1(S; Z)/(odd torsion)=Z2 and s(k)=1/2 whose dual knot is 
the above knot sum. The double covering space S of S is a Z2-homology 
3-sphere with desired properties (See Lemma 4.10, Lemma 2.2 and the proof 
of Theorem 6.9 in Section 8). This completes the proof.

The following is obtained from Examples 6.10 and Lemma 6.11.

COROLLARY 6.12. For any integers m1, m2 and m3, there exists a Z2-homo
logy 3-sphere S with free Z2-action such that a(Z2, S)/16 = m1/8, 2p(Z2, S) = m2/4 
and 5(Z2, S) = m3/2 in Q/Z. [Note that 8p(Z2-homology 3-sphere) = 0 in Q/Z, so 
that by Theorem 6.9 a(Z2, S) is an even integer.]
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•˜ 7. Some applications of the case of a free involution

In this section, we shall obtain some consequences of Theorem 6.9 (which 

will be proved in Section 3).

COROLLARY 7.1 [37]. For a Z -homology 3-sphere S with free Z2-action,

PROOF. Since 2p(Z homology 3-sphere) = 0, we have 2p(Z2 f S) = 0. By 
Lemma 6.8, o(Z29 S)=0. By Theorem 6.9, the proof is completed.

COROLLARY 7.2 [29]. Let Z2 act freely on the lens space L(b, a), so that 
L(b, a)/Z2=L(2b, a). For any odd b, we have

PROOF. We may assume that a, b are odd integers >0 and ab-1(mod 4). 
Then

and

We show that

is 0 in Q/Z. In fact,

because and Since ab-1

(mod 4), we can write a = 4n + e, b = 4n' + e for the same e = ±1. So,

since e -1 and 1 +( 1)a (q e Z) are even. Thus,

Now we can check directly that I=0, according as n is odd or even and e is 

1 or -1. Therefore, by Theorem 6.9
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This completes the proof.

THEOREM 7.3. For any two Z2-homology 3-spheres S, S' with free Z2-action, 
o (Z2, S) = a (Z2, S') i f and only i f there exists a compact connected oriented 
4-manifold W with free Z2-action such that d (Z2, W) _ (Z2, S' U -S) and W=
W/Z2 is spin. In this case, we have

in Q/Z for any such 4-manifold W. Further, we can take W so that H1(W; Z2)=
0.

REMARK 7.4. We can use Theorem 7.3 to see the existence of a fake P4 
and the existence of the exotic free involution of S4 by Cappell-Shaneson [6] 
and Fintushel-Stern [8].

PROOF OF THEOREM 7.3. Assume the existence of W in the statement of 
Theorem 7.3. Let k C S, k' C S' be knots of the slope 1/2. Attaching two 
2-handles to W along T(k) and T(k'), we can obtain a spin 4-manifold W' 
such that sign W'=signW and a W' = S' U  S with S'=S'(k';-2/1) and S=
S(k, -2/1) or S(k, -2/3). Then we show that only the case S=S(k; -2/1) 
can occur. Note that

Hence,

in Q/Z. By Theorem 6.9,

Since p (S') _ p (Z2, S'), it follows that

If S=S=(k; -2/3), then by Proposition 6.7, 2 i (S) = 21c (Z2, S) + 1/4. But, 
2a(Z2f S) = 2a(Z2, S') = 0. So, this is impossible. Thus, we have S=S(k, -2/1), 

so that p (L) _ p (Z2, S) and hence o (Z2, S') = a (Z2, S) and p (Z2, S') - p (Z2, S)= 
 sign W/16. Then we also have
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Conversely, assume that o(Z2, S) = o(Z2, S'). Let k C S, k' C S' be knots 

of the slope 1/2. Let (m, l) be an m. l. pair of T (k) such that [K(k)]=[m]+2[l]. 

Let -P3= -L(2,1)=To U hTl for an orientation-reversing homeomorphism 

h: dTo-~aT1 such that h*[m0]=[m1]+2[l1], where Ti are solid tori with m. l. pair 

(mi, li), i=0, 1. Construct W0=S X [ 1, 1] U (-F3) X [ 1, 1], identifying T•~1 

with T1•~(-1) so that m•~1=m1•~(-1), l•~1=l1•~(-1). Then a Wo =  S U M 

U  P, where M is the Z2-homology handle of k C S and P P3. Similarly, 

construct Wo= S' X [-1,1] U ( P3) X [-1, 1] with a Wo S' U M' U -P', where 

M' is the Z2-homology handle of k' C S' and P' P3. Since o(Z2, S) = o(Z2, S'), 

we have £ (M) _ e (M') (cf. Lemma 4.2 of [18] and Theorem 2.5.). Construct 

W1= Wo U  Wo identifying -P with P'. W1 is an oriented spin 4-manifold 

such that a W1=  S U M U S' U  M' and the natural homomorphisms from 

Hi(S; Z2), H1(M; Z2), H1(S'; Z2) and H1(M'; Z2) to H1(W1; Z2) are isomorphisms. 

[To see that W1 is spin, note that W0, W'0 are spin and H2(W1; Z2) is generated 

by Z2-cycles in W0 and W'0.] Let k* be a knot in M representing a generator 

of H1(M; Z)/(odd torsion)=Z. Let k'* be a similar knot in M'. Let c be a 

Z2-chain in W1 with ac=  k* + k'*. Let W2 be a 4-manifold obtained from 

W1 by identifying T(k*) in M with T(k'*) in -M' by an orientation-reversing 

homeomorphism (T(k*), k*)(T(k'*), k'*) so that the Z2-cycle c* induced from 

c has [c*]2=0. W2 is spin, since H2(W2; Z2) is generated by c* and Z2-cycles in 

W1. Note that a W2-(' SU  S)=M" is a Z2-homology handle. (M) = s (M') 

implies a (M") = 0. [In fact, the product of the Alexander polynomials of M 

and M' is the Alexander polynomial of M".] By Theorem 4.1 of [18], there 

is a compact connected spin 4-manifold W" with a W" = M" such that 

H1(M"; Z)/(odd torsion) >H1(W"; Z)/(odd torsion) (~ Z). Construct W3=W2 

U  W" identifying two copies of M". W3 is spin, since H2(W3; Z2) is gene

rated by Z2-cycles in W2 and W". a 1473 = S' U  S. H1(W3; Z2) = Z2 + Z2. By a 

surgery, we can obtain from W3 a compact connected oriented spin 4-mani

fold W with a W= S' U  S such that the natural homomorphisms from 

H1(S; Z2) and H1(S'; Z2) to H1(W; Z2) are isomorphisms. We have H1(W; Z)/

(odd torsion)=Z2. Then the desired 4-manifold W is a double covering space 

of W. [To check that H1(W; Z2)=0, use the Thom-Gysin exact sequence 

corresponding to the double covering WW.] This completes the proof.

•˜8. The case of a non-free involution

Let S be a Z2-homology 3-sphere with non-free Z2-action. Since the 

action is assumed to be orientation-preserving, it follows from Smith theory 

that k=F(Z2, S) is a knot. Let S=S/Z2 and k=k/Z2. Let pr: SS be the
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natural projection. Using that pr|S-k: S-kS-k is an unbranched 
covering, we see that pr: 7r1(S, x)-±ir1(S, prx) is onto for x e k, so that pr*: 
H1(S; Z)H1(S; Z) is onto. Thus, S is also a Z2-homology 3-sphere. We 
shalll show the following:

THEOREM 8.1. For any normal presentation a/b of the slope s(k) of the 
knot k=F(Z2, S) in S such that ab-1(mod 4), we have

in Q/Z.

The following is a special case of Theorem 8.1, but is a key to proving 
Theorem 6.9 (which we shall prove in this section) and Theorem 8.1.

LEMMA 8.2. If s(k)=O, then

PROOF. By Lemma 4.5, k is flat in S. Let M be a Z2-homology handle 

of k c S. Suppose e()= M0. Then 11?! bounds a compact connected oriented 

spin 4-manifold W such that H1(M; Z)/(odd torsion)H1(W; Z)/(odd torsion) 

(='Z) by Theorem 4.1 of [18]. Let (m, l) be an m. l. pair of T(k) with l=K(k). 

Construct W*=S•~[-1,1] U D2 X D2, identifying T(k)•~1 with aD2 X D2 so 

that m X 1=p x aD2, x 1= aD2 X q, p, q e aD2. Clearly, a W*  S X (-1) = M. 

Then W = W * U  W is a spin 4-manifold with boundary S•~(-1). Let W be 

the double branched covering space of W, branched over the disk D = k x 

[-1, 1] U D2 X 0. We have W = W* U  W, where W*=S•~[-1, 1] U D2 X D2 and 

a W *  S X (-1) =  a W= M is a Z2-homology handle of the flat knot kin S, 

and W is a double covering of W. Since W is spin and H1(M; Z)/(odd torsion) 

 H1(W; Z)/(odd torsion) (cf. [18], Corollary 4.1), it follows that W is spin. 

Note that the disk D = k x [-1, 1] U D2 X 0 has [D+Q]2=0 in W* C W, since 

H1(M; Q)=Q. Then

so that

i.e.,

Next, supposes (1f)= 1. Let ko c S3 be a classical knot with a (k0)= 1/2. 
Let M' be the Z2-homology handle of the knot sum k k0 C S 53= S. We have
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s (M') = 0 (cf. Theorem 2.5). Let S3(k0)2 be the double branched covering space 
of S3, branched over k0. It is well-known that S3(k0)2 is a Z2-homology 
3-sphere. Since S#S3(k0)2 is a double branched covering space of S, branched 
over the knot k#k0, the above argument shows that

Clearly, ("' (S1T S3(k0)2) = p (S) + p (S3(k0)2). By Lemma 4.10, Q' (Z2, SITS 3(k0)2) = 
a(Z2, S) + a(Z2, S3(k0)2). To complete the proof, it remains only to prove that 
,a(S3(k0)2)=a(Z2, S3(k0)2)/16 in Q/Z. Let F be a connected Seifert surface of k0 
in S3. Push Tnt F into Int D4. Let F' be the resulting proper surface in D4. 
Let D4(F')2 be a double branched covering space of D4, branched over F'. 
From construction, [F'+Q]2=0 for the lift F' of F'. D4(F')2 is spin. [This is 
well-known, but here is a quick proof of it. The double of D4(F')2 is a double 
branched covering space of S4, branched over an orientable unknotted sur
face, and is homeomorphic to S4 or a connected sum of copies of S2 x S2, which 
is spin. So, D4(F')2 is spin.] Hence x(Z2, S3(k0)2)/ 16=  sign D4(F')2 =p(S3(k0)2). 
This completes the proof of Lemma 8.2.

PROOF OF THEOREM 6.9. Let S be a Z2-homology 3-sphere with free Z2

- action. Let k be a Z2-invariant flat knot in S. Let S=S/Z2 and k=k/Z2 . 

Let (m, l) be an m. l. pair of T(k) with [K(k)]=[m]+2[l]. Construct W= S x 

[-1, 1] U D2 x D2, identifying T(k)•~1 with aD2 x D2 such that m x 1=p x aD2, 

 x 1= aD2 x q (p, q e aD2). Let W be the double branched covering space of 

W branched over the disk D' = 0 x D2 C W. Note that a W=  S U S', where 

S' is the double branched covering space of S(k; -2/1), branched over the 

dual flat knot k=0D' in S(k; -2/1) of k in S with respect to the normal 

presentation 1/2. By Lemma 8.2,

The lift D' C W of D' c W is admissible for the lift k c S' of k c S(k; -2/1) . 
Note that [D'+Q]=signW=-1. So,

But, since k c S' and k C S are flat and have the same Z2-homology handle r 
we see from Theorem 2.5 that a(Z2, S) = a(k c S) = a(k c S'), so that p(S) =p(S') 

+ a(Z2, S). By definition, ,a(Z2, S) =p(S(k;  2/1)). To complete the proof, it 
suffices to check that «(Z2, S') = a(Z2, S). In fact,

This completes the proof.
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PROOF OF THEOREM 8.1. Construct W=S x [-1, 1] U D2 x D2 identifying 

T(k)x1 with aD2 x D2 such that m x 1=p x aD2, x 1= aD2 X q (p, q E aD2), 

where (m, l) is an m. l. pair of a Z2-invariant T (k) such that m is Z2-invariant 

and £ (1 t ? = (t(~ 1) E Z2) and [K(k)]=a[m]+b[l]. Let S * = a W  S x (-1). The 

Z2 action on S extends to a Z2 action on W with F(Z2, W)=D, D=k•~[-1, 1] 

U D2 x 0, so that Z2 acts on S* freely. Since a and b are odd, S* is a Z2

- homology 3-sphere. By Theorem 6.9,

Let k* be a core of Dz X aD2(c S*), which is Z2 invariant. Note that s(k* c S*) 
_  b/a and s(k* c *)=  b/2a. By. Corollary 3.6, o(K(k)* c 5*) == S(K(k) c S), 

so that ~(Z2, S*) =o(K(k) c S) +(a2 -1)/16. Since b f 2a is a normal presentation 
of s(k*C-S*) and ab-1(mod 4), we see that p(Z2, -S*)=p(-S)=-p(S). 
By Proposition 6.7, 2p(Z2i S*)= -2,u(Z2f -S*)=21u(S). Note that [D+Q]2=-a/b 
and sign W=sign W=-1 by Lemma 2.6. We have a(Z2i S*) =a(Z2f S) -F a/b 
-1 and -8(kcS)=p(S)-p(S*)-{-(-a/b+1)/16. By Theorem 2.7, 8(kcS)= 

8(K(k)cS)-{-(a/b-ab)/16. Therefore,

This completes the proof.

COROLLARY 8.3. Let S be a Z2-homology 3-sphere with semi-free Zen-action 

such that k=F(Z2n, S) is a knot. Let b be the order (> 1) of the slope s(k) in 

Q/Z. We have

Here, b=1 if k is flat and 2np(S)=0 if n>3.

PROOF. By Lemma 4.5, b is the order of s(k C S) in Q/Z. By Corollary 

1.13, the knot sum #bk C bS of b copies of kC S is flat. The branched Z2
n- covering space of this knot sum is the space of the knot sum bk C # bS of b 

copies of k C S. Note that F(Z2n, #bS)=#bk and this is flat in #bS. Since the 
a-invariant is additive on the knot sum operation by Lemma 4.10, it suffices 
to check that the above congruence is true when b=1 (i.e., k is flat). The 
case n=1 is true by Theorem 8.1 (or Lemma 8.2). The case n>1 follows 
easily by induction on n, applying Lemma 4.9. This completes the proof.

The following generalizes a result of L. Contreras-Caballero [4] (See 
also, [19], [34]).

COROLLARY 8.4. Let S be a Z2-homology 3-sphere with Z2-action such that
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k=F(Z2, S) is a knot. If k c S is amphicheiral, then p(S) = 0.

PROOF. By Corollary 1.11, k c S is a flat knot. So, by Theorem 8.1 (or 
Lemma 8.2), p(S) = a(Z2, S)/16 + 2p(S). The amphicheirality implies that t(S) 
=p(_) = -p(S) and a(Z2f S) = a(Z2,  S) =  a(Z2, S) [Note that there is an 
equivariant, orientation-preserving homeomorphism (Z2, S)(Z2 , -S).], so 
that 2,u(S) = 0 and a(Z2, S) = 0. This completes the proof.

•˜ 9. The case of a free cyclic action of order four

Let S be a Z2-homology 3-sphere with free Zn-action, and n be an even 

integer >0. The following is a generalization of Definition 6 .6.

DEFINITION 9.1. o (Zn, S) = o (Z2, S) for a subgroup Z2 of Zn of order 2, 

which is unique.

We consider the case of a free Z4-action. Let S=S/Z4. Let k be a knot 

in S with [k]•‚0 in H1(S; Z2)=Z2. The slope s(k) has a normal presentation 

of type a/4b with odd a, b. Let (m, l) be an m. £. pair of T(k) such that [K(k)]

=a[m]+4b[l]. Construct W=SX [-1
, 1] U D2 x D2, identifying T(k)•~1 with 

aD2 X D2 such that m X l =p X aD2, £ x 1=aD2 x q (p, q e aD2). a w S x(-1) 

is a Z2-homology 3-sphere. Denote it by S(k, -4b/a). The knot k = 0 x aD2 C 

S(k;  4b/a) with orientation specified by K(k)=K(k) is called the dual knot 

of k c S with respect to the normal presentation a/4b of s(k). Note that s(k) 

=-4b/a. Let k'CS be another knot with [k']•‚0 in H1(S; Z
2)=Z2, and a'/4b' 

be a normal presentation of s(k'). Let r=#P(k), r'=#P(k').

LEMMA 9.2. ,a(S(k'; -4b'/a'))=p(S(k; -4b/a)) if a'b'r12-abr2 (mod 8).

PROOF. The proof is almost parallel to that of Lemma 6 .1. Let W'= 

S X [-1, 1] U D2 x D2, identifying T(k') X 1 with aD2 X D2 so that m' x l= p x aD2, 

£' x 1= aD2 x q (p, q e aD2) for an m. l. pair (m', l') of T (k') with [K(k')]=a'[m']

+4b'[l']. Construct W= W' U  W identifying two copies of S•~(-1) in W' 

and W. Since sign W=0, it suffices to show that W is spin. Note that brk 

is homologous to e'b'r'k' in S for some e'= ± 1, since br[k] and b'r'[k'] are 

both generators of the 2-primary subgroup H1(S)2=Z4 of H1(S; Z). Let c be 

a 2-chain in S•~(-1) with ac = brk X (-1)  s'b'r'k' X (-1). Let c = e' b'r'D' + 

c  brD is an integral 2-cycle in W, where D = k x [-1, 1] U D2 X 0 c W, D'= 

k' X [-1, 1] U D2 X 0 c W'. To see that W is spin, it is sufficient to check that 

[c]2z0 (mod 2) (cf. Proof of Lemma 6.1). The 2-cycle c is Q-homologous to 

e'b'r'DQ  brDQ, since H2(S; Q)=0. By Lemma 2.6,

[c]2=b'2r'2(-a'/4b')-b2r2(-a/4b)=(-a'b'r'2+abr2)/4=0 (mod 2).



252 AKIO KAWAUCHI

This completes the proof.

Let c2 be the restriction of the non-singular linking pairing q'i on H1(S; Z) 

to the 2-primary component H2(S)2=Z4. The pairing c52 is represented by a 

1•~1-matrix (-u/4) over Q/Z for u=1 or 3. The integer u(=1 or 3) is de

termined uniquely by the orientation-preserving homeomorphism type of S. 

Write (c2, H1()2)( u/4). For a knot k in S of order 4, we have s(k)=u/4 

by Lemma 1.8 and #P(k)=1.

DEFINITION 9.3. 4a(Z4, S)=~c(S(k; -4/u)) for any knot k in S of order 4. 

Equivalently, p(Z4, S)=4a(S(k'; -4b/a)) for any knot k' in S with [k']•‚0 in 

H1(S; Z2) and any normal presentation a/4b of s(k') such that abr2 u (mod 8), 

where r=#P(k').

By Lemma 9.2, p(Z4, S) is an invariant of the equivariant, orientation

preserving homeomorphism type of (Z4, S).

LEMMA 9.4.

PROOF. Let k be a knot in S of order 4, so that s(k)=u/4 and #P(k)=1. 
First, let u=1. Let S'=S(k; -4/1), and k' be the dual flat knot in S' of k in 

S with respect to the normal presentation 1/4. Let (m', l') be an m. l. pair of 
T(k' c -S') with l'=K(k')= K(k). By definition, 4a (S') _ p (Z4, S). Since 

s(k c  S) _ -1/4 = 3/4, we can take an m. l. pair (m*, l*) of T(k c  S) such 
that [K(k)]=3[m*]+4[l*]. Let S'*=(-S)(k; -4/3), and k'* be the dual knot 
in S'* of k in -S with respect to the normal presentation 3/4. By definition, 

p(S'*) _ p(Z4,  S). Then we have

[m']=[m'*]+[l'*],

[l']=[K(k')]=-4[m'*]+3[l'*]

for the m. l. pair (m'*, l'*) of k'* in S'*, identical with (-l*, m*) on 
By Theorem 3.3,

~(k'c-S')=S(Z4i S) follows from Lemma 42 of [18] and Theorem 2.5 (cf. the 

proof of Lemma 6.3). p(L(3,  4))=  ,i(L(3, 1))=1/8. Hence

Next, let u=3. In this case s(k c  S)= 1/4. The above argument shows that

That is,
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This completes the proof.

THEOREM 9.5. For u=1 or 3, determined by (c2i H1(S)2) ̂ ' ( u/4), we have

in Q/Z.

PROOF. Let k be a knot in S of order 4, so that s(k)=u/4 and #P(k)=1. 

Let u=1. Let (m, l) be an m. l. pair of T(k) such that [K(k)]=[m]+4[l]. 

Construct W = S x [-1, 1] U D2 x D2 identifying T(k)•~1 with 3D2 x D2 such 

that m x 1= p x aD2, x 1= aD2 x q (p, q e aD2). Let W= S x[-1, 1] U D2 x D2 

be a branched Z4-covering space of W, branched over the disk D' = D2 x 0 C W. 

Let D' be the lift of D'. S' = O W S x (-1) is a Z2-homology 3-sphere. Let 

S' = S'/Z4 = 61T S x (-1). By definition, p(Z4, S) = p(S'). F(Z2, S') = 3D' is a 

flat knot in S'. By Corollary 8.3,

Let k be a flat knot in S which is the lift of k. By Theorem 2.5, o (k' C S') = 
o (kcS)=o(Z4, S). Note that [D'+Q]2=sign W=sign W=-1. Then o (k' C S') 
= 4c(S) - a(S'), and a(Z4, S') a(Z4, S) =  sign W+ 4 sign W-(42 -1) [D'Q ]2/3= 2. 
Therefore,

Next, let u=3. We have s(k c  S)= 1/4. By the above argument,

By Lemma 9.4,

This completes the proof.

•˜ 10. The case of a free cyclic action of an order which is a power 

of 2 greater than four

Let S be a Z2-homology 3-sphere with free Zen-action, and n> 3. Let 

S=S/Z2n. Let ~zS2 be the restriction of the linking pairing q on H1(S; Z) to 

the 2-primary component H1(S)2=Z2n. The pairing 92 is represented by a 

1•~1-matrix (-u/2n) over Q/Z for u=•}1, •}3 (cf. Wall [36]). The integer 

u(=•}1, •}3) is determined uniquely by the orientation-preserving homeo-
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morphism type of S. Write (q, H1()2)( Su/2n).

THEOREM 10.1. For u=•}1, •}3, determined by ((52, H1()2)( u/2), we 

have

in Q/Z, where

v(n,u)=
-u(n=3, u=•}1) u/|u|(n=3, u=•}3)3u(n>3, u=•}1)-u(n>3, u=•}3).

PROOF. Considering -S in place of S, it is sufficient to prove this for 

u=1 or 3. Let k be a knot in S with s(k)=u/2n. Let (m, l) be an m. l. pair 

of T(k) such that [K(k)]=u[m]+2n[l]. Let k be a flat knot in S which is the 

lift of k. Construct W= SX [-1, 1] U D2 X D2, identifying T(k)•~1 with aD2 X 

D2 so that m•~1=p x aD2, x 1= aD2 x q (p, q e aD2). Let W = S x [-1, 1] U D2 

X D2 be a branched Z2n-covering space of W, branched over the disk D'=D2 

X 0 C W. Let D' be the lift of D'. Note that S' = a W S X (-1) and S' = a W 

 S X (--1) are Z2-homology 3-spheres. Let k' = aD' c S' and k' = aD' C S'. 

Let u =1. The knot k' is flat in S' and k'=F(Z2n, S'). By Corollary 8.4, 

,a(S') = a(Z2n, S')/16. By Theorem 2.5, a (k' C S') = a (k c S) = a (Z2n, S). Note 

that [D'+Q]2=sign W=sign W=-1. Then o (k' C S')= ia(S)  a(S') and a(Z2n, S') 

 a(Z2n, S) _  sign W + 2n sign W  {(2n)2 -1} [D]2/3 =1 2n + (4n -1)/3. So,

Let w(n)={1  2n +(4 n -1)/3}/16 (mod 1). Clearly, w(3)= -1/8. For n> 4, 2" 

-0 (mod 16) and 4n/3;42/3 (mod 16), for 4n/3=(3+1)4n-1/3=4n-1+4n/3. Thus, 

for n> 4 w(n) = 3/8 (mod 1). The case u=•}1 was obtained. Next, let u=3. 

Letting m'=-l and l'=m, the pair (m', l') is an m. l. pair of T (k' C S') such 

that [K(k')]=-2n[m']+3[l']. Let (m', l') be an m. l. pair of T (h' c S'), obtained 

from the lift of the pair (m', l') of T(k' C S'). We have [K(k')]=-[m']+3[l'], 

so that [D'+Q]2=-1/3 and sign W=sign W=-1. Then o (k' c S')={( 1/3) + 1}/ 

16 i(S') + p(S), and a(Z2n, S')  a(Z2n, S) _  sign W + 2nsign W  {(2n)2 -1} 

{D'Q ]2/3 =1 2n + (4" 1)/9. By Theorem 2.7, o (k' c S') = a (K(k') c S') + (5/3 

15)/16, since s(k' C S')= --1/3 = 5/3. By Corollary 3.6, a' (K(h')c S') = a (kc S) 

= a;(Z2n, S). So, p(S) =,u(S') + 1/8 + a(Z2n, S). By Corollary 8.5, 3p(S') _ 

3a(Z2n, S')/16. Therefore,
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where u,'(n)={3-32'"-{-(4n-1)/3}/16-}-3/8 (mod 1). For n>4, 32'1 -0 (mod 16) 
and 4n/3-4z/3 (mod 16), so that m'(n).1/2-{-3/8.3(-3/$)-3v(n, 3)/8 (mod 1). 
Clearly, w'(3)=3/8=3v(3, 3)/8. Because {(2n)2-1}/3 is an integer, we see from 
the definition of the a-invariant that a(ZZ,,, S) is an integer. Therefore ,

The case u=•}3 was obtained. This completes the proof.•˜

11. The case of a free cyclic action of odd-prime order

Let S be a Z2-homology 3-sphere with free Zp-action for an odd-prime 

number p. Let S=S/Zp. Clearly, S is a Z2-homology 3-sphere.

THEOREM 11.1. In Q/Z,

(P=3)

(P>3).

PROOF. Let W be a simply connected spin 4-manifold with a j7= S . By 
[5], the projection pr: SS extends to a branched Zp-covering WW with 
F(Zp, W)=F, a locally flat, closed orientable surface. By Lemma 5.1, W is 
spin. By definition,

For p>3, we show that (p2-1)[F]2/3O  (mod 16). Note that [F] 2 is an even 
integer since W is spin. We have (p2 1)/3 = 0 (mod 8). In fact, letting p = 
4n + s for e = ± 1 and n > 1, (p2 --1)/3 = 8n(2n + ~)/3 0 (mod 8) if n . 0 or (mod 
3). If n   e (mod 3), then by letting n = 3n'  e, we have p = 3(4n'  e), which 
is impossible since p is a prime number >3. Hence (p2 1)/3 = 0 (mod 8) and 
(p2-1)[F]2/3.0 (mod 16) for p>3. Thus, a(Zp, S)/l6=p(S)-pp(S) for p>3. 
When p=3, 9a(Z3, S) =  9 sign W + 9.3 sign W  3.8[F]2. Using that 8p(S) = 

8p()=0 and 8[F]20 (mod 16), we have that

This completes the proof.

•˜ 12. The case of a non-free cyclic action of odd-prime order

Let S be a Z2-homology 3-sphere with non-free Zp-action for an odd-prime 

number p. F(Zp, S)=L is a link and S=S/Zp is a Z2-homology 3-sphere. 

Note that L is not connected in general, though if H1(S; Zp)=0, pthen L is a
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knot by Smith theory. Many examples of a Z2-homology 3-sphere having 
a Zp-action with disconnected fixed point set an be obtained by taking 
branched Zp-coverings of a 3-sphere, branched over many classical links (cf. 
Hosokawa-Kinoshita [15], Sakuma [32]). Note that (p2-1)/24 is an integer 
for p>3 (cf. the proof of Theorem 11.1).

THEOREM 12.1. Let k1,..., kr be the components of L=F(Zp, S). For a 

normal presentation 2ai/bi of the slope s(ki), i=1, 2, ..., r, we have

(P=3)

(P>3)

in Q/Z.

PROOF. Let 2ai/bi be a normal presentation of s(ki c S) and (mi, li) be an 

m. l. pair of T(ki) with [K(ki)]=2ai[mi]+bi[li] such that the lift of li has p 

components. Construct W=S X [-1, 1] U D2 X Di U... U D2 X Dr identifying 

T(ki)•~1 with aD2 x D2 so that mi•~1=p x x 1= aD2 x qi (p, q e aD2). 

Note that W is spin. Let 4I=a W S x( 1). By Milnor [24] or Kaplan [16], 

we find a simply connected spin 4-manifold W1 with a W1= -4J such that 

W= WU W1 is spin. By [5], the projection pr: SS extends to a branched 

Zr-covering WW such that F(Zp, W)= D U U Dr U F1, where Di is the 

lift of the disk ki X [-1, 1] U D2 X Oi and F1 is a locally flat closed orientable 

surface. By Lemma 5.1, W is spin. By definition, -a(Zp, S)= -sign W+ 

p sign W-(p2-1)(~i=1 [D]2 ' [F1]2)/3. By Lemma 2.6 and the proof of Lemma 

4.5, [DQ]2= -2ai/pvi= -s(kicS)_ -2a1/b1 (mod 1), so that [D]2 Q_ -2a1/b,2 

(mod 2), for bi is odd. First, let p>3. Since (p2-1)/3-0 (mod 8) and [F1]2 is 

even, we have

in Q/Z. Next, let p=3. Since  9a(Z3, S)=  9 sign W + 9.3 sign W- 3.8 

(~z=1 [D]2 Q+ [F1]2) and 8p(S)=8a(S)=0, we see that

in Q/Z. This completes the proof.
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