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ABSTRACT

The set of the fundamental groups of n-dimensional manifold-links in Sn+2

for n > 2 is equal to the set of the fundamental groups of surface-links in S4.
We consider the subset Gr

g(H) of this set consisting of the fundamental groups
of r-component, total genus g surface-links with H2(G) ∼= H. We show that
the set Gr

g(H) is a non-empty proper subset of Gr
g+1(H) for every integer g ≥ 0

and every abelian group H generated by 2g elements. We also determine the
set Gr

g(H) to which the fundamental group of every classical link belongs, and
investigate the set Gr

g(H) to which the fundamental group of every virtual link
belongs.

Keywords: Manifold-link group; Surface-link group; Classical link group;
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1. Manifold-link groups
Let M be a closed oriented n-manifold with r components. An M -link (or an

M -knot if r = 1) is the image of a locally-flat PL embedding M → Sn+2. We are
interested in the (fundamental) group of L: G = G(L) = π1(S

n+2 \ L). Let m =
m(L) = {m1,m2, · · · ,mr} be the meridian basis of L in H1(G) = H1(S

n+2 \L) = Zr.
We consider the set

Gr[n] = {G(L) |L isan M−link,∀M},

where we consider G(L) = G(L′) if there is an isomorphism G(L) → G(L′) sending
m(L) to m(L′). Let n = 2. A ribbon M -link is an M -link obtained from a trivial
2-sphere link by surgeries along mutually disjoint embedded 1-handles in S4 (see [11,
p.52]). Let

RGr[2] = {G(L) |L isaribbon M−link, ∀M}.



Then we have the following theorem:

Theorem 1.1. RGr[2] = Gr[2] = Gr[3] = Gr[4] = · · · .

Proof. The inclusion Gr[n] ⊂ Gr[n + 1] for every n = 2 is proved by a spinning
construction. In fact, given the group G(L) ∈ Gr[n] of an M -link L, then we choose
an (n + 2)-ball Bn+2 ⊂ Sn+2 containing L and construct an M × S1-link

L+ = L × S1 ⊂ Bn+2 × S1 ∪ ∂Bn+2 × B2 = Sn+3.

Then we have G(L) = G(L+) in Gr[n + 1]. In [16], T. Yajima shows that if a group
G has a Wirtinger presenation ⟨x1, x2, · · · , xk | r1, r2, · · · , rk′⟩ of deficiency s = k − k′

such that rj = wjxu(j)w
−1
j x−1

v(j) for some generators xu(j), xv(j) and a word wj on xi

(i = 1, 2, . . . , k), and a basis m for H1(G) ∼= Zr is given in xi (i = 1, 2, . . . , k), then
there is a ribbon F r

g -link L with g = r− s such that G(L) = G and m(L) = m. Since
S. Kamada shows in [3] that every G(L) ∈ Gr[n] has a Wirtinger presentation with
m(L) in the generators, we have Gr[n] ⊂ RGr[2]. ¤

2. Grading the surface-link groups
Let M = F r

g = F r
g1,g2,··· ,gr

be a closed oriented 2-manifold with r components Fi

of genus g(Fi) = gi (i = 1, 2, · · · , r), where g = g1 + g2 + · · · + gr is the total genus
of M . This M -link is called an F r

g (= F r
g1,g2,··· ,gr

)-link. Let Gr
g (or Gr

g1,g2,··· ,gr
) be the

set of G(L) such that L is an F r
g -link (or F r

g1,g2,··· ,gr
-link). For a finitely generated

abelian group H, let Gr
g(H) be the set of G ∈ Gr

g with H2(G) ∼= H. Then the
following sequence of inclusions is obtained for every H by adding a trivial handle to
a surface-link in S4:

Gr
0(H) ⊂ Gr

1(H) ⊂ Gr
2(H) ⊂ · · · ⊂

+∞∪
g=0

Gr
g(H) =: Gr(H).

Similarly, letting RGr
g be the set of G(L) such that L is a ribbon F r

g -link, and RGr
g(H)

the set of G ∈ RGr
g with H2(G) ∼= H, we obtain the following sequence:

RGr
0(H) ⊂ RGr

1(H) ⊂ RGr
2(H) ⊂ · · · ⊂

+∞∪
g=0

RGr
g(H) =: RGr(H).

Using RGr(H) = Gr(H) by Theorem 1.1, we obtain the following corollary.

Corollary 2.1. RGr
g(H) ⊂ Gr

g(H), and for every G ∈ Gr
g(H), there is an integer

h = 0 such that G ∈ RGr
g+h(H).

Let Λ be the Laurent polynomial ring Z[Z] = Z[t, t−1]. For a surface-link group
G = G(L), the homology H1(Kerχ) for the epimorphism χ : G → Z sending every



meridian to 1 forms a finitely generated Λ-module, which we call the Alexander module
of G or L and denote by A(G) or A(L). The second part of the following theorem is
a consequence of studies on the Alexander modules of surface-link groups in [10].

Theorem 2.2. Let µ(H) be the minimal number of generators of H. For 2g < µ(H),
we have Gr

g(H) = ∅. For every 2g = µ(H) and every h > 0, we have

Gr
g(H) \ (Gr

g−1(H) ∪ RGr
g+h(H)) ̸= ∅.

Since G1
0(0) is the set of S2-knot groups and G1(0) = ∪+∞

g=0G1
g(0) is the set of

Sn-knot groups for every given n = 3 (see M. A. Kervaire [12]), a weaker result of
this theorem for r = 1 and H = 0 is found in [8, p.192].

Proof. The first claim is direct by Hopf’s theorem saying that there is an epimor-
phism H2(S

4 \L) = Z2g → H2(G) for every G = G(L) ∈ Gr
g, so that µ(H2(G)) 5 2g.

For the second claim, we first observe by a result of R. Litherland [13] that Gr
g(H) ̸= ∅.

For G ∈ Gr
g(H), we take the minimal g∗ 5 g such that G ∈ Gr

g∗(H). Let L be an

F r
g∗-link with G = G(L). Let L′ be a non-ribbon S2-knot with the Alexander module

A(L′) = Λ/(t + 1, 3) (e.g., the 2-twist-spun trefoil), and a ribbon T 2-knot L′′ with
H2(G(L′′)) = 0 and the Alexander module A(L′′) = Λ/(2t−1, 5) (see [2]). Let Lm′,m′′

be any connected sum of L, m′(= 0) copies of L′, and m′′(= 0) copies of L′′. Then

H2(G(Lm′,m′′)) ∼= H2(G)
⊕

H2(G(L′))m′ ⊕
H2(G(L′′))m′′ ∼= H2(G) ∼= H.

By [10, Theorems 3.2, 5.1], we have constants c′, c′′ such that G(Lm′,m′′) ̸∈ RGr
g+h(H)

for every m′ = c′ and m′′ = 0 and G(Lm′,m′′) ̸∈ Gr
g−1(H) for every m′ = 0 and

m′′ = c′′. Noting that G(Lm′,m′′) ∈ Gr
g′(H)\Gr

g′−1(H) implies

G(Lm′,m′′+1) ∈ (Gr
g′+1(H)\Gr

g′(H)) ∪ (Gr
g′(H)\Gr

g′−1(H)),

we can find (0 5)m′′ 5 c′′ such that G(Lm′,m′′) ∈ Gr
g(H)\Gr

g−1(H). Thus, we can find
m′ = c′ and (0 5)m′′ 5 c′′ such that G(Lm′,m′′) ∈ Gr

g(H) \ (Gr
g−1(H) ∪ RGr

g+h(H)).
¤

3. Classical link groups
Let Gr,s[1] be the set of G(L1) ∈ Gr[1] such that L1 is a split union of s non-split

links. For G = G(L1) ∈ Gr,s[1], let L1
j (j = 1, 2, . . . , s) be the non-split sublinks of

L1. The group G is the free product G(L1
1) ∗ G(L1

2) ∗ · · · ∗ G(L1
s) and we have

H2(G) =
s⊕

j=1

H2(G(L1
j)) =

s⊕
j=1

H2(E(L1
j))

∼= Zr−s,

where E(L1
j) denotes the exterior of L1

j . Let Gr,s
g (H) be the set of G ∈ Gr

g(H) which
is realized by a split union of s non-split surface-links, which we call an F r,s

g -link,



and RGr,s
g (H) the set of G ∈ RGr

g(H) realized by a ribbon F r,s
g -link. We show the

following theorem:

Theorem 3.1. Gr,s[1] $ RGr,s
r−s(Z

r−s) \ Gr,s
r−s−1(Z

r−s).

To prove this theorem, we need some preliminaries.

Lemma 3.2. Let M be a closed oriented 2n-manifold, and X a compact polyhedron.
Let f̃ : M̃ → X̃ be a lift of a map f : M → X to an infinite cyclic covering. If
H2n

c (X̃) = 0, then the Λ-rank rankΛ(f̃) of the image of f̃∗ : Hn(M̃) → Hn(X̃) has

rankΛ(f̃) 5 1

2
(rankΛHn(M̃) − |σ(M)|)

where σ(M) denotes the signature of M (taking 0 when n is odd).

Proof. Let Nc be the image of the homomorphism f̃∗ : Hn
c (X̃) → Hn

c (M̃) on the
cohomology with compact support, and N the image of Nc under the Poincaré duality
Hn

c (M̃) ∼= Hn(M̃). Since H2n
c (X̃) = 0, we have the trivial cup product u ∪ v = 0

and hence f̃∗(u) ∪ f̃ ∗(v) = f̃∗(u ∪ v) = 0 for all u, v ∈ Hn
c (X̃). This means that the

Λ-intersection form
IntΛ : Hn(M̃) × Hn(M̃) −→ Λ

has IntΛ(N,N) = 0. Since f̃ ∗ : Hn
c (X̃) → Hn

c (M̃) is equivalent to f̃∗ : Hn
Λ(X̃) →

Hn
Λ(M̃) on the cohomology with Λ coefficients (see [6]), we see from the universal

coefficient theorem over Λ in [6] that rankΛNc = rankΛN is equal to the Λ-rank of
the image of the dual Λ-homomorphism

(f̃∗)
# : homΛ(Hn(X̃), Λ) −→ homΛ(Hn(M̃), Λ)

of f̃∗ : Hn(M̃) → Hn(X̃), which is equal to rankΛ(f̃). Considering the Λ-intersection
form IntΛ over the quotient field Q(Λ) of Λ to obtain a non-singular Q(Λ)-intersection
form, we can see from [5] that

2rankΛN + |σ(M)| 5 rankΛHn(M̃).

¤

Let ∆T
G(t) be the torsion Alexander polynomial of a surface-link group G, that is a

generator of the smallest principal ideal of the first elementary ideal of the Λ-torsion
part TorΛA(G) of the Alexander module A(G) of G. Then the following lemma is
known(cf. [9]).

Lemma 3.3. ∆T
G(t) is symmetric for every G ∈ Gr,s[1].

We are now in a position to prove Theorem 3.1.



Proof of Theorem 3.1. Since every G ∈ Gr,s[1] has a Wirtinger presentation with
deficiency s, we have G ∈ RGr,s

r−s(Z
r−s) and Gr,s[1] ⊂ RGr,s

r−s(Z
r−s). We first show

that Gr,s[1] ∩ Gr,s
r−s−1(Z

r−s) = ∅. Let L be an F r
g -link such that G(L) = G(L1) =

G ∈ Gr,s[1]. Let E = E(L), and E1 the bouquet of the link exteriors E(L1
j) (j =

1, 2, . . . , s). Since E1 is a K(G, 1)-space, there is a PL map fE : E → E1 inducing
an isomorphism (fE)# : G(L) = π1(E) ∼= π1(E

1) = G(L1) sending the meridian
basis of H1(E) to the meridian basis of L1 in H1(E

1). For the components Fi (i =
1, 2, . . . , r) of F r

g and handlebodies Vi with Fi = ∂Vi (i = 1, 2, . . . , r), we construct

a closed connected oriented 4-manifold M = E ∪r
i=1 Vi × S1 by attaching, for every

i, the boundary component Fi × S1 of E to the boundary of Vi × S1. Construct a
compact polyhedron X = E1 ∪r

i=1 Vi × S1 by attaching Vi × S1 (i = 1, 2, . . . , r) to
E1 along the map fE|∂E : ∂E → E1, so that fE extends to a PL map f : M → X.

Let f̃E : Ẽ → Ẽ1 be the infinite cyclic covering of fE : E → E1 associated with
the epimorphism χ : G → Z sending every meridian to 1, which extends to an
infinite cyclic covering f̃ : M̃ → X̃ of f : M → X. Noting that Vi × S1 lifts to
Vi × R1 in M̃ and X̃, we see that rankΛH2(X̃) = rankΛH2(Ẽ) and rankΛH2(X̃) =

rankΛH2(Ẽ). By Hopf’s theorem, (f̃E)∗ : H2(Ẽ) → H2(Ẽ
1) = H2(Kerχ) is onto,

so that rankΛH2(Ẽ
1) = rankΛH2(X̃) = rankΛ(f̃). Let βj = rankΛH1(Ẽ

1
j ). Then

rankΛ(f̃) = rankΛH2(Ẽ
1) =

∑s
j=1 βj by [7]. By the compact support cohomology

exact sequence for (X̃, X̃V ) with X̃V = ∪r
i=1Vi × R1, we have the following exact

sequence:
H4

c (X̃, X̃V ) → H4
c (X̃) −→ H4

c (X̃V ).

For the image X̃0 of f̃E|∂Ẽ : ∂Ẽ → Ẽ1, we have an excision isomorphism

H4
c (X̃, X̃V ) ∼= H4

c (Ẽ1, X̃0) = 0,

since (Ẽ1, X̃0) is a 3-dimensional complex pair. Also, by Poincaré duality we have

H4
c (X̃V ) ∼= H0(X̃V , ∂X̃V ) = 0.

Hence H4
c (X̃) = 0. Since rankΛH2(Ẽ) = 2(g+s−r+

∑s
j=1 βj) by [10] and σ(M) = 0,

it follows from Lemma 3.2 that 2(g + s − r +
∑s

j=1 βj) = 2(
∑s

j=1 βj) and g = r − s.

Thus, Gr,s[1] ∩ Gr,s
r−s−1(Z

r−s) ̸= ∅. Next, by a result of T. Yajima [16], the group
G0 = ⟨x1, x2 |x2 = (x2x

−1
1 )−1x1(x2x

−1
1 )⟩ with ∆T

G0
(t) = 2 − t is represented by a

ribbon S2-knot L0. For G = G(L1) ∈ Gr,s[1], let L be an F r,s
r−s-link with G(L) = G,

and L′ = L#L0 a connected sum of L and L0. Then G′ = G(L′) ∈ RGr,s
r−s(Z

r−s).
Since ∆T

G′(t) = ∆T
G(t)∆T

G0
(t) is not symmetric, we have G′ ̸∈ Gr,s[1] by Lemma 3.3.

Let L′′ be an F r,s
g′′ -link with G(L′′) = G′, and E ′′ the exterior L′′. For the K(G, 1)-

space E1 constructed from L1 as above, we realize an epimorphism G′ → G preserving
the meridians by a PL map fE′′ : E ′′ → E1, which is used to construct a PL map
f ′′ : M ′′ → X from a closed 4-manifold M ′′ = E ′′ ∪r

i=1 Vi ×S1 to X = E1 ∪r
i=1 Vi ×S1



in a similar way of the argument above. By a similar calculation using Lemma 3.2,
we can conclude that g′′ = r− s and G′ ̸∈ Gr,s[1]∪Gr,s

r−s−1(Z
r−s). This completes the

proof of Theorem 3.1. ¤

4. Virtual link groups
An r-component, s-split virtual link is a virtual link with r components which is

represented by a split union of s diagrams of s non-split virtual links. The group of
a virtual link diagram which is calculated in a similar way to a classical link diagram
except that we do not count the virtual crossing points is an invariant of the virtual
link (see L. H. Kauffman [4]). Let V Gr,s(H) be the set of the groups G of r-component,
s-split virtual links with H2(G) ∼= H. Then we have the following theorem.

Theorem 4.1. V Gr,s(H) = RGr,s
1,1,...,1(H) for every H and we have

Gr,s[1] $ V Gr,s(Zr−s) = RGr,s
1,1,...,1(Z

r−s) ⊂ RGr,s
r (Zr−s).

Proof. The first claim is observed in [10], coming essentially from a result of S. Satoh
[15]. The inclusions of the second claim is obvious. For G = G(L1) ∈ Gr,s[1], let L be
an F r,s

1,1,...,1-link with G(L) = G, and L′ = L#L0 a connected sum of L and a ribbon

S2-knot L0 as in the proof of Theorem 3.1. Then G′ = G(L′) ∈ RGr,s
1,1,...,1(Z

r−s) =

V Gr,s(Zr−s). Since ∆T
G′(t) is not symmetric as it is shown in the proof of Theorem

3.1, we have G′ ̸∈ Gr,s[1] by Lemma 3.3. Thus, Gr,s[1] $ V Gr,s(Zr−s).

Corollary 4.2. If µ(H) > r, then we have V Gr,s(H) = ∅. For H = Zu ⊕ Zv
2 with

0 5 u + v 5 r, we have V Gr,s(H) ̸= ∅.

Proof. For G ∈ RGr
g, let L be a ribbon F r

g -link, and E the exterior of L. By Hopf’s
theorem, there is an exact sequence

π2(E, x) −→ H2(E) −→ H2(G) → 0.

Since L has a Seifert hypersurface homeomorphic to a connected sum of a handlebody
and some copies of S1×S2, we can represent a half basis of H2(E) ∼= Z2g by 2-spheres.
Hence µH2(G) 5 g, showing the first claim. For the second claim, we first note that
for every r > 1, there is a ribbon F r

0 -link L such that G(L) is an indecomposable
group by considering the spinning construction of an r-string tangle in the 3-ball
with an indecomposable group (see[8, p.204]). Second, we note that any connected
sum of this ribbon F r

0 -link L and any surface-knots L′
i (i = 1, 2, . . . , s) is a non-split

surface-link. Then we take a ribbon F r,s
0 -link L whose non-split surface-sublinks have

indecomposable groups, and a ribbon T 2-knot L0 with H2(G(L0)) ∼= Z constructed
by C. McA. Gordon [1] and a ribbon T 2-knot L2 with H2(G(L2)) ∼= Z2 constructed
by T. Maeda [14]. Let L′ be a ribbon F r,s

1,1,...,1-link obtained by a connected sum of
L, u copies of L0, v copies of L2, and r − u − v copies of a trivial T 2-knot. Then
G(L′) ∈ RGr,s

1,1,...,1(H) = V Gr,s(H) for H = Zu ⊕ Zv
2 . ¤

It is unknown whether V Gr,s(H) ̸= ∅ for every H with µ(H) 5 r.
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