ON THE SURFACE-LINK GROUPS

Akio KAWAUCHI

Department of Mathematics, Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

The set of the fundamental groups of n-dimensional manifold-links in S^{n+2} for n>2 is equal to the set of the fundamental groups of surface-links in S^4 . We consider the subset $\mathbb{G}_g^r(H)$ of this set consisting of the fundamental groups of r-component, total genus g surface-links with $H_2(G)\cong H$. We show that the set $\mathbb{G}_g^r(H)$ is a non-empty proper subset of $\mathbb{G}_{g+1}^r(H)$ for every integer $g\geq 0$ and every abelian group H generated by 2g elements. We also determine the set $\mathbb{G}_g^r(H)$ to which the fundamental group of every classical link belongs, and investigate the set $\mathbb{G}_g^r(H)$ to which the fundamental group of every virtual link belongs.

Keywords: Manifold-link group; Surface-link group; Classical link group; Virtual link group

1. Manifold-link groups

Let M be a closed oriented n-manifold with r components. An M-link (or an M-knot if r=1) is the image of a locally-flat PL embedding $M \to S^{n+2}$. We are interested in the (fundamental) group of L: $G = G(L) = \pi_1(S^{n+2} \setminus L)$. Let $m = m(L) = \{m_1, m_2, \cdots, m_r\}$ be the meridian basis of L in $H_1(G) = H_1(S^{n+2} \setminus L) = Z^r$. We consider the set

$$\mathbb{G}^r[n] = \{G(L) \mid L \text{ is an } M - \text{link}, \forall M\},$$

where we consider G(L) = G(L') if there is an isomorphism $G(L) \to G(L')$ sending m(L) to m(L'). Let n = 2. A ribbon M-link is an M-link obtained from a trivial 2-sphere link by surgeries along mutually disjoint embedded 1-handles in S^4 (see [11, p.52]). Let

$$R\mathbb{G}^r[2] = \{G(L) \mid L \text{ is a ribbon } M - \text{link}, \forall M\}.$$

Then we have the following theorem:

Theorem 1.1. $R\mathbb{G}^r[2] = \mathbb{G}^r[2] = \mathbb{G}^r[3] = \mathbb{G}^r[4] = \cdots$.

Proof. The inclusion $\mathbb{G}^r[n] \subset \mathbb{G}^r[n+1]$ for every $n \geq 2$ is proved by a spinning construction. In fact, given the group $G(L) \in \mathbb{G}^r[n]$ of an M-link L, then we choose an (n+2)-ball $B^{n+2} \subset S^{n+2}$ containing L and construct an $M \times S^1$ -link

$$L^+ = L \times S^1 \subset B^{n+2} \times S^1 \cup \partial B^{n+2} \times B^2 = S^{n+3}.$$

Then we have $G(L) = G(L^+)$ in $\mathbb{G}^r[n+1]$. In [16], T. Yajima shows that if a group G has a Wirtinger presentation $\langle x_1, x_2, \cdots, x_k \, | \, r_1, r_2, \cdots, r_{k'} \rangle$ of deficiency s = k - k' such that $r_j = w_j x_{u(j)} w_j^{-1} x_{v(j)}^{-1}$ for some generators $x_{u(j)}, x_{v(j)}$ and a word w_j on x_i $(i=1,2,\ldots,k)$, and a basis m for $H_1(G) \cong Z^r$ is given in x_i $(i=1,2,\ldots,k)$, then there is a ribbon F_g^r -link L with g = r - s such that G(L) = G and m(L) = m. Since S. Kamada shows in [3] that every $G(L) \in \mathbb{G}^r[n]$ has a Wirtinger presentation with m(L) in the generators, we have $\mathbb{G}^r[n] \subset R\mathbb{G}^r[2]$.

2. Grading the surface-link groups

Let $M = F_g^r = F_{g_1,g_2,\cdots,g_r}^r$ be a closed oriented 2-manifold with r components F_i of genus $g(F_i) = g_i$ $(i = 1, 2, \cdots, r)$, where $g = g_1 + g_2 + \cdots + g_r$ is the total genus of M. This M-link is called an $F_g^r (= F_{g_1,g_2,\cdots,g_r}^r)$ -link. Let \mathbb{G}_g^r (or $\mathbb{G}_{g_1,g_2,\cdots,g_r}^r$) be the set of G(L) such that L is an F_g^r -link (or F_{g_1,g_2,\cdots,g_r}^r -link). For a finitely generated abelian group H, let $\mathbb{G}_g^r(H)$ be the set of $G \in \mathbb{G}_g^r$ with $H_2(G) \cong H$. Then the following sequence of inclusions is obtained for every H by adding a trivial handle to a surface-link in S^4 :

$$\mathbb{G}_0^r(H) \subset \mathbb{G}_1^r(H) \subset \mathbb{G}_2^r(H) \subset \cdots \subset \bigcup_{g=0}^{+\infty} \mathbb{G}_g^r(H) =: \mathbb{G}^r(H).$$

Similarly, letting $R\mathbb{G}_g^r$ be the set of G(L) such that L is a ribbon F_g^r -link, and $R\mathbb{G}_g^r(H)$ the set of $G \in R\mathbb{G}_g^r$ with $H_2(G) \cong H$, we obtain the following sequence:

$$R\mathbb{G}_0^r(H) \subset R\mathbb{G}_1^r(H) \subset R\mathbb{G}_2^r(H) \subset \cdots \subset \bigcup_{g=0}^{+\infty} R\mathbb{G}_g^r(H) =: R\mathbb{G}^r(H).$$

Using $R\mathbb{G}^r(H) = \mathbb{G}^r(H)$ by Theorem 1.1, we obtain the following corollary.

Corollary 2.1. $R\mathbb{G}_g^r(H) \subset \mathbb{G}_g^r(H)$, and for every $G \in \mathbb{G}_g^r(H)$, there is an integer $h \geq 0$ such that $G \in R\mathbb{G}_{g+h}^r(H)$.

Let Λ be the Laurent polynomial ring $Z[Z]=Z[t,t^{-1}].$ For a surface-link group G=G(L), the homology $H_1(\operatorname{Ker}\chi)$ for the epimorphism $\chi:G\to Z$ sending every

meridian to 1 forms a finitely generated Λ -module, which we call the *Alexander module* of G or L and denote by A(G) or A(L). The second part of the following theorem is a consequence of studies on the Alexander modules of surface-link groups in [10].

Theorem 2.2. Let $\mu(H)$ be the minimal number of generators of H. For $2g < \mu(H)$, we have $\mathbb{G}_q^r(H) = \emptyset$. For every $2g \ge \mu(H)$ and every h > 0, we have

$$\mathbb{G}_g^r(H)\setminus (\mathbb{G}_{g-1}^r(H)\cup R\mathbb{G}_{g+h}^r(H))\neq \emptyset.$$

Since $\mathbb{G}_0^1(0)$ is the set of S^2 -knot groups and $\mathbb{G}^1(0) = \bigcup_{g=0}^{+\infty} \mathbb{G}_g^1(0)$ is the set of S^n -knot groups for every given $n \geq 3$ (see M. A. Kervaire [12]), a weaker result of this theorem for r=1 and H=0 is found in [8, p.192].

Proof. The first claim is direct by Hopf's theorem saying that there is an epimorphism $H_2(S^4 \setminus L) = Z^{2g} \to H_2(G)$ for every $G = G(L) \in \mathbb{G}_g^r$, so that $\mu(H_2(G)) \leq 2g$. For the second claim, we first observe by a result of R. Litherland [13] that $\mathbb{G}_g^r(H) \neq \emptyset$. For $G \in \mathbb{G}_g^r(H)$, we take the minimal $g_* \leq g$ such that $G \in \mathbb{G}_{g_*}^r(H)$. Let L be an $F_{g_*}^r$ -link with G = G(L). Let L' be a non-ribbon S^2 -knot with the Alexander module $A(L') = \Lambda/(t+1,3)$ (e.g., the 2-twist-spun trefoil), and a ribbon T^2 -knot L'' with $H_2(G(L'')) = 0$ and the Alexander module $A(L'') = \Lambda/(2t-1,5)$ (see [2]). Let $L_{m',m''}$ be any connected sum of L, $m'(\geq 0)$ copies of L', and $m''(\geq 0)$ copies of L''. Then

$$H_2(G(L_{m',m''})) \cong H_2(G) \bigoplus H_2(G(L'))^{m'} \bigoplus H_2(G(L''))^{m''} \cong H_2(G) \cong H.$$

By [10, Theorems 3.2, 5.1], we have constants c', c'' such that $G(L_{m',m''}) \notin R\mathbb{G}^r_{g+h}(H)$ for every $m' \geq c'$ and $m'' \geq 0$ and $G(L_{m',m''}) \notin \mathbb{G}^r_{g-1}(H)$ for every $m' \geq 0$ and $m'' \geq c''$. Noting that $G(L_{m',m''}) \in \mathbb{G}^r_{g'}(H) \backslash \mathbb{G}^r_{g'-1}(H)$ implies

$$G(L_{m',m''+1}) \in (\mathbb{G}_{g'+1}^r(H) \backslash \mathbb{G}_{g'}^r(H)) \cup (\mathbb{G}_{g'}^r(H) \backslash \mathbb{G}_{g'-1}^r(H)),$$

we can find $(0 \le)m'' \le c''$ such that $G(L_{m',m''}) \in \mathbb{G}_g^r(H) \setminus \mathbb{G}_{g-1}^r(H)$. Thus, we can find $m' \ge c'$ and $(0 \le)m'' \le c''$ such that $G(L_{m',m''}) \in \mathbb{G}_g^r(H) \setminus (\mathbb{G}_{g-1}^r(H) \cup R\mathbb{G}_{g+h}^r(H))$.

3. Classical link groups

Let $\mathbb{G}^{r,s}[1]$ be the set of $G(L^1) \in \mathbb{G}^r[1]$ such that L^1 is a split union of s non-split links. For $G = G(L^1) \in \mathbb{G}^{r,s}[1]$, let L^1_j (j = 1, 2, ..., s) be the non-split sublinks of L^1 . The group G is the free product $G(L^1_1) * G(L^1_2) * \cdots * G(L^1_s)$ and we have

$$H_2(G) = \bigoplus_{j=1}^s H_2(G(L_j^1)) = \bigoplus_{j=1}^s H_2(E(L_j^1)) \cong Z^{r-s},$$

where $E(L_j^1)$ denotes the exterior of L_j^1 . Let $\mathbb{G}_g^{r,s}(H)$ be the set of $G \in \mathbb{G}_g^r(H)$ which is realized by a split union of s non-split surface-links, which we call an $F_g^{r,s}$ -link,

and $R\mathbb{G}_g^{r,s}(H)$ the set of $G \in R\mathbb{G}_g^r(H)$ realized by a ribbon $F_g^{r,s}$ -link. We show the following theorem:

Theorem 3.1. $\mathbb{G}^{r,s}[1] \subsetneq R\mathbb{G}^{r,s}_{r-s}(Z^{r-s}) \setminus \mathbb{G}^{r,s}_{r-s-1}(Z^{r-s})$.

To prove this theorem, we need some preliminaries.

Lemma 3.2. Let M be a closed oriented 2n-manifold, and X a compact polyhedron. Let $\tilde{f}: \tilde{M} \to \tilde{X}$ be a lift of a map $f: M \to X$ to an infinite cyclic covering. If $H_c^{2n}(\tilde{X}) = 0$, then the Λ -rank $\operatorname{rank}_{\Lambda}(\tilde{f})$ of the image of $\tilde{f}*: H_n(\tilde{M}) \to H_n(\tilde{X})$ has

$$\operatorname{rank}_{\Lambda}(\tilde{f}) \leq \frac{1}{2}(\operatorname{rank}_{\Lambda}H_n(\tilde{M}) - |\sigma(M)|)$$

where $\sigma(M)$ denotes the signature of M (taking 0 when n is odd).

Proof. Let N_c be the image of the homomorphism $\tilde{f}^*: H_c^n(\tilde{X}) \to H_c^n(\tilde{M})$ on the cohomology with compact support, and N the image of N_c under the Poincaré duality $H_c^n(\tilde{M}) \cong H_n(\tilde{M})$. Since $H_c^{2n}(\tilde{X}) = 0$, we have the trivial cup product $u \cup v = 0$ and hence $\tilde{f}^*(u) \cup \tilde{f}^*(v) = \tilde{f}^*(u \cup v) = 0$ for all $u, v \in H_c^n(\tilde{X})$. This means that the Λ -intersection form

$$\operatorname{Int}_{\Lambda}: H_n(\tilde{M}) \times H_n(\tilde{M}) \longrightarrow \Lambda$$

has $\operatorname{Int}_{\Lambda}(N,N)=0$. Since $\tilde{f}^*:H^n_c(\tilde{X})\to H^n_c(\tilde{M})$ is equivalent to $\tilde{f}^*:H^n_{\Lambda}(\tilde{X})\to H^n_{\Lambda}(\tilde{M})$ on the cohomology with Λ coefficients (see [6]), we see from the universal coefficient theorem over Λ in [6] that $\operatorname{rank}_{\Lambda}N_c=\operatorname{rank}_{\Lambda}N$ is equal to the Λ -rank of the image of the dual Λ -homomorphism

$$(\tilde{f}_*)^{\#} : \hom_{\Lambda}(H_n(\tilde{X}), \Lambda) \longrightarrow \hom_{\Lambda}(H_n(\tilde{M}), \Lambda)$$

of $\tilde{f}_*: H_n(\tilde{M}) \to H_n(\tilde{X})$, which is equal to $\operatorname{rank}_{\Lambda}(\tilde{f})$. Considering the Λ -intersection form $\operatorname{Int}_{\Lambda}$ over the quotient field $Q(\Lambda)$ of Λ to obtain a non-singular $Q(\Lambda)$ -intersection form, we can see from [5] that

$$2\operatorname{rank}_{\Lambda}N + |\sigma(M)| \leq \operatorname{rank}_{\Lambda}H_n(\tilde{M}).$$

Let $\Delta_G^T(t)$ be the torsion Alexander polynomial of a surface-link group G, that is a generator of the smallest principal ideal of the first elementary ideal of the Λ -torsion part $\text{Tor}_{\Lambda}A(G)$ of the Alexander module A(G) of G. Then the following lemma is known(cf. [9]).

Lemma 3.3. $\Delta_G^T(t)$ is symmetric for every $G \in \mathbb{G}^{r,s}[1]$.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Since every $G \in \mathbb{G}^{r,s}[1]$ has a Wirtinger presentation with deficiency s, we have $G \in R\mathbb{G}^{r,s}_{r-s}(Z^{r-s})$ and $\mathbb{G}^{r,s}[1] \subset R\mathbb{G}^{r,s}_{r-s}(Z^{r-s})$. We first show that $\mathbb{G}^{r,s}[1] \cap \mathbb{G}^{r,s}_{r-s-1}(Z^{r-s}) = \emptyset$. Let L be an F_g^r -link such that $G(L) = G(L^1) = \emptyset$ $G \in \mathbb{G}^{r,s}[1]$. Let E = E(L), and E^1 the bouquet of the link exteriors $E(L_i^1)$ (j = $1, 2, \ldots, s$). Since E^1 is a K(G, 1)-space, there is a PL map $f_E : E \to E^1$ inducing an isomorphism $(f_E)_\# : G(L) = \pi_1(E) \cong \pi_1(E^1) = G(L^1)$ sending the meridian basis of $H_1(E)$ to the meridian basis of L^1 in $H_1(E^1)$. For the components F_i (i = $1, 2, \ldots, r$) of F_q^r and handlebodies V_i with $F_i = \partial V_i$ $(i = 1, 2, \ldots, r)$, we construct a closed connected oriented 4-manifold $M = E \cup_{i=1}^r V_i \times S^1$ by attaching, for every i, the boundary component $F_i \times S^1$ of E to the boundary of $V_i \times S^1$. Construct a compact polyhedron $X = E^1 \cup_{i=1}^r V_i \times S^1$ by attaching $V_i \times S^1$ (i = 1, 2, ..., r) to E^1 along the map $f_E|_{\partial E}: \partial E \to E^1$, so that f_E extends to a PL map $f: M \to X$. Let $\tilde{f}_E: \tilde{E} \to \tilde{E}^1$ be the infinite cyclic covering of $f_E: E \to E^1$ associated with the epimorphism $\chi: G \to Z$ sending every meridian to 1, which extends to an infinite cyclic covering $\tilde{f}: \tilde{M} \to \tilde{X}$ of $f: M \to X$. Noting that $V_i \times S^1$ lifts to $V_i \times R^1$ in \tilde{M} and \tilde{X} , we see that $\operatorname{rank}_{\Lambda} H_2(\tilde{X}) = \operatorname{rank}_{\Lambda} H_2(\tilde{E})$ and $\operatorname{rank}_{\Lambda} H_2(\tilde{X}) = \operatorname{rank}_{\Lambda} H_2(\tilde{X})$ $\operatorname{rank}_{\Lambda} H_2(\tilde{E})$. By Hopf's theorem, $(\tilde{f}_E)_*: H_2(\tilde{E}) \to H_2(\tilde{E}^1) = H_2(\operatorname{Ker}\chi)$ is onto, so that $\operatorname{rank}_{\Lambda} H_2(\tilde{E}^1) = \operatorname{rank}_{\Lambda} H_2(\tilde{X}) = \operatorname{rank}_{\Lambda}(\tilde{f})$. Let $\beta_j = \operatorname{rank}_{\Lambda} H_1(\tilde{E}_j^1)$. Then $\operatorname{rank}_{\Lambda}(\tilde{f}) = \operatorname{rank}_{\Lambda} H_2(\tilde{E}^1) = \sum_{j=1}^s \beta_j$ by [7]. By the compact support cohomology exact sequence for (\tilde{X}, \tilde{X}_V) with $\tilde{X}_V = \bigcup_{i=1}^r V_i \times R^1$, we have the following exact sequence:

$$H_c^4(\tilde{X}, \tilde{X}_V) \to H_c^4(\tilde{X}) \longrightarrow H_c^4(\tilde{X}_V).$$

For the image \tilde{X}_0 of $\tilde{f}_E|_{\partial \tilde{E}}: \partial \tilde{E} \to \tilde{E}^1$, we have an excision isomorphism

$$H_c^4(\tilde{X}, \tilde{X}_V) \cong H_c^4(\tilde{E}^1, \tilde{X}_0) = 0,$$

since $(\tilde{E}^1, \tilde{X}_0)$ is a 3-dimensional complex pair. Also, by Poincaré duality we have

$$H_c^4(\tilde{X}_V) \cong H_0(\tilde{X}_V, \partial \tilde{X}_V) = 0.$$

Hence $H_c^4(\tilde{X})=0$. Since $\operatorname{rank}_{\Lambda}H_2(\tilde{E})=2(g+s-r+\sum_{j=1}^s\beta_j)$ by [10] and $\sigma(M)=0$, it follows from Lemma 3.2 that $2(g+s-r+\sum_{j=1}^s\beta_j)\geq 2(\sum_{j=1}^s\beta_j)$ and $g\geq r-s$. Thus, $G^{r,s}[1]\cap \mathbb{G}^{r,s}_{r-s-1}(Z^{r-s})\neq\emptyset$. Next, by a result of T. Yajima [16], the group $G_0=\langle x_1,x_2\,|\,x_2=(x_2x_1^{-1})^{-1}x_1(x_2x_1^{-1})\rangle$ with $\Delta^T_{G_0}(t)=2-t$ is represented by a ribbon S^2 -knot L_0 . For $G=G(L^1)\in\mathbb{G}^{r,s}[1]$, let L be an $F^{r,s}_{r-s}$ -link with G(L)=G, and $L'=L\#L_0$ a connected sum of L and L_0 . Then $G'=G(L')\in R\mathbb{G}^{r,s}_{r-s}(Z^{r-s})$. Since $\Delta^T_{G'}(t)=\Delta^T_{G}(t)\Delta^T_{G_0}(t)$ is not symmetric, we have $G'\not\in\mathbb{G}^{r,s}[1]$ by Lemma 3.3. Let L'' be an $F^{r,s}_{g''}$ -link with G(L'')=G', and E'' the exterior L''. For the K(G,1)-space E^1 constructed from L^1 as above, we realize an epimorphism $G'\to G$ preserving the meridians by a PL map $f_{E''}:E''\to E^1$, which is used to construct a PL map $f''':M''\to X$ from a closed 4-manifold $M''=E''\cup_{i=1}^r V_i\times S^1$ to $X=E^1\cup_{i=1}^r V_i\times S^1$

in a similar way of the argument above. By a similar calculation using Lemma 3.2, we can conclude that $g'' \ge r - s$ and $G' \notin \mathbb{G}^{r,s}[1] \cup \mathbb{G}^{r,s}_{r-s-1}(Z^{r-s})$. This completes the proof of Theorem 3.1.

4. Virtual link groups

An r-component, s-split virtual link is a virtual link with r components which is represented by a split union of s diagrams of s non-split virtual links. The group of a virtual link diagram which is calculated in a similar way to a classical link diagram except that we do not count the virtual crossing points is an invariant of the virtual link (see L. H. Kauffman [4]). Let $V\mathbb{G}^{r,s}(H)$ be the set of the groups G of r-component, s-split virtual links with $H_2(G) \cong H$. Then we have the following theorem.

Theorem 4.1. $V\mathbb{G}^{r,s}(H) = R\mathbb{G}_{1,1,\dots,1}^{r,s}(H)$ for every H and we have

$$\mathbb{G}^{r,s}[1] \subsetneq V\mathbb{G}^{r,s}(Z^{r-s}) = R\mathbb{G}^{r,s}_{1,1,\dots,1}(Z^{r-s}) \subset R\mathbb{G}^{r,s}_{r}(Z^{r-s}).$$

Proof. The first claim is observed in [10], coming essentially from a result of S. Satoh [15]. The inclusions of the second claim is obvious. For $G = G(L^1) \in \mathbb{G}^{r,s}[1]$, let L be an $F_{1,1,\dots,1}^{r,s}$ -link with G(L) = G, and $L' = L \# L_0$ a connected sum of L and a ribbon S^2 -knot L_0 as in the proof of Theorem 3.1. Then $G' = G(L') \in R\mathbb{G}_{1,1,\dots,1}^{r,s}(Z^{r-s}) = V\mathbb{G}^{r,s}(Z^{r-s})$. Since $\Delta_{G'}^T(t)$ is not symmetric as it is shown in the proof of Theorem 3.1, we have $G' \notin \mathbb{G}^{r,s}[1]$ by Lemma 3.3. Thus, $\mathbb{G}^{r,s}[1] \subsetneq V\mathbb{G}^{r,s}(Z^{r-s})$.

Corollary 4.2. If $\mu(H) > r$, then we have $V\mathbb{G}^{r,s}(H) = \emptyset$. For $H = Z^u \oplus Z_2^v$ with $0 \le u + v \le r$, we have $V\mathbb{G}^{r,s}(H) \ne \emptyset$.

Proof. For $G \in R\mathbb{G}_g^r$, let L be a ribbon F_g^r -link, and E the exterior of L. By Hopf's theorem, there is an exact sequence

$$\pi_2(E,x) \longrightarrow H_2(E) \longrightarrow H_2(G) \to 0.$$

Since L has a Seifert hypersurface homeomorphic to a connected sum of a handlebody and some copies of $S^1 \times S^2$, we can represent a half basis of $H_2(E) \cong Z^{2g}$ by 2-spheres. Hence $\mu H_2(G) \leq g$, showing the first claim. For the second claim, we first note that for every r>1, there is a ribbon F_0^r -link L such that G(L) is an indecomposable group by considering the spinning construction of an r-string tangle in the 3-ball with an indecomposable group (see[8, p.204]). Second, we note that any connected sum of this ribbon F_0^r -link L and any surface-knots L_i' ($i=1,2,\ldots,s$) is a non-split surface-link. Then we take a ribbon $F_0^{r,s}$ -link L whose non-split surface-sublinks have indecomposable groups, and a ribbon T^2 -knot L_0 with $H_2(G(L_0)) \cong Z$ constructed by T. Maeda [14]. Let L' be a ribbon $F_{1,1,\ldots,1}^{r,s}$ -link obtained by a connected sum of L, u copies of L_0 , v copies of L_2 , and v-u-v copies of a trivial T^2 -knot. Then $G(L') \in R\mathbb{G}_{1,1,\ldots,1}^{r,s}(H) = V\mathbb{G}^{r,s}(H)$ for $H = Z^u \oplus Z_2^v$.

It is unknown whether $V\mathbb{G}^{r,s}(H) \neq \emptyset$ for every H with $\mu(H) \leq r$.

References

- [1] C. McA. Gordon, Homology of groups of surfaces in the 4-sphere, Math. Proc. Cambridge Phil. Soc., 89(1981), 113-117.
- [2] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math., 16(1979), 233-248.
- [3] S. Kamada, Wirtinger presentations for higher dimensional manifold knots obtained from diagrams, Fund. Math.,168(2001), 105-112.
- [4] L. H. Kauffman, Virtual knot theory, European J. Combin., 20(1999), 663-690.
- [5] A. Kawauchi, On the signature invariants of infinite cyclic coverings of even dimensional manifolds, Homotopy Theory and Related Topics, Advanced Studies in Pure Math., 9(1986),177-188.
- [6] A. Kawauchi, Three Dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math., 23(1986), 633-651.
- [7] A. Kawauchi, On the integral homology of infinite cyclic coverings of links, Kobe J. Math. 4(1987),31-41.
- [8] A. Kawauchi, A survey of knot theory, Birkhäuser, Basel-Boston-Berlin, 1996.
- [9] A. Kawauchi, The quadratic form of a link, Contemporary Math., 233(1999), 97-116.
- [10] A. Kawauchi, The first Alexander Z[Z]-modules of surface-links and of virtual links, preprint.
- [11] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, II, Math. Sem. Notes Kobe Univ., 11(1983), 31-69.
- [12] M. A. Kervaire, On higher dimensional knots, Differential and combinatorial topology, Princeton Math. Ser., 27(1965), 105-119.
- [13] R. Litherland, The second homology of the group of a knotted surface, Quart. J. Math. Oxford (2), 32(1981),425-434.
- [14] T. Maeda, On the groups with Wirtinger presentation, Math. Sem. Notes Kobe Univ., 5(1977), 347-358.
- [15] S. Satoh, Virtual knot presentations of ribbon torus-knots, J. Knot Theory Ramifications, 9(2000), 531-542.
- [16] T. Yajima, On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ., 13(1962), 63-71.