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ABSTRACT

It is shown that a handle-irreducible summand of every stable-ribbon surface-

link is a unique ribbon surface-link up to equivalences. This is a generalization

of the result for the case of a stably trivial surface-link previously observed.
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1 Introduction

In this paper, a generalization of the result of the paper [9] on a trivial surface-link
to a result on a ribbon surface-link is explained.

A surface-link is a closed oriented (possibly disconnected) surface F embedded in
the 4-space R4 by a smooth (or a piecewise-linear locally flat) embedding. When F
is connected, it is also called a surface-knot. When a (possibly disconnected) closed
surface F is fixed, it is also called an F-link. If F is the disjoint union of some copies
of the 2-sphere S2, then it is also called a 2-link. When F is connected, it is also called
a surface-knot, and a 2-knot for F = S2. Two surface-links F and F ′ are equivalent



by an equivalence f if F is sent to F ′ orientation-preservingly by an orientation-
preserving diffeomorphism (or piecewise-linear homeomorphism) f : R4 → R4. A
trivial surface-link is a surface-link F which is the boundary of the union of mutually
disjoint handlebodies smoothly embedded in R4, where a handlebody is a 3-manifold
which is a 3-ball, solid torus or a disk sum of some number of solid tori. A trivial
surface-knot is also called an unknotted surface-knot. A trivial disconnected surface-
link is also called an unknotted-unlinked surface-link. For any given closed oriented
(possibly disconnected) surface F, a trivial F-link exists uniquely up to equivalences
(see [3]). A ribbon surface-link is a surface-link F which is obtained from a trivial
nS2-link O for some n (where nS2 denotes the disjoint union of n copies of the 2-
sphere S2) by the surgery along an embedded 1-handle system (see [4], [11, II]). A
stabilization of a surface-link F is a connected sum F̄ = F#s

k=1Tk of F and a system
T of trivial torus-knots Tk (k = 1, 2, . . . , s). By granting s = 0, we understand that a
surface-link F itself is a stabilization of F . The trivial torus-knot system T is called
the stabilizer with stabilizer components Tk (k = 1, 2, ..., s) on the stabilization F̄ of
F . A stable-ribbon surface-link is a surface-link F such that a stabilization F̄ of F is
a ribbon surface-link.

For every surface-link F , there is a surface-link F ∗ with minimal total genus such
that F is equivalent to a stabilization of F ∗. The surface-link F ∗ is called a handle-
irreducible summand of F .

The following result called Stable-Ribbon Theorem is our main theorem.

Theorem 1.1. A handle-irreducible summand F ∗ of every stable-ribbon surface-link
F is a ribbon surface-link which is determined uniquely from F up to equivalences.

Since any stabilization of a ribbon surface-link is a ribbon surface-link, Theo-
rem 1.1 implies the following corollary:

Corollary 1.2. Every stable-ribbon surface-link is a ribbon surface-link.

The following corollary of a ribbon surface-link is a standard consequence of Corol-
lary 1.2, and contrasts with a behavior of a classical ribbon knot, for every classical
knot is a connected summand of a ribbon knot.

Corollary 1.3. A connected sum F = F1#F2 of surface-links Fi (i = 1, 2) is a ribbon
surface-link if and only if the surface-links Fi (i = 1, 2) are both ribbon surface-links.

Proof of Corollary 1.3. The ‘if’ part of Corollary 1.3 is seen from the definition of a
ribbon surface-link. The proof of the ‘only if’ part of Corollary 1.3 uses an argument
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of [3] showing the fact that every surface-link is made a trivial surface-knot by the
surgery along a finite number of (possibly non-trivial) 1-handles. The connected
summand F2 is made a trivial surface-knot by the surgery along 1-handles within
the 4-ball defining the connected sum, so that the surface-link F changes into a new
ribbon surface-link and hence F1 is a stable-ribbon surface-link. By Corollary 1.2, F1

is a ribbon surface-link. By interchanging the roles of F1 and F2, F2 is also a ribbon
surface-link. □

A stably trivial surface-link is a surface-link F such that a stabilization F̄ of F is
a trivial surface-link. Since a trivial surface-link is a ribbon surface-link, Theorem 1.1
also implies the following corollary, which is a main result in [9]:

Corollary 1.4. A handle-irreducible summand of every stably trivial surface-link is
a trivial 2-link.

This corollary implies that every stably trivial surface-link is a trivial surface-link
as observed in [9]. See [9, 10] for further results on a trivial surface-link.

The plan for the proof of Theorem 1.1 is to show the following two theorems by
an argument based on [9].

Theorem 1.1.1 Any two handle-irreducible summands of any (not necessarily rib-
bon) surface-link are equivalent.

Theorem 1.1.2 Any stable-ribbon surface-link is a ribbon surface-link.

The proofs of Theorem 1.1.1 and 1.1.2 are given in § 2 and § 3, respectively. The
proof of Theorem 1.1 is completed by these theorems as follows:

Proof of Theorem 1.1. By Theorem 1.1.2, a handle-irreducible summand of every
stable-ribbon surface-link is a ribbon surface-link which is unique up to equivalences
by Theorem 1.1.2. □

2 Proof of Theorem 1.1.1

A 2-handle on a surface-link F in R4 is an embedded 2-handle D × I on F with D
a chore disk such that (D × I) ∩ F = (∂D) × I, where I denotes a closed interval
containing 0 and D× 0 is identified with D. An orthogonal 2-handle pair (or simply,
an O2-handle pair) on F is a pair (D × I,D′ × I) of 2-handles D × I, D′ × I) on F
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such that the core disks D and D′ meet transversely at just one point p in F with

(D × I) ∩ (D′ × I) = (∂D)× I ∩ (∂D′)× I

which is homeomorphic to the square Q = I × I with p the central point.
Let (D × I,D′ × I) be an O2-handle pair on a surface-link F . Let F (D × I) and

F (D′ × I) be the surface-links obtained from F by the surgeries along D × I and
D′ × I, respectively. Let F (D × I,D′ × I) be the surface-link which is the union
of the bounded surface F c

D = cl(F \ ((∂D) × I ∪ (∂D′) × I)) and the plumbed disk
δD = D × (∂I) ∪ Q ∪ D′ × (∂I). A compact once-punctured torus of a torus T is
simply called a punctured torus and denoted by T o. A punctured torus T o in a 3-ball
B is trivial if T o is smoothly and properly embedded in B and there is a solid torus
V in B with ∂V = T o ∪ δB for a disk δB in ∂B.

A bump of a surface-link F is a 3-ball B in R4 with F ∩B = T o a trivial punctured
torus in B. Let F (B) be a surface-link F c ∪ δB for the surface F c

B = cl(F \ T o) and
a disk δB in ∂B with ∂δB = ∂T o, where note that F (B) is uniquely determined up
to cellular moves on δB keeping F c fixed. For an O2-handle pair (D × I,D′ × I) on
a surface-link F , let ∆ = D × I ∪D′ × I is a 3-ball in R4 called the 2-handle union.
By adding a boundary collar to the 2-handle union ∆, we have a bump B = BD of
F , which we call the associated bump of the O2-handle pair (D × I,D′ × I) (see [9,
Fig. 2]).

An O2-handle pair and a bump on a surface-link are shown to be essentially
equivalent notions in [9]. In particular, it is observed in [9] that for any O2-handle
pair (D × I,D′ × I) on any surface-link F and the associated bump B, there are
equivalences

F (B) ∼= F (D × I,D′ × I) ∼= F (D × I) ∼= F (D′ × I).

A punctured torus T o in a 4-ball A is trivial if T o is smoothly and properly
embedded in A and there is a solid torus V in A with ∂V = T o ∪ δA for a disk δA in
the 3-sphere ∂A. A 4D bump of a surface-link F is a 4-ball A in R4 with F ∩A = T o

a trivial punctured torus in A. A 4D bump A is obtained from a bump B of a
surface-link F by taking a bi-collar c(B× [−1, 1]) of B in R4 with c(B×0) = B. The
following lemma is proved by using a 4D bump A.

Lemma 2.1. For an O2-handle pair (D × I,D′ × I) on a surface-link F , let F (D ×
I,D′ × I) = F c

D ∪ δD. Then for a trivial torus-knot T with a spin loop basis (ℓ, ℓ′),
there is an equivalence f : R4 → R4 from the surface-link F to a connected sum
F (D × I,D′ × I)#T keeping F c

D fixed such that

f(∂D) = ℓ and f(∂D′) = ℓ′.
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Proof of Lemma 2.1. Let A be a 4D bump associated with the O2-handle pair
(D × I,D′ × I) on F . Let δA be a disk in the 3-sphere ∂A such that the union of
δD and the trivial punctured torus F ∩ A = P bounds a solid torus V in A. Then
there is an equivalence f ′ : F ∼= F (D× I,D′ × I)#T by deforming V in A so that P
is isotopically deformed into the summand T o of a connected sum δD#T in A. Then
the spin loop pair (∂D, ∂D′) on F1 is sent to a spin loop basis (ℓ̃, ℓ̃′) of T o. By [2]
(see [9, (2.4.2)]), there is an orientation-preserving diffeomorphism g : R4 → R4 with
g|cl(R4\A)

= 1 such that

g(ℓ̃, ℓ̃) = (ℓ, ℓ′).

By the composition gf ′, we have a desired equivalence f . □

A surface-link F has only unique O2-handle pair in the rigid sense if for any O2-
handle pairs (D× I,D′ × I) and (E × I, E ′ × I) on F with (∂D)× I = (∂E)× I and
(∂D′) × I = (∂E ′) × I, there is an equivalence f : R4 → R4 from F to F such that
f(D× I) = E× I and f(D′× I) = E ′× I. It is shown in [9] that every surface-link F
has only unique O2-handle pair in the rigid sense with an additional condition that
there is an ambient isotopy ft (t ∈ [0, 1]) with f0 = 1 and f1 = f keeping F c

D fixed.

A surface-link F has only unique O2-handle pair in the soft sense if for any O2-
handle pairs (D× I,D′× I) and (E× I, E ′× I) on F attached to the same connected
component of F , there is an equivalence f : R4 → R4 from F to F such that
f(D × I) = E × I and f(D′ × I) = E ′ × I.

A surface-link not admitting any O2-handle pair is understood as a surface-link
with only unique O2-handle pair in both the rigid and soft senses.

The following lemma shows that the uniqueness of an O2-handle pair in the soft
sense is derived from the uniqueness of an O2-handle pair in the rigid sense.

Lemma 2.2. Every surface-link has only unique O2-handle pair in the soft sense.

Proof of Lemma 2.2. Let (D× I,D′× I) and (E× I, E ′× I) be any two O2-handle
pairs on a surface-link F attached to the same connected component of F .

By Lemma 2.1, there is an equivalence f : R4 → R4 from F to to F (E × I, E ′ ×
I)#T keeping F c

E fixed. Let FE = F (E × I, E ′ × I). Let FE(ḣ) be a trivial surface-
knot obtained from FE by the surgery along a system h of mutually disjoint 1-handles
hj (j = 1, 2, . . . , s) on FE.

Let ḣ be the system of cylinders ḣj = hj ∩ FE(ḣ) (j = 1, 2, . . . , s), and ḧ is the
system of two disks ḧj = cl(∂hj \ ḣj) (j = 1, 2, . . . , s).

Let (d × I, d′ × I) be a standard O2-handle pair on T 0 in the 4-ball defining the
connected summand T o in FE#T , and (e, e′) = (∂d, ∂d′) which is a spin loop basis
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of T o. By construction, the system h of 1-handles hj (j = 1, 2, . . . , s) is disjoint from
the disk pair (d, d′). By an isotopic deformation of f , we can assume that the system
f−1(h) of the 1-handles f−1(hj) (j = 1, 2, . . . , s) on F is disjoint from (D× I,D′× I).

By [2] (see [9, (2.4.2)]), there is an orientation-preserving diffeomorphism g : R4 →
R4 sending FE(ḣ)#T to itself such that the spin loop pair (gf(∂D), gf(∂D′)) = (e, e′)
and the restriction of g to the system ḣ of the cylinders ḣj (j = 1, 2, . . . , s) is the
identity map. This last condition is assumed by a choice of a spin loop basis on
FE(ḣ)#T .

By the uniqueness of an O2-handle pair in the rigid sense given in [9], there is an
ambient isotopy it : R

4 → R4 (t ∈ [0, 1]) keeping (FE(ḣ)#T )c fixed such that i0 is the
identity and i1g(f(D)× I, f(D′)× I) = (d× I, d′ × I). Let

Gt = g−1(cl(FE(ḣ) \ ḣ)#T ) ∪ g−1itg(ḧ) (t ∈ [0, 1])

be a surface-link family with G0 = FE#T . There is an O2-handle pair

(g−1itg(f(D)× I, f(D′)× I)

on the surface-link Gt, where

g−1i0g(f(D)× I, f(D′)× I) = (f(D)× I, f(D′)× I),

g−1i1g(f(D)× I, f(D′)× I) = g−1(d× I, d′ × I).

Then the surface-link G0(f(D)× I, f(D′)× I is given by

G0(f(D)× I, f(D′)× I) = (FE#T )(f(D)× I, f(D′)× I)
∼= F (D × I,D′ × I)

= FD,

and the surface-link gG1(d× I, d′ × I) is given by

gG1(d× I, d′ × I) = (cl(FE(ḣ) \ ḣ)#T ∪ i1g(ḧ))(d× I, d′ × I)
∼= (cl(FE(ḣ) \ ḣ)#T ∪ i1g(ḧ))(i1g(d× I), i1g(d

′ × I))

= i1g((FE#T )(d× I, d′ × I))
∼= (FE#T )(d× I, d′ × I)
∼= FE,

where the equivalence

(cl(FE(ḣ) \ ḣ)#T ∪ i1g(ḧ))(d× I, d′ × I)
∼= (cl(FE(ḣ) \ ḣ)#T ∪ i1g(ḧ))(i1g(d× I), i1g(d

′ × I))
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is obtained from the uniqueness of an O2-handle pair in the rigid sense given in [9].
Since there is an equivalence

G0(f(D)× I, f(D′)× I) ∼= gG1(d× I, d′ × I),

there is an equivalence f ′ from FD = F c
D ∪ δD to FE = F c

E ∪ δE for disks δD and
δE. By a disk move, we can assume that f ′(δD) = δE. The map f ′ is isotopic to a
diffeomorphism f ′′ : R4 → R4 sending the associated bump BD of (D × I,D′ × I)
to the associated bump BE of (E × I, E ′ × I). The diffeomorphism f ′′ : R4 → R4 is
modified into an equivalence f ′′′ : R4 → R4 from F to F such that f ′′′(D×I) = E×I

and f ′′′(D′ × I) = E ′ × I because the bumps BD and BE recover the unordered O2-
handle pairs (D × I,D′ × I) and (E × I, E ′ × I), respectively (cf. [9, Lemma 2.4]).
Thus, every surface-link F has only unique O2-handle pair in the soft sense. □

We use the following corollary to Lemma 2.2.

Corollary 2.3. Let F, F ′ be surface-links with ordered components Fi, F
′
i (i =

1, 2, . . . , r), respectively, and F̄ = F#iT, F̄
′ = F ′#iT the stabilizations of F, F ′

with induced ordered components obtained by the connected sums Fi#T, F ′
i#T of

the ith components Fi, F
′
i and a trivial torus-knot T for some i, respectively. Assume

that F̄ is equivalent to F̄ ′ by a component-order-preserving equivalence. Then F is
equivalent to F ′ by a component-order-preserving equivalence.

Remark 2.4. Corollary 2.3 for ribbon surface-links F, F ′ has a different proof using
the result of [8].

The proof of Theorem 1.1.1 is done as follows.

Proof of Theorem 1.1.1. A surface-link F with r ordered components is kth-
handle-reducible if F is equivalent to a stabilization F ′#knkT of a surface-link F ′ for
a positive integer nk, where #knkT denotes the stabilizer components nkT attaching
to the kth component of F ′. Otherwise, the surface-link F is kth-handle-irreducible.
Note that if a kth-handle-irreducible surface-link F is component-order-preserving
equivalent to a surface-link G, then G is also kth-handle-irreducible.

Let F and G be ribbon surface-links with components Fi (i = 1, 2, . . . , r) and
Gi (i = 1, 2, . . . , r), respectively. Let F ∗and G∗ be handle-irreducible summands of F
and G, respectively.

Assume that there is an equivalence f from F to G. Then we show that F ∗ and
G∗ are equivalent. Changing the indexes if necessary, we assume that f sends Fi to
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Gi for every i. Let

F = F ∗#1n1T#2n2T#3 . . .#rnrT,

G = G∗#1n
′
1T#2n

′
2T#3 . . .#rn

′
rT.

Taking the inverse equivalence f−1 instead of f if necessary, we may assume that
n′
1 ≥ n1. If n′

1 > n1, then by (*), there is an equivalence f (1) from the first-handle-
irreducible surface-link

F (1) = F ∗#2n2T#3 . . .#rnrT

to the first-handle-reducible surface-link

G∗#1(n
′
1 − n1)T#2n

′
2T#3 . . .#rn

′
rT,

which has a contradiction. Thus, n′
1 = n1 and the first-handle-irreducible surface-link

F (1) is equivalent to the first-handle-irreducible ribbon surface-link

G(1) = G∗#2n
′
2T#3 . . .#rn

′
rT.

By continuing this process, it is shown that F ∗ is equivalent to G∗. This completes
the proof of Theorem 1.1.1. □

3 Proof of Theorem 1.1.2

A chord graph is a pair (o, α) of a trivial ink o and an arc system α attaching to o
in the 3-space R3, where o and α are called a based loop system and a chord system,
respectively. A chord diagram is a diagram C(o, α) in the plane R2 of a chord graph
(o, α) as a spatial graph. Let D+ be a proper disk system in the upper half-space
R4

+ obtained from a disk system d+ in R3 bounded by o by pushing the interior into
R4

+. Similarly, let D− be a proper disk system in the lower half-space R4
− obtained

from a disk system d− in R3 bounded by o by pushing the interior into R4
−. Let O

be the union of D+ and D− which is a trivial nS2-link in the 4-space R4, where n is
the number of components of o. The union O ∪ α is called a chorded sphere system
constructed from a chord graph (o, α).

By using the Horibe-Yanagawa lemma in [11, I], the chorded sphere system O∪α
up to orientation-preserving diffeomorphisms of R4 is independent of choices of d+

and d− and uniquely determined by the chord graph (o, α). A ribbon surface-link
F = F (o, α) is uniquely constructed from the chorded sphere system O∪α so that F
is the surgery of O along a 2-handle system N(α) on O with core arc system α (see
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[5, 6, 7, 8]), where note by [3] that the surface-link F up to equivalences is unaffected
by choices of the 2-handle N(α).

A semi-unknotted punctured handlebody system (or simply a SUPH system) for a
surface-link F is a punctured handlebody system V in R4 such that the boundary
∂V of V is a union F ∪O of F and a trivial S2-link O with F ∩O = ∅. The following
lemma is a characterization of a ribbon surface-link (cf. [11, II], Yanagawa [12]).

Lemma 3.1. A surface-link F is a ribbon surface-link if and only if there is a
punctured SUPH system V for F .

Proof of Lemma 3.1. Given a ribbon surface-link, a SUPH system V is constructed
by a thickening O× I of O in R4 by attaching a 1-handle system. Conversely, given a
SUPH system V in R4 such that ∂V = F ∪O for a trivial S2-link O with F ∩O = ∅,
there is a chord system α in V attaching to O such that the frontier of the regular
neighborhood of O ∪ α in V is parallel to F , showing that F is a ribbon surface-link.
□

The following lemma is basic to the proof of Theorem 1.1.2.

Lemma 3.2. The following (1) and (2) hold.

(1) For a surface-link F and a trivial torus-knot T , if a connected sum F#T is a
ribbon surface-link, then F is a ribbon surface-link.

(2) If F is a ribbon surface-link and (D× I,D′ × I) is an O2-handle pair on F , then
F (D × I,D′ × I) is a ribbon surface-link.

Theorem 1.1.2 is a consequence of Lemma 3.2 as follows:

Proof of Theorem 1.1.2. If a stabilization F̄ of a surface-link F is a ribbon surface-
link, then F is a ribbon surface-link by an inductive use of Lemma 3.2 (1). □

We are in a position to show Lemma 3.2.

Proof of Lemma 3.2. The assertion (1) ⇒ (2) holds. In fact, by Lemma 2.1, there
is a connected sum splitting F ∼= F (D × I,D′ × I)#T for a trivial torus-knot T .
Thus, if F is a ribbon surface-link, then F (D × I,D′ × I) is a ribbon surface-link by
(1).

We show (1). Let F#T = F1#T ∪ F2 ∪ · · · ∪ Fr be a ribbon surface-link for a
trivial torus-knot T . The following claim (3.2.1) is shown later.
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(3.2.1) There is a stabilization F̄ = F̄1∪F2∪· · ·∪Fr of F#T with F̄1 = F1#T#2m
i=1Ti

such that the following conditions (i) and (ii) hold:

(i) There is an O2-handle pair (D × I,D′ × I) on F̄ attached to F̄1 such that the
surface-link F̄ (D × I) is a ribbon surface-link admitting a SUPH system with the
1-handles h′

i (i = 1, 2, . . . , 2m) trivially attached.

(ii) There is an O2-handle pair (E × I, E ′ × I) on F̄ attached to F̄1 such that the
surface-link F̄ (E × I) is the surface-link F with the 1-handles h′′

i (i = 1, 2, . . . , 2m)
trivially attached.

By assuming (3.2.1), the proof of Lemma 3.2 is completed as follows.
By (i), the surface-link F ′′ = F̄ (D × I,D′ × I) ∼= F̄ (D × I) is a ribbon surface-

link and further the surface-link F ∗ obtained from F ′′ by the surgery on O2-handle
pairs of all the trivial 1-handles h′

i (i = 1, 2, . . . , 2m) is also a ribbon surface-link.
By (ii), the surface-link F̄ (E × I, E ′ × I) ∼= F̄ (E × I) is the surface-link F with the
1-handles h′′

i (i = 1, 2, . . . , 2m) trivially attached. By an inductive use of Lemma 2.2
(or Theorem 1.1.1), the surface-link F is equivalent to the ribbon surface-link F ∗.
Hence F is a ribbon surface-link, obtaining (3). Thus, the proof of Lemma 3.2 is
completed except for the proof of (3.2.1). □

We are in a position to prove the claim (3.2.1).

Proof of (3.2.1). Let V be a SUPH system for F#T by Lemma 3.1. Let the
component of the SUPH system V containing F1#T be a disk sum U#∂W for a
punctured 3-ball U and a handlebody W . Let A be a 4D bump defining the connected
sum F#T with (F#T ) ∩ A = T o.

We proceed the proof by assuming the following claim (3.2.2) shown later.

(3.2.2) There are a spin loop basis (ℓ, ℓ′) for T o and a spin simple loop ℓ̃′ in F#T
such that Int(ℓ, ℓ̃′) = 1 and ℓ̃′ bounds a disk D′ in W .

By assuming (3.2.2), the proof of (3.2.1) is completed as follows.
Let pi (i = 0, 1, . . . , 2m) be the intersection points of ℓ and ℓ̃′. For every i > 0,

let αi be an arc neighborhood of pi in ℓ, and hi a 1-handle on F#T with a core arc
α̂i obtained by pushing the interior of αi into R4 \ V . Let α̃i be a proper arc in
∂̇hi = cl(∂hi \ hi ∩ F#T ) parallel to α̂i in hi with ∂α̃i = ∂αi.

Let F̄ = F#T#2m
i=1Ti be a stabilization of F associated with the system of mutu-

ally disjoint trivial 1-handles hi (i = 1, 2, . . . , 2m).
Let ℓ̃ be a simple loop obtained from ℓ by replacing αi with α̃i for every i > 0.

The loop ℓ̃ is taken to be a spin loop in F̄ meeting ℓ′ transversely in just one point.
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Let A be a 4D bump of the associated bump B of an O2-handle pair (E×I, E ′×I)
on F#T inR4 attached to T o with (ℓ, ℓ′) = (∂E, ∂E ′). Then the loop ℓ̃ and the trivial
1-handles hi (i = 1, 2, . . . , 2m) are taken in A.

Let W+(D′) be the handlebody obtained from the handlebody W+ = W ∪2m
i=1 hi

by splitting along a thickened disk D′× I of D′. Then the manifold V +(D′) obtained
from V + = V ∪2m

i=1 hi by replacing W+ with W+(D′) is a SUPH system.

The SUPH system V + is ambient isotopic in R4 to a SUPH system Ṽ + which is
the union of V +(D′) and a solid torus W1 in A connected by a 1-handle hW in A,
where the solid torus W1 has a deformed disk D̃′ of D′ as a meridian disk and the
loop ℓ̃ as a longitude. Since the trivial 1-handles hi (i = 1, 2, . . . , 2m) are taken in the
bump B, the solid torus W1 is moved into a 4-ball disjoint from T o ∪2m

i=1 hi and hence
the loop ℓ̃ bounds a disk D̃ in A not meeting T o, hi for all i > 0 and hW . By putting
back the ambient isotopy from the SUPH system Ṽ + to the SUPH system V +, we
see that there is an O2-handle pair (D × I,D′ × I) on the surface-link F̄ such that
F̄ (D × I) is a ribbon surface-link admitting trivial 1-handles h′

i (i = 1, 2, . . . , 2m).
This shows (i).

On the other hand, the 1-handles hi (i = 1, 2, . . . , 2m) on F#T are isotopically
deformed in A into 1-handles h′′

i (i = 1, 2, . . . , 2m) on F#T disjoint from the disk pair
(E,E ′) such that the core arcs of the 1-handles hi (i = 1, 2, . . . , 2m) are deformed
into simple arcs in F#T away from the disk pair (E,E ′) in A. Hence the surface-link
F̄ (E × I, E ′ × I) is the surface-link F with the trivial 1-handles h′′

i (i = 1, 2, . . . , 2m)
attached. This shows (ii). Thus, the proof of (3.2.1) is completed except for the proof
of (3.2.2). □

The proof of (3.2.2) is given as follows:

Proof of (3.2.2) Consider a disk sum decomposition of the handlebody W into a
3-ball B0 and solid tori Vj = S1 ×D2

j (j = 1, 2, . . . , g) pasting along mutually disjoint
disks in ∂B0. Let (ℓj,mj) be a longitude-meridian pair of the solid torus Vj for all j.
By [1] (see [9, (2.4.1)]), the loop basis (ℓj,mj) for ∂Vj is taken as a spin loop basis in
R4 for all j. The homology H1(∂W ;Z) has the basis [ℓj], [mj], (j = 1, 2, . . . , g).

For a loop basis (ℓ, ℓ′) of T o with the intersection number Int(ℓ, ℓ′) = 1 in T o, the
image I(T o) and the kernel K(T o) of the natural homomorphism ι∗ : H1(T

o;Z) →
H1(W ;Z) are infinite cyclic groups. Let x be an element of H1(T

o;Z) such that the
image ι∗(x) is a generator of I(T o), and x′ a generator of K(T o). By noting that the
intersection number Int(x,x’)=1 in T o, let x = a[ℓ] + b[ℓ′] and x′ = a′[ℓ] + b′[ℓ′] for
coprime integral pairs (a, b) and (a′, b′) with ab′−a′b = 1. Let (ℓ′′, ℓ′′′) be a loop basis
for T o such that [ℓ′′] = x and [ℓ′′′] = x′.
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The homology class [ℓ′′] ∈ H1(∂W ;Z) is written as the sum

[ℓ′′] =

g∑
j=1

aj[ℓj] + bj[mj]

for an integral system aj, bj (j = 1, 2, . . . , g). Since ι∗([ℓ
′′]) ̸= 0, there is a non-zero

integer in the integers aj (j = 1, 2, . . . , g). By changing the orientations of ℓj and the
indexes of the solid tori Vj if necessary, assume that aj ≥ 0 for all j and a1 is the
smallest non-zero integer in the integral system aj (j = 1, 2, . . . , g). For j ≥ 2, let

aj = nja1 + rj

for an integer rj with 0 ≤ rj < a1. By handle slides of W , we have a new disk sum
decomposition of W into a 3-ball B0 and solid tori Vj = S1×D2

j (j = 1, 2, . . . , g) such
that

[ℓ′′] = a1[ℓ1] + b1[m1] +

g∑
j=2

rj[ℓj] + b̃j[mj]

for some integers b̃j (j = 2, 3, . . . , g) By repeating this process, we have a disk sum
decomposition of W into a 3-ball B0 and solid tori Vj = S1×D2

j (j = 1, 2, . . . , g) such
that

[ℓ′′] = a[ℓ1] +

g∑
j=1

b̃j[mj]

for some integers b̃j (j = 1, 2, . . . , g), where a is the greatest common divisor of the
integers aj (j = 1, 2, . . . , g).

Let

[ℓ′′′] =

g∑
j=1

b′j[mj]

for an integral system b′j (j = 1, 2, . . . , g). Since the intersection number Int(ℓ′′, ℓ′′′) =
1 in ∂W , we have ab′1 = 1 and hence a = 1. By [1] (see [9, (2.4.1)]), the loop basis
(ℓ′′, ℓ′′′) of T o is taken spin if we consider x + x′ instead of x if necessary since ℓ′′′

is a spin loop. Since the intersection number Int(ℓ′′,m1) = 1 in F#T , we can take
(ℓ′′, ℓ′′′), m1 and a meridian disk of m1 in V1 as (ℓ, ℓ

′), ℓ̃′ and D′ in (3.2.2), respectively.
Thus, the proof of (3.2.2) is completed. □

This completes the proof of Lemma 3.2. □
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