Ribbonness of a stable-ribbon surface-link, II. General case

Akio Kawauchi

Osaka City University Advanced Mathematical Institute

Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

It is shown that a handle-irreducible summand of every stable-ribbon surfacelink is a unique ribbon surface-link up to equivalences. This is a generalization of the result for the case of a stably trivial surface-link previously observed.

Keywords: Ribbon, Stable-ribbon, Surface-link.

Mathematics Subject Classification 2010: Primary 57Q45; Secondary 57M15, 57N13

1 Introduction

In this paper, a generalization of the result of the paper [9] on a trivial surface-link to a result on a ribbon surface-link is explained.

A surface-link is a closed oriented (possibly disconnected) surface F embedded in the 4-space \mathbb{R}^4 by a smooth (or a piecewise-linear locally flat) embedding. When F is connected, it is also called a surface-knot. When a (possibly disconnected) closed surface \mathbf{F} is fixed, it is also called an \mathbf{F} -link. If \mathbf{F} is the disjoint union of some copies of the 2-sphere S^2 , then it is also called a 2-link. When \mathbf{F} is connected, it is also called a surface-knot, and a 2-knot for $\mathbf{F} = S^2$. Two surface-links F and F' are equivalent

by an equivalence f if F is sent to F' orientation-preservingly by an orientationpreserving diffeomorphism (or piecewise-linear homeomorphism) $f: \mathbf{R}^4 \to \mathbf{R}^4$. A trivial surface-link is a surface-link F which is the boundary of the union of mutually disjoint handlebodies smoothly embedded in \mathbb{R}^4 , where a handlebody is a 3-manifold which is a 3-ball, solid torus or a disk sum of some number of solid tori. A trivial surface-knot is also called an unknotted surface-knot. A trivial disconnected surfacelink is also called an unknotted-unlinked surface-link. For any given closed oriented (possibly disconnected) surface F, a trivial F-link exists uniquely up to equivalences (see [3]). A ribbon surface-link is a surface-link F which is obtained from a trivial nS^2 -link O for some n (where nS^2 denotes the disjoint union of n copies of the 2sphere S^2) by the surgery along an embedded 1-handle system (see [4], [11, II]). A stabilization of a surface-link F is a connected sum $\bar{F} = F \#_{k=1}^s T_k$ of F and a system T of trivial torus-knots T_k (k = 1, 2, ..., s). By granting s = 0, we understand that a surface-link F itself is a stabilization of F. The trivial torus-knot system T is called the stabilizer with stabilizer components T_k (k = 1, 2, ..., s) on the stabilization \bar{F} of F. A stable-ribbon surface-link is a surface-link F such that a stabilization \bar{F} of F is a ribbon surface-link.

For every surface-link F, there is a surface-link F^* with minimal total genus such that F is equivalent to a stabilization of F^* . The surface-link F^* is called a *handle-irreducible summand* of F.

The following result called *Stable-Ribbon Theorem* is our main theorem.

Theorem 1.1. A handle-irreducible summand F^* of every stable-ribbon surface-link F is a ribbon surface-link which is determined uniquely from F up to equivalences.

Since any stabilization of a ribbon surface-link is a ribbon surface-link, Theorem 1.1 implies the following corollary:

Corollary 1.2. Every stable-ribbon surface-link is a ribbon surface-link.

The following corollary of a ribbon surface-link is a standard consequence of Corollary 1.2, and contrasts with a behavior of a classical ribbon knot, for every classical knot is a connected summand of a ribbon knot.

Corollary 1.3. A connected sum $F = F_1 \# F_2$ of surface-links F_i (i = 1, 2) is a ribbon surface-link if and only if the surface-links F_i (i = 1, 2) are both ribbon surface-links.

Proof of Corollary 1.3. The 'if' part of Corollary 1.3 is seen from the definition of a ribbon surface-link. The proof of the 'only if' part of Corollary 1.3 uses an argument

of [3] showing the fact that every surface-link is made a trivial surface-knot by the surgery along a finite number of (possibly non-trivial) 1-handles. The connected summand F_2 is made a trivial surface-knot by the surgery along 1-handles within the 4-ball defining the connected sum, so that the surface-link F changes into a new ribbon surface-link and hence F_1 is a stable-ribbon surface-link. By Corollary 1.2, F_1 is a ribbon surface-link. By interchanging the roles of F_1 and F_2 , F_2 is also a ribbon surface-link. \square

A stably trivial surface-link is a surface-link F such that a stabilization \overline{F} of F is a trivial surface-link. Since a trivial surface-link is a ribbon surface-link, Theorem 1.1 also implies the following corollary, which is a main result in [9]:

Corollary 1.4. A handle-irreducible summand of every stably trivial surface-link is a trivial 2-link.

This corollary implies that every stably trivial surface-link is a trivial surface-link as observed in [9]. See [9, 10] for further results on a trivial surface-link.

The plan for the proof of Theorem 1.1 is to show the following two theorems by an argument based on [9].

Theorem 1.1.1 Any two handle-irreducible summands of any (not necessarily ribbon) surface-link are equivalent.

Theorem 1.1.2 Any stable-ribbon surface-link is a ribbon surface-link.

The proofs of Theorem 1.1.1 and 1.1.2 are given in \S 2 and \S 3, respectively. The proof of Theorem 1.1 is completed by these theorems as follows:

Proof of Theorem 1.1. By Theorem 1.1.2, a handle-irreducible summand of every stable-ribbon surface-link is a ribbon surface-link which is unique up to equivalences by Theorem 1.1.2. \square

2 Proof of Theorem 1.1.1

A 2-handle on a surface-link F in \mathbf{R}^4 is an embedded 2-handle $D \times I$ on F with D a chore disk such that $(D \times I) \cap F = (\partial D) \times I$, where I denotes a closed interval containing 0 and $D \times 0$ is identified with D. An orthogonal 2-handle pair (or simply, an O2-handle pair) on F is a pair $(D \times I, D' \times I)$ of 2-handles $D \times I$, $D' \times I$) on F

such that the core disks D and D' meet transversely at just one point p in F with

$$(D \times I) \cap (D' \times I) = (\partial D) \times I \cap (\partial D') \times I$$

which is homeomorphic to the square $Q = I \times I$ with p the central point.

Let $(D \times I, D' \times I)$ be an O2-handle pair on a surface-link F. Let $F(D \times I)$ and $F(D' \times I)$ be the surface-links obtained from F by the surgeries along $D \times I$ and $D' \times I$, respectively. Let $F(D \times I, D' \times I)$ be the surface-link which is the union of the bounded surface $F_D^c = \operatorname{cl}(F \setminus ((\partial D) \times I \cup (\partial D') \times I))$ and the plumbed disk $\delta_D = D \times (\partial I) \cup Q \cup D' \times (\partial I)$. A compact once-punctured torus of a torus T is simply called a punctured torus and denoted by T^o . A punctured torus T^o in a 3-ball B is trivial if T^o is smoothly and properly embedded in B and there is a solid torus V in B with $\partial V = T^o \cup \delta_B$ for a disk δ_B in ∂B .

A bump of a surface-link F is a 3-ball B in \mathbf{R}^4 with $F \cap B = T^o$ a trivial punctured torus in B. Let F(B) be a surface-link $F^c \cup \delta_B$ for the surface $F_B^c = \operatorname{cl}(F \setminus T^o)$ and a disk δ_B in ∂B with $\partial \delta_B = \partial T^o$, where note that F(B) is uniquely determined up to cellular moves on δ_B keeping F^c fixed. For an O2-handle pair $(D \times I, D' \times I)$ on a surface-link F, let $\Delta = D \times I \cup D' \times I$ is a 3-ball in \mathbf{R}^4 called the 2-handle union. By adding a boundary collar to the 2-handle union Δ , we have a bump $B = B_D$ of F, which we call the associated bump of the O2-handle pair $(D \times I, D' \times I)$ (see [9, Fig. 2]).

An O2-handle pair and a bump on a surface-link are shown to be essentially equivalent notions in [9]. In particular, it is observed in [9] that for any O2-handle pair $(D \times I, D' \times I)$ on any surface-link F and the associated bump B, there are equivalences

$$F(B) \cong F(D \times I, D' \times I) \cong F(D \times I) \cong F(D' \times I).$$

A punctured torus T^o in a 4-ball A is trivial if T^o is smoothly and properly embedded in A and there is a solid torus V in A with $\partial V = T^o \cup \delta_A$ for a disk δ_A in the 3-sphere ∂A . A 4D bump of a surface-link F is a 4-ball A in \mathbf{R}^4 with $F \cap A = T^o$ a trivial punctured torus in A. A 4D bump A is obtained from a bump B of a surface-link F by taking a bi-collar $c(B \times [-1,1])$ of B in \mathbf{R}^4 with $c(B \times 0) = B$. The following lemma is proved by using a 4D bump A.

Lemma 2.1. For an O2-handle pair $(D \times I, D' \times I)$ on a surface-link F, let $F(D \times I, D' \times I) = F_D^c \cup \delta_D$. Then for a trivial torus-knot T with a spin loop basis (ℓ, ℓ') , there is an equivalence $f: \mathbf{R}^4 \to \mathbf{R}^4$ from the surface-link F to a connected sum $F(D \times I, D' \times I) \# T$ keeping F_D^c fixed such that

$$f(\partial D) = \ell$$
 and $f(\partial D') = \ell'$.

Proof of Lemma 2.1. Let A be a 4D bump associated with the O2-handle pair $(D \times I, D' \times I)$ on F. Let δ_A be a disk in the 3-sphere ∂A such that the union of δ_D and the trivial punctured torus $F \cap A = P$ bounds a solid torus V in A. Then there is an equivalence $f': F \cong F(D \times I, D' \times I) \# T$ by deforming V in A so that P is isotopically deformed into the summand T^o of a connected sum $\delta_D \# T$ in A. Then the spin loop pair $(\partial D, \partial D')$ on F_1 is sent to a spin loop basis $(\tilde{\ell}, \tilde{\ell}')$ of T^o . By [2] (see [9, (2.4.2)]), there is an orientation-preserving diffeomorphism $g: \mathbb{R}^4 \to \mathbb{R}^4$ with $g|_{\operatorname{Cl}(\mathbb{R}^4 \setminus A)} = 1$ such that

$$g(\tilde{\ell}, \tilde{\ell}) = (\ell, \ell').$$

By the composition gf', we have a desired equivalence f. \square

A surface-link F has only unique O2-handle pair in the rigid sense if for any O2-handle pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ on F with $(\partial D) \times I = (\partial E) \times I$ and $(\partial D') \times I = (\partial E') \times I$, there is an equivalence $f : \mathbf{R}^4 \to \mathbf{R}^4$ from F to F such that $f(D \times I) = E \times I$ and $f(D' \times I) = E' \times I$. It is shown in [9] that every surface-link F has only unique O2-handle pair in the rigid sense with an additional condition that there is an ambient isotopy f_t ($t \in [0,1]$) with $f_0 = 1$ and $f_1 = f$ keeping F_D^c fixed.

A surface-link F has only unique O2-handle pair in the soft sense if for any O2-handle pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ on F attached to the same connected component of F, there is an equivalence $f: \mathbf{R}^4 \to \mathbf{R}^4$ from F to F such that $f(D \times I) = E \times I$ and $f(D' \times I) = E' \times I$.

A surface-link not admitting any O2-handle pair is understood as a surface-link with only unique O2-handle pair in both the rigid and soft senses.

The following lemma shows that the uniqueness of an O2-handle pair in the soft sense is derived from the uniqueness of an O2-handle pair in the rigid sense.

Lemma 2.2. Every surface-link has only unique O2-handle pair in the soft sense.

Proof of Lemma 2.2. Let $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ be any two O2-handle pairs on a surface-link F attached to the same connected component of F.

By Lemma 2.1, there is an equivalence $f: \mathbf{R}^4 \to \mathbf{R}^4$ from F to to $F(E \times I, E' \times I) \# T$ keeping F_E^c fixed. Let $F_E = F(E \times I, E' \times I)$. Let $F_E(\dot{h})$ be a trivial surface-knot obtained from F_E by the surgery along a system h of mutually disjoint 1-handles h_i (j = 1, 2, ..., s) on F_E .

Let \dot{h} be the system of cylinders $\dot{h}_j = h_j \cap F_E(\dot{h})$ (j = 1, 2, ..., s), and \ddot{h} is the system of two disks $\ddot{h}_j = \operatorname{cl}(\partial h_j \setminus \dot{h}_j)$ (j = 1, 2, ..., s).

Let $(d \times I, d' \times I)$ be a standard O2-handle pair on T^0 in the 4-ball defining the connected summand T^0 in $F_E \# T$, and $(e, e') = (\partial d, \partial d')$ which is a spin loop basis

of T^o . By construction, the system h of 1-handles h_j (j = 1, 2, ..., s) is disjoint from the disk pair (d, d'). By an isotopic deformation of f, we can assume that the system $f^{-1}(h)$ of the 1-handles $f^{-1}(h_j)$ (j = 1, 2, ..., s) on F is disjoint from $(D \times I, D' \times I)$.

By [2] (see [9, (2.4.2)]), there is an orientation-preserving diffeomorphism $g: \mathbf{R}^4 \to \mathbf{R}^4$ sending $F_E(\dot{h}) \# T$ to itself such that the spin loop pair $(gf(\partial D), gf(\partial D')) = (e, e')$ and the restriction of g to the system \dot{h} of the cylinders \dot{h}_j (j = 1, 2, ..., s) is the identity map. This last condition is assumed by a choice of a spin loop basis on $F_E(\dot{h}) \# T$.

By the uniqueness of an O2-handle pair in the rigid sense given in [9], there is an ambient isotopy $i_t : \mathbf{R}^4 \to \mathbf{R}^4$ $(t \in [0,1])$ keeping $(F_E(\dot{h}) \# T)^c$ fixed such that i_0 is the identity and $i_1g(f(D) \times I, f(D') \times I) = (d \times I, d' \times I)$. Let

$$G^t = g^{-1}(\operatorname{cl}(F_E(\dot{h}) \setminus \dot{h}) \# T) \cup g^{-1}i_tg(\ddot{h}) \quad (t \in [0, 1])$$

be a surface-link family with $G^0 = F_E \# T$. There is an O2-handle pair

$$(g^{-1}i_tg(f(D)\times I, f(D')\times I)$$

on the surface-link G^t , where

$$g^{-1}i_0g(f(D) \times I, f(D') \times I) = (f(D) \times I, f(D') \times I),$$

 $g^{-1}i_1g(f(D) \times I, f(D') \times I) = g^{-1}(d \times I, d' \times I).$

Then the surface-link $G^0(f(D) \times I, f(D') \times I$ is given by

$$G^{0}(f(D) \times I, f(D') \times I) = (F_{E} \# T)(f(D) \times I, f(D') \times I)$$

$$\cong F(D \times I, D' \times I)$$

$$= F_{D}.$$

and the surface-link $gG^1(d \times I, d' \times I)$ is given by

$$gG^{1}(d \times I, d' \times I) = (\operatorname{cl}(F_{E}(\dot{h}) \setminus \dot{h}) \# T \cup i_{1}g(\ddot{h}))(d \times I, d' \times I)$$

$$\cong (\operatorname{cl}(F_{E}(\dot{h}) \setminus \dot{h}) \# T \cup i_{1}g(\ddot{h}))(i_{1}g(d \times I), i_{1}g(d' \times I))$$

$$= i_{1}g((F_{E} \# T)(d \times I, d' \times I))$$

$$\cong (F_{E} \# T)(d \times I, d' \times I)$$

$$\cong F_{E},$$

where the equivalence

$$(\operatorname{cl}(F_E(\dot{h}) \setminus \dot{h}) \# T \cup i_1 g(\ddot{h}))(d \times I, d' \times I)$$

$$\cong (\operatorname{cl}(F_E(\dot{h}) \setminus \dot{h}) \# T \cup i_1 g(\ddot{h}))(i_1 g(d \times I), i_1 g(d' \times I))$$

is obtained from the uniqueness of an O2-handle pair in the rigid sense given in [9]. Since there is an equivalence

$$G^0(f(D) \times I, f(D') \times I) \cong gG^1(d \times I, d' \times I),$$

there is an equivalence f' from $F_D = F_D^c \cup \delta_D$ to $F_E = F_E^c \cup \delta_E$ for disks δ_D and δ_E . By a disk move, we can assume that $f'(\delta_D) = \delta_E$. The map f' is isotopic to a diffeomorphism $f'' : \mathbf{R}^4 \to \mathbf{R}^4$ sending the associated bump B_D of $(D \times I, D' \times I)$ to the associated bump B_E of $(E \times I, E' \times I)$. The diffeomorphism $f'' : \mathbf{R}^4 \to \mathbf{R}^4$ is modified into an equivalence $f''' : \mathbf{R}^4 \to \mathbf{R}^4$ from F to F such that $f'''(D \times I) = E \times I$ and $f'''(D' \times I) = E' \times I$ because the bumps B_D and B_E recover the unordered O2-handle pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$, respectively (cf. [9, Lemma 2.4]). Thus, every surface-link F has only unique O2-handle pair in the soft sense. \square

We use the following corollary to Lemma 2.2.

Corollary 2.3. Let F, F' be surface-links with ordered components F_i, F'_i (i = 1, 2, ..., r), respectively, and $\bar{F} = F \#_i T, \bar{F}' = F' \#_i T$ the stabilizations of F, F' with induced ordered components obtained by the connected sums $F_i \# T, F'_i \# T$ of the *i*th components F_i, F'_i and a trivial torus-knot T for some i, respectively. Assume that \bar{F} is equivalent to \bar{F}' by a component-order-preserving equivalence. Then F is equivalent to F' by a component-order-preserving equivalence.

Remark 2.4. Corollary 2.3 for ribbon surface-links F, F' has a different proof using the result of [8].

The proof of Theorem 1.1.1 is done as follows.

Proof of Theorem 1.1.1. A surface-link F with r ordered components is kth-handle-reducible if F is equivalent to a stabilization $F'\#_k n_k T$ of a surface-link F' for a positive integer n_k , where $\#_k n_k T$ denotes the stabilizer components $n_k T$ attaching to the kth component of F'. Otherwise, the surface-link F is kth-handle-irreducible. Note that if a kth-handle-irreducible surface-link F is component-order-preserving equivalent to a surface-link G, then G is also kth-handle-irreducible.

Let F and G be ribbon surface-links with components F_i (i = 1, 2, ..., r) and G_i (i = 1, 2, ..., r), respectively. Let F^* and G^* be handle-irreducible summands of F and G, respectively.

Assume that there is an equivalence f from F to G. Then we show that F^* and G^* are equivalent. Changing the indexes if necessary, we assume that f sends F_i to

 G_i for every i. Let

$$F = F^* \#_1 n_1 T \#_2 n_2 T \#_3 \dots \#_r n_r T,$$

$$G = G^* \#_1 n_1' T \#_2 n_2' T \#_3 \dots \#_r n_r' T.$$

Taking the inverse equivalence f^{-1} instead of f if necessary, we may assume that $n'_1 \geq n_1$. If $n'_1 > n_1$, then by (*), there is an equivalence $f^{(1)}$ from the first-handle-irreducible surface-link

$$F^{(1)} = F^* \#_2 n_2 T \#_3 \dots \#_r n_r T$$

to the first-handle-reducible surface-link

$$G^* \#_1(n'_1 - n_1) T \#_2 n'_2 T \#_3 \dots \#_r n'_r T$$
,

which has a contradiction. Thus, $n'_1 = n_1$ and the first-handle-irreducible surface-link $F^{(1)}$ is equivalent to the first-handle-irreducible ribbon surface-link

$$G^{(1)} = G^* \#_2 n_2' T \#_3 \dots \#_r n_r' T.$$

By continuing this process, it is shown that F^* is equivalent to G^* . This completes the proof of Theorem 1.1.1. \square

3 Proof of Theorem 1.1.2

A chord graph is a pair (o, α) of a trivial ink o and an arc system α attaching to o in the 3-space \mathbf{R}^3 , where o and α are called a based loop system and a chord system, respectively. A chord diagram is a diagram $C(o, \alpha)$ in the plane \mathbf{R}^2 of a chord graph (o, α) as a spatial graph. Let D^+ be a proper disk system in the upper half-space \mathbf{R}^4_+ obtained from a disk system d^+ in \mathbf{R}^3 bounded by o by pushing the interior into \mathbf{R}^4_+ . Similarly, let D^- be a proper disk system in the lower half-space \mathbf{R}^4_- obtained from a disk system d^- in \mathbf{R}^3 bounded by o by pushing the interior into \mathbf{R}^4_- . Let O be the union of D^+ and D^- which is a trivial nS^2 -link in the 4-space \mathbf{R}^4 , where n is the number of components of o. The union $O \cup \alpha$ is called a chorded sphere system constructed from a chord graph (o, α) .

By using the Horibe-Yanagawa lemma in [11, I], the chorded sphere system $O \cup \alpha$ up to orientation-preserving diffeomorphisms of \mathbb{R}^4 is independent of choices of d^+ and d^- and uniquely determined by the chord graph (o, α) . A ribbon surface-link $F = F(o, \alpha)$ is uniquely constructed from the chorded sphere system $O \cup \alpha$ so that F is the surgery of O along a 2-handle system $N(\alpha)$ on O with core arc system α (see

[5, 6, 7, 8]), where note by [3] that the surface-link F up to equivalences is unaffected by choices of the 2-handle $N(\alpha)$.

A semi-unknotted punctured handlebody system (or simply a SUPH system) for a surface-link F is a punctured handlebody system V in \mathbf{R}^4 such that the boundary ∂V of V is a union $F \cup O$ of F and a trivial S^2 -link O with $F \cap O = \emptyset$. The following lemma is a characterization of a ribbon surface-link (cf. [11, II], Yanagawa [12]).

Lemma 3.1. A surface-link F is a ribbon surface-link if and only if there is a punctured SUPH system V for F.

Proof of Lemma 3.1. Given a ribbon surface-link, a SUPH system V is constructed by a thickening $O \times I$ of O in \mathbb{R}^4 by attaching a 1-handle system. Conversely, given a SUPH system V in \mathbb{R}^4 such that $\partial V = F \cup O$ for a trivial S^2 -link O with $F \cap O = \emptyset$, there is a chord system α in V attaching to O such that the frontier of the regular neighborhood of $O \cup \alpha$ in V is parallel to F, showing that F is a ribbon surface-link. \square

The following lemma is basic to the proof of Theorem 1.1.2.

Lemma 3.2. The following (1) and (2) hold.

- (1) For a surface-link F and a trivial torus-knot T, if a connected sum F#T is a ribbon surface-link, then F is a ribbon surface-link.
- (2) If F is a ribbon surface-link and $(D \times I, D' \times I)$ is an O2-handle pair on F, then $F(D \times I, D' \times I)$ is a ribbon surface-link.

Theorem 1.1.2 is a consequence of Lemma 3.2 as follows:

Proof of Theorem 1.1.2. If a stabilization \bar{F} of a surface-link F is a ribbon surface-link, then F is a ribbon surface-link by an inductive use of Lemma 3.2 (1). \square

We are in a position to show Lemma 3.2.

Proof of Lemma 3.2. The assertion $(1) \Rightarrow (2)$ holds. In fact, by Lemma 2.1, there is a connected sum splitting $F \cong F(D \times I, D' \times I) \# T$ for a trivial torus-knot T. Thus, if F is a ribbon surface-link, then $F(D \times I, D' \times I)$ is a ribbon surface-link by (1).

We show (1). Let $F\#T=F_1\#T\cup F_2\cup\cdots\cup F_r$ be a ribbon surface-link for a trivial torus-knot T. The following claim (3.2.1) is shown later.

- (3.2.1) There is a stabilization $\bar{F} = \bar{F}_1 \cup F_2 \cup \cdots \cup F_r$ of F # T with $\bar{F}_1 = F_1 \# T \#_{i=1}^{2m} T_i$ such that the following conditions (i) and (ii) hold:
- (i) There is an O2-handle pair $(D \times I, D' \times I)$ on \bar{F} attached to \bar{F}_1 such that the surface-link $\bar{F}(D \times I)$ is a ribbon surface-link admitting a SUPH system with the 1-handles h'_i (i = 1, 2, ..., 2m) trivially attached.
- (ii) There is an O2-handle pair $(E \times I, E' \times I)$ on \bar{F} attached to \bar{F}_1 such that the surface-link $\bar{F}(E \times I)$ is the surface-link F with the 1-handles h_i'' (i = 1, 2, ..., 2m) trivially attached.

By assuming (3.2.1), the proof of Lemma 3.2 is completed as follows.

By (i), the surface-link $F'' = \bar{F}(D \times I, D' \times I) \cong \bar{F}(D \times I)$ is a ribbon surface-link and further the surface-link F^* obtained from F'' by the surgery on O2-handle pairs of all the trivial 1-handles h'_i ($i=1,2,\ldots,2m$) is also a ribbon surface-link. By (ii), the surface-link $\bar{F}(E \times I, E' \times I) \cong \bar{F}(E \times I)$ is the surface-link F with the 1-handles h''_i ($i=1,2,\ldots,2m$) trivially attached. By an inductive use of Lemma 2.2 (or Theorem 1.1.1), the surface-link F is equivalent to the ribbon surface-link F^* . Hence F is a ribbon surface-link, obtaining (3). Thus, the proof of Lemma 3.2 is completed except for the proof of (3.2.1). \square

We are in a position to prove the claim (3.2.1).

Proof of (3.2.1). Let V be a SUPH system for F#T by Lemma 3.1. Let the component of the SUPH system V containing $F_1\#T$ be a disk sum $U\#_{\partial}W$ for a punctured 3-ball U and a handlebody W. Let A be a 4D bump defining the connected sum F#T with $(F\#T) \cap A = T^o$.

We proceed the proof by assuming the following claim (3.2.2) shown later.

(3.2.2) There are a spin loop basis (ℓ, ℓ') for T^o and a spin simple loop $\tilde{\ell}'$ in F # T such that $\operatorname{Int}(\ell, \tilde{\ell}') = 1$ and $\tilde{\ell}'$ bounds a disk D' in W.

By assuming (3.2.2), the proof of (3.2.1) is completed as follows.

Let p_i (i = 0, 1, ..., 2m) be the intersection points of ℓ and ℓ' . For every i > 0, let α_i be an arc neighborhood of p_i in ℓ , and h_i a 1-handle on F # T with a core arc $\hat{\alpha}_i$ obtained by pushing the interior of α_i into $\mathbf{R}^4 \setminus V$. Let $\tilde{\alpha}_i$ be a proper arc in $\partial h_i = \operatorname{cl}(\partial h_i \setminus h_i \cap F \# T)$ parallel to $\hat{\alpha}_i$ in h_i with $\partial \tilde{\alpha}_i = \partial \alpha_i$.

Let $\bar{F} = F \# T \#_{i=1}^{2m} T_i$ be a stabilization of F associated with the system of mutually disjoint trivial 1-handles h_i (i = 1, 2, ..., 2m).

Let $\tilde{\ell}$ be a simple loop obtained from ℓ by replacing α_i with $\tilde{\alpha}_i$ for every i > 0. The loop $\tilde{\ell}$ is taken to be a spin loop in \bar{F} meeting ℓ' transversely in just one point. Let A be a 4D bump of the associated bump B of an O2-handle pair $(E \times I, E' \times I)$ on F # T in \mathbf{R}^4 attached to T^o with $(\ell, \ell') = (\partial E, \partial E')$. Then the loop $\tilde{\ell}$ and the trivial 1-handles h_i (i = 1, 2, ..., 2m) are taken in A.

Let $W^+(D')$ be the handlebody obtained from the handlebody $W^+ = W \cup_{i=1}^{2m} h_i$ by splitting along a thickened disk $D' \times I$ of D'. Then the manifold $V^+(D')$ obtained from $V^+ = V \cup_{i=1}^{2m} h_i$ by replacing W^+ with $W^+(D')$ is a SUPH system.

The SUPH system V^+ is ambient isotopic in \mathbf{R}^4 to a SUPH system \tilde{V}^+ which is the union of $V^+(D')$ and a solid torus W_1 in A connected by a 1-handle h_W in A, where the solid torus W_1 has a deformed disk \tilde{D}' of D' as a meridian disk and the loop $\tilde{\ell}$ as a longitude. Since the trivial 1-handles h_i $(i=1,2,\ldots,2m)$ are taken in the bump B, the solid torus W_1 is moved into a 4-ball disjoint from $T^o \cup_{i=1}^{2m} h_i$ and hence the loop $\tilde{\ell}$ bounds a disk \tilde{D} in A not meeting T^o , h_i for all i>0 and h_W . By putting back the ambient isotopy from the SUPH system \tilde{V}^+ to the SUPH system V^+ , we see that there is an O2-handle pair $(D\times I, D'\times I)$ on the surface-link \bar{F} such that $\bar{F}(D\times I)$ is a ribbon surface-link admitting trivial 1-handles h'_i $(i=1,2,\ldots,2m)$. This shows (i).

On the other hand, the 1-handles h_i $(i=1,2,\ldots,2m)$ on F#T are isotopically deformed in A into 1-handles h_i'' $(i=1,2,\ldots,2m)$ on F#T disjoint from the disk pair (E,E') such that the core arcs of the 1-handles h_i $(i=1,2,\ldots,2m)$ are deformed into simple arcs in F#T away from the disk pair (E,E') in A. Hence the surface-link $\bar{F}(E\times I,E'\times I)$ is the surface-link F with the trivial 1-handles h_i'' $(i=1,2,\ldots,2m)$ attached. This shows (ii). Thus, the proof of (3.2.1) is completed except for the proof of (3.2.2). \square

The proof of (3.2.2) is given as follows:

Proof of (3.2.2) Consider a disk sum decomposition of the handlebody W into a 3-ball B_0 and solid tori $V_j = S^1 \times D_j^2$ (j = 1, 2, ..., g) pasting along mutually disjoint disks in ∂B_0 . Let (ℓ_j, m_j) be a longitude-meridian pair of the solid torus V_j for all j. By [1] (see [9, (2.4.1)]), the loop basis (ℓ_j, m_j) for ∂V_j is taken as a spin loop basis in \mathbf{R}^4 for all j. The homology $H_1(\partial W; \mathbb{Z})$ has the basis $[\ell_j], [m_j], (j = 1, 2, ..., g)$.

For a loop basis (ℓ, ℓ') of T^o with the intersection number $\operatorname{Int}(\ell, \ell') = 1$ in T^o , the image $I(T^o)$ and the kernel $K(T^o)$ of the natural homomorphism $\iota_* : H_1(T^o; \mathbb{Z}) \to H_1(W; \mathbb{Z})$ are infinite cyclic groups. Let x be an element of $H_1(T^o; \mathbb{Z})$ such that the image $\iota_*(x)$ is a generator of $I(T^o)$, and x' a generator of $K(T^o)$. By noting that the intersection number $\operatorname{Int}(x,x')=1$ in T^o , let $x=a[\ell]+b[\ell']$ and $x'=a'[\ell]+b'[\ell']$ for coprime integral pairs (a,b) and (a',b') with ab'-a'b=1. Let (ℓ'',ℓ''') be a loop basis for T^o such that $[\ell'']=x$ and $[\ell''']=x'$.

The homology class $[\ell''] \in H_1(\partial W; \mathbb{Z})$ is written as the sum

$$[\ell''] = \sum_{j=1}^{g} a_j [\ell_j] + b_j [m_j]$$

for an integral system a_j, b_j (j = 1, 2, ..., g). Since $\iota_*([\ell'']) \neq 0$, there is a non-zero integer in the integers a_j (j = 1, 2, ..., g). By changing the orientations of ℓ_j and the indexes of the solid tori V_j if necessary, assume that $a_j \geq 0$ for all j and a_1 is the smallest non-zero integer in the integral system a_j (j = 1, 2, ..., g). For $j \geq 2$, let

$$a_j = n_j a_1 + r_j$$

for an integer r_j with $0 \le r_j < a_1$. By handle slides of W, we have a new disk sum decomposition of W into a 3-ball B_0 and solid tori $V_j = S^1 \times D_j^2$ (j = 1, 2, ..., g) such that

$$[\ell''] = a_1[\ell_1] + b_1[m_1] + \sum_{j=2}^{g} r_j[\ell_j] + \tilde{b}_j[m_j]$$

for some integers \tilde{b}_j $(j=2,3,\ldots,g)$ By repeating this process, we have a disk sum decomposition of W into a 3-ball B_0 and solid tori $V_j = S^1 \times D_j^2$ $(j=1,2,\ldots,g)$ such that

$$[\ell''] = a[\ell_1] + \sum_{j=1}^{g} \tilde{b}_j[m_j]$$

for some integers \tilde{b}_j (j = 1, 2, ..., g), where a is the greatest common divisor of the integers a_j (j = 1, 2, ..., g).

Let

$$[\ell'''] = \sum_{j=1}^{g} b'_{j}[m_{j}]$$

for an integral system b'_j $(j=1,2,\ldots,g)$. Since the intersection number $\operatorname{Int}(\ell'',\ell''')=1$ in ∂W , we have $ab'_1=1$ and hence a=1. By [1] (see [9, (2.4.1)]), the loop basis (ℓ'',ℓ''') of T^o is taken spin if we consider x+x' instead of x if necessary since ℓ''' is a spin loop. Since the intersection number $\operatorname{Int}(\ell'',m_1)=1$ in F#T, we can take (ℓ'',ℓ''') , m_1 and a meridian disk of m_1 in V_1 as (ℓ,ℓ') , $\tilde{\ell}'$ and D' in (3.2.2), respectively. Thus, the proof of (3.2.2) is completed. \square

This completes the proof of Lemma 3.2. \square

Acknowledgements. This work was in part supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

References

- [1] J. A. Hillman and A. Kawauchi, Unknotting orientable surfaces in the 4-sphere, J. Knot Theory Ramifications 4 (1995), 213-224.
- [2] S. Hirose, On diffeomorphisms over surfaces trivially embedded in the 4-sphere, Algebraic and Geometric Topology 2 (2002), 791-824.
- [3] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-space, Osaka J. Math. 16 (1979), 233-248.
- [4] A. Kawauchi, A survey of knot theory, Birkhäuser (1996).
- [5] A. Kawauchi, A chord diagram of a ribbon surface-link, Journal of Knot Theory and Its Ramifications 24 (2015), 1540002 (24 pages).
- [6] A. Kawauchi, Supplement to a chord diagram of a ribbon surface-link, Journal of Knot Theory and Its Ramifications 26 (2017), 1750033 (5 pages).
- [7] A. Kawauchi, A chord graph constructed from a ribbon surface-link, Contemporary Mathematics 689 (2017), 125-136. Amer. Math. Soc., Providence, RI, USA.
- [8] A. Kawauchi, Faithful equivalence of equivalent ribbon surface-links, Journal of Knot Theory and Its Ramifications 27 (2018),1843003 (23 pages).
- [9] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, revised preprint.
 - http://www.sci.osaka-cu.ac.jp/kawauchi/SRibbonSLinkI(STrivialCase).pdf
- [10] A. Kawauchi, Triviality of a surface-link with meridian-based free fundamental group, preprint.
 - http://www.sci.osaka-cu.ac.jp/ kawauchi/TrivialSLink.pdf
- [11] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, I : Normal forms, Math. Sem. Notes, Kobe Univ. 10(1982), 75-125; II: Singularities and cross-sectional links, Math. Sem. Notes, Kobe Univ. 11(1983), 31-69.
- [12] T. Yanagawa, On ribbon 2-knots; the 3-manifold bounded by the 2-knot, Osaka J. Math., 6 (1969), 447-164.