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ABSTRACT

It is shown that a handle-irreducible summand of every stable-ribbon surface-
link is a unique ribbon surface-link up to equivalences. This is a generalization

of the result for the case of a stably trivial surface-link previously observed.
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1 Introduction

In this paper, a generalization of the result of the paper [9] on a trivial surface-link
to a result on a ribbon surface-link is explained.

A surface-link is a closed oriented (possibly disconnected) surface F' embedded in
the 4-space R* by a smooth (or a piecewise-linear locally flat) embedding. When F
is connected, it is also called a surface-knot. When a (possibly disconnected) closed
surface F is fixed, it is also called an F-link. If F is the disjoint union of some copies
of the 2-sphere S2, then it is also called a 2-link. When F is connected, it is also called
a surface-knot, and a 2-knot for F = S?. Two surface-links ' and F’ are equivalent



by an equivalence f if F is sent to F’ orientation-preservingly by an orientation-
preserving diffeomorphism (or piecewise-linear homeomorphism) f : R* — R*. A
trivial surface-link is a surface-link F' which is the boundary of the union of mutually
disjoint handlebodies smoothly embedded in R*, where a handlebody is a 3-manifold
which is a 3-ball, solid torus or a disk sum of some number of solid tori. A trivial
surface-knot is also called an unknotted surface-knot. A trivial disconnected surface-
link is also called an unknotted-unlinked surface-link. For any given closed oriented
(possibly disconnected) surface F, a trivial F-link exists uniquely up to equivalences
(see [3]). A ribbon surface-link is a surface-link F' which is obtained from a trivial
nS%link O for some n (where nS? denotes the disjoint union of n copies of the 2-
sphere S?) by the surgery along an embedded 1-handle system (see [4], [11, II]). A
stabilization of a surface-link F is a connected sum F = F#$_ T} of F and a system
T of trivial torus-knots Ty (k = 1,2,...,s). By granting s = 0, we understand that a
surface-link F' itself is a stabilization of F. The trivial torus-knot system 7' is called
the stabilizer with stabilizer components Ty, (k = 1,2, ...,s) on the stabilization F' of
F. A stable-ribbon surface-link is a surface-link F such that a stabilization F of F is
a ribbon surface-link.

For every surface-link F', there is a surface-link F™* with minimal total genus such
that F' is equivalent to a stabilization of F*. The surface-link F™* is called a handle-
irreducible summand of F.

The following result called Stable-Ribbon Theorem is our main theorem.

Theorem 1.1. A handle-irreducible summand F™* of every stable-ribbon surface-link
F' is a ribbon surface-link which is determined uniquely from F' up to equivalences.

Since any stabilization of a ribbon surface-link is a ribbon surface-link, Theo-
rem 1.1 implies the following corollary:

Corollary 1.2. Every stable-ribbon surface-link is a ribbon surface-link.

The following corollary of a ribbon surface-link is a standard consequence of Corol-
lary 1.2, and contrasts with a behavior of a classical ribbon knot, for every classical
knot is a connected summand of a ribbon knot.

Corollary 1.3. A connected sum F' = Fy#F, of surface-links F; (i = 1,2) is a ribbon
surface-link if and only if the surface-links F; (i = 1,2) are both ribbon surface-links.

Proof of Corollary 1.3. The ‘if’ part of Corollary 1.3 is seen from the definition of a
ribbon surface-link. The proof of the ‘only if’ part of Corollary 1.3 uses an argument
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of [3] showing the fact that every surface-link is made a trivial surface-knot by the
surgery along a finite number of (possibly non-trivial) 1-handles. The connected
summand F, is made a trivial surface-knot by the surgery along 1-handles within
the 4-ball defining the connected sum, so that the surface-link F' changes into a new
ribbon surface-link and hence F} is a stable-ribbon surface-link. By Corollary 1.2, F}
is a ribbon surface-link. By interchanging the roles of F} and F5, F; is also a ribbon
surface-link. [J

A stably trivial surface-link is a surface-link F such that a stabilization F of F is
a trivial surface-link. Since a trivial surface-link is a ribbon surface-link, Theorem 1.1
also implies the following corollary, which is a main result in [9]:

Corollary 1.4. A handle-irreducible summand of every stably trivial surface-link is
a trivial 2-link.

This corollary implies that every stably trivial surface-link is a trivial surface-link
as observed in [9]. See [9, 10] for further results on a trivial surface-link.

The plan for the proof of Theorem 1.1 is to show the following two theorems by
an argument based on [9].

Theorem 1.1.1 Any two handle-irreducible summands of any (not necessarily rib-
bon) surface-link are equivalent.

Theorem 1.1.2 Any stable-ribbon surface-link is a ribbon surface-link.

The proofs of Theorem 1.1.1 and 1.1.2 are given in § 2 and § 3, respectively. The
proof of Theorem 1.1 is completed by these theorems as follows:

Proof of Theorem 1.1. By Theorem 1.1.2, a handle-irreducible summand of every
stable-ribbon surface-link is a ribbon surface-link which is unique up to equivalences
by Theorem 1.1.2. [

2 Proof of Theorem 1.1.1

A 2-handle on a surface-link F in R* is an embedded 2-handle D x I on F with D
a chore disk such that (D x I) N F = (0D) x I, where I denotes a closed interval

containing 0 and D X 0 is identified with D. An orthogonal 2-handle pair (or simply,
an O2-handle pair) on F' is a pair (D x I, D" x I) of 2-handles D x I, D' x I) on F
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such that the core disks D and D’ meet transversely at just one point p in F' with
(DxI)N (D' xI)=(0D)xIN@D") x I

which is homeomorphic to the square ) = I x I with p the central point.

Let (D x I, D" x I') be an O2-handle pair on a surface-link F. Let F(D x I) and
F(D'" x I) be the surface-links obtained from F' by the surgeries along D x I and
D' x I, respectively. Let F(D x I, D" x I) be the surface-link which is the union
of the bounded surface Ff, = cl(F \ ((0D) x I U (0D’) x I)) and the plumbed disk
dp = D x (0I) UQ U D' x (0I). A compact once-punctured torus of a torus 7" is
simply called a punctured torus and denoted by T°. A punctured torus 7° in a 3-ball
B is trivial if T° is smoothly and properly embedded in B and there is a solid torus
V in B with 0V = T° U dp for a disk d5 in 0B.

A bump of a surface-link F is a 3-ball B in R* with F'NB = T° a trivial punctured
torus in B. Let F'(B) be a surface-link F° U dp for the surface Ff; = cl(F'\ 7°) and
a disk dp in OB with ddp = JT°, where note that F'(B) is uniquely determined up
to cellular moves on dp keeping F* fixed. For an O2-handle pair (D x I, D’ x I) on
a surface-link F, let A = D x I UD' x I is a 3-ball in R* called the 2-handle union.
By adding a boundary collar to the 2-handle union A, we have a bump B = Bp of
F, which we call the associated bump of the O2-handle pair (D x I, D’ x I) (see [9,
Fig. 2]).

An O2-handle pair and a bump on a surface-link are shown to be essentially
equivalent notions in [9]. In particular, it is observed in [9] that for any O2-handle
pair (D x I, D’ x I) on any surface-link F' and the associated bump B, there are
equivalences

F(B)~F(DxI,D' xI)= F(DxI)=F(D' xI),

A punctured torus T° in a 4-ball A is trivial if T° is smoothly and properly
embedded in A and there is a solid torus V in A with OV = T° U §4 for a disk d4 in
the 3-sphere OA. A 4D bump of a surface-link F is a 4-ball A in R* with FNA =T°
a trivial punctured torus in A. A 4D bump A is obtained from a bump B of a
surface-link F' by taking a bi-collar ¢(B x [—1,1]) of B in R* with ¢(B x 0) = B. The
following lemma is proved by using a 4D bump A.

Lemma 2.1. For an O2-handle pair (D x I, D" x I) on a surface-link F', let F'(D X
I,D'" x I) = FfyUdp. Then for a trivial torus-knot 7" with a spin loop basis (¢, '),
there is an equivalence f : R* — R* from the surface-link F' to a connected sum
F(D x I, D" x I#T keeping Ff, fixed such that

f(OD)=+¢ and f(OD")="1.
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Proof of Lemma 2.1. Let A be a 4D bump associated with the O2-handle pair
(D x I,D"xI)on F. Let 04 be a disk in the 3-sphere 0A such that the union of
0p and the trivial punctured torus F N A = P bounds a solid torus V in A. Then
there is an equivalence f': F'= F(D x I, D’ x I)#7T by deforming V in A so that P
is isotopically deformed into the summand 7 of a connected sum dp#71 in A. Then
the spin loop pair (0D,dD’) on Fj is sent to a spin loop basis (57, (7’) of T°. By [2]
(see [9, (2.4.2)]), there is an orientation-preserving diffeomorphism ¢ : R* — R* with

g|cl(R4\A) = 1 such that

g(é, g) = (67 El)

By the composition ¢gf’, we have a desired equivalence f. [J

A surface-link F' has only unique O2-handle pair in the rigid sense if for any O2-
handle pairs (D x I, D' x I) and (E x I, E' x I) on F with (0D) x I = (OF) x I and
(OD') x I = (OF') x I, there is an equivalence f : R* — R? from F to F such that
f(Dx1I)=ExIand f(D'xI)=FExI. It is shown in [9] that every surface-link F’
has only unique O2-handle pair in the rigid sense with an additional condition that
there is an ambient isotopy f; (¢ € [0, 1]) with fo = 1 and f; = f keeping F7y, fixed.

A surface-link F' has only unique O2-handle pair in the soft sense if for any O2-
handle pairs (D x I, D" x I) and (E x I, E' x I') on F attached to the same connected
component of F, there is an equivalence f : R* — R* from F to F such that
f(DxI)=ExIand f(D'xI)=FE x1I.

A surface-link not admitting any O2-handle pair is understood as a surface-link
with only unique O2-handle pair in both the rigid and soft senses.

The following lemma shows that the uniqueness of an O2-handle pair in the soft
sense is derived from the uniqueness of an O2-handle pair in the rigid sense.

Lemma 2.2. Every surface-link has only unique O2-handle pair in the soft sense.

Proof of Lemma 2.2. Let (D xI,D'x ) and (E x I, E' x I) be any two O2-handle
pairs on a surface-link F' attached to the same connected component of F'.

By Lemma 2.1, there is an equivalence f: R* — R* from F to to F(E x I, E' x
I)#T keeping F§, fixed. Let Fp = F(E x I, E' x I). Let Fg(h) be a trivial surface-
knot obtained from Fg by the surgery along a system h of mutually disjoint 1-handles
h;(j=1,2,...,s) on Fg.

Let h be the system of cylinders hj =h; N FE(h) (7 =1,2,...,s), and h is the
system of two disks h; = cl(9h; \ hy) (j = 1,2,...,5).

Let (d x I,d" x I) be a standard O2-handle pair on 7° in the 4-ball defining the
connected summand T° in Fg#T, and (e,€’) = (0d,dd") which is a spin loop basis
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of T°. By construction, the system h of 1-handles h; (j = 1,2,...,s) is disjoint from
the disk pair (d,d'). By an isotopic deformation of f, we can assume that the system
f71(h) of the 1-handles f~*(h;) (j =1,2,...,s) on F is disjoint from (D x I, D’ x I).

By [2] (see [9, (2.4.2)]), there is an orientation-preserving diffeomorphism g : R* —

R* sending F(h)#T to itself such that the spin loop pair (gf(0D), gf(0D")) = (e, ¢€)
and the restriction of g to the system h of the cylinders hj (j = 1,2,...,s) is the
identity map. This last condition is assumed by a choice of a spin loop basis on
Fi(h)#7.

By the uniqueness of an O2-handle pair in the rigid sense given in [9], there is an
ambient isotopy 7, : R* — R* (¢ € [0, 1]) keeping (F(h)#T)° fixed such that i, is the
identity and i1g(f(D) x I, f(D") x I) = (d x I,d x I). Let

G' = g7 (A(Fp(h) \ W#T) U g Yig(h)  (t €[0,1])
be a surface-link family with G° = Fr#T. There is an O2-handle pair

(97 Yieg(f(D) x I, f(D') x I)

on the surface-link G, where

9 Y og(f(D) x I, f(D') x I) = (f(D) x I, f(D') xI),
g Ying(f(D)x I, f(D')x 1) = g *dxI,dx]I).

Then the surface-link G°(f(D) x I, f(D') x I is given by

GUf(D) x I f(D") xI) = (Fe#T)(f(D)x I, f(D') x I)
~ F(DxI,D' xI)
= Fp,

and the surface-link gG'(d x I,d’' x I) is given by

gGrHd x I,d xI) = (c(Fg(h)\ h)#T Uiyg(h))(dx I,d x I)
(c(Fig(h) \ )#T Uirg(h))(ing(d x 1), irg(d' x I))
(Fe#T)(d x I,d x I)

FE7

1%

I

I

where the equivalence

(A(Fp(h) \ W)#T Uirg(W)(d x I.d' x I)
= (A(Fp(h) \ W)#T W irg(h))(ig(d x I),ing(d x 1))
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is obtained from the uniqueness of an O2-handle pair in the rigid sense given in [9].
Since there is an equivalence

GO(f(D) x I, f(D') x 1) = gG'(d x I,d x I),

there is an equivalence f’' from Fp = Ff, Udp to Fg = F§, U dg for disks p and
dp. By a disk move, we can assume that f'(0p) = dg. The map f’ is isotopic to a
diffeomorphism f” : R* — R* sending the associated bump Bp of (D x I, D' x I)
to the associated bump Bg of (E x I, E' x I). The diffeomorphism f”: R* — R* is
modified into an equivalence f” : R* — R? from F to F such that f”"(Dx 1) = ExI
and (D" x I) = E’ x I because the bumps Bp and Bpg recover the unordered O2-
handle pairs (D x I, D’ x I) and (E x I, E' x I), respectively (cf. [9, Lemma 2.4]).
Thus, every surface-link F' has only unique O2-handle pair in the soft sense. [

We use the following corollary to Lemma 2.2.

Corollary 2.3. Let F,F’ be surface-links with ordered components F;, F! (i =
1,2,...,7), respectively, and F = F#,T,F' = F'4#,T the stabilizations of F, F’
with induced ordered components obtained by the connected sums F;#7T, F/#T of
the ith components F;, F/ and a trivial torus-knot 7" for some i, respectively. Assume
that F' is equivalent to F’ by a component-order-preserving equivalence. Then F is
equivalent to F’ by a component-order-preserving equivalence.

Remark 2.4. Corollary 2.3 for ribbon surface-links F, F” has a different proof using
the result of [8].

The proof of Theorem 1.1.1 is done as follows.

Proof of Theorem 1.1.1. A surface-link F' with r ordered components is kth-
handle-reducible if F is equivalent to a stabilization F'#;n;T of a surface-link F for
a positive integer ny, where #xn; T denotes the stabilizer components n;T attaching
to the kth component of F’. Otherwise, the surface-link F' is kth-handle-irreducible.
Note that if a kth-handle-irreducible surface-link F' is component-order-preserving
equivalent to a surface-link GG, then G is also kth-handle-irreducible.

Let F' and G be ribbon surface-links with components F; (i = 1,2,...,r) and
G;(i=1,2,...,7), respectively. Let F*and G* be handle-irreducible summands of F
and G, respectively.

Assume that there is an equivalence f from F to G. Then we show that F* and
G* are equivalent. Changing the indexes if necessary, we assume that f sends F; to
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G, for every i. Let

F = F9nTHonTH#s ... #,n, T,

Taking the inverse equivalence f~! instead of f if necessary, we may assume that
ny > ny. If nf > ny, then by (¥), there is an equivalence f) from the first-handle-
irreducible surface-link

FO = pdon,THs . .0, T

to the first-handle-reducible surface-link

G*#l(nll — nl)T#QTL/ZT#g e #TTL;T,

which has a contradiction. Thus, nj = n; and the first-handle-irreducible surface-link
FM) is equivalent to the first-handle-irreducible ribbon surface-link

GW = G*#on) T#s ... #,n.T.

By continuing this process, it is shown that ™ is equivalent to G*. This completes
the proof of Theorem 1.1.1. [

3 Proof of Theorem 1.1.2

A chord graph is a pair (o0,«) of a trivial ink o and an arc system « attaching to o
in the 3-space R3, where o and « are called a based loop system and a chord system,
respectively. A chord diagram is a diagram C'(o, «) in the plane R? of a chord graph
(0,cr) as a spatial graph. Let DT be a proper disk system in the upper half-space
R obtained from a disk system d* in R* bounded by o by pushing the interior into
R%. Similarly, let D~ be a proper disk system in the lower half-space R? obtained
from a disk system d~ in R? bounded by o by pushing the interior into R*. Let O
be the union of D* and D~ which is a trivial nS%link in the 4-space R?, where n is
the number of components of 0. The union O U « is called a chorded sphere system
constructed from a chord graph (o, a).

By using the Horibe-Yanagawa lemma in [11, I], the chorded sphere system O U«
up to orientation-preserving diffeomorphisms of R* is independent of choices of d*
and d- and uniquely determined by the chord graph (o,«). A ribbon surface-link
F = F(o, ) is uniquely constructed from the chorded sphere system O U« so that F
is the surgery of O along a 2-handle system N(«) on O with core arc system « (see
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[5, 6, 7, 8]), where note by [3] that the surface-link F' up to equivalences is unaffected
by choices of the 2-handle N(«).

A semi-unknotted punctured handlebody system (or simply a SUPH system) for a
surface-link F' is a punctured handlebody system V in R* such that the boundary
OV of V is a union FUO of F and a trivial S?-link O with F'NO = (). The following
lemma is a characterization of a ribbon surface-link (cf. [11, II], Yanagawa [12]).

Lemma 3.1. A surface-link F is a ribbon surface-link if and only if there is a
punctured SUPH system V for F'.

Proof of Lemma 3.1. Given a ribbon surface-link, a SUPH system V' is constructed
by a thickening O x I of O in R* by attaching a 1-handle system. Conversely, given a
SUPH system V in R?* such that 9V = FUO for a trivial S?-link O with FNO = 0,
there is a chord system « in V attaching to O such that the frontier of the regular
neighborhood of O U« in V' is parallel to F', showing that F' is a ribbon surface-link.
OJ

The following lemma is basic to the proof of Theorem 1.1.2.

Lemma 3.2. The following (1) and (2) hold.

(1) For a surface-link F' and a trivial torus-knot 7', if a connected sum F#T is a
ribbon surface-link, then F' is a ribbon surface-link.

(2) If F is a ribbon surface-link and (D x I, D’ x I) is an O2-handle pair on F', then
F(D x I,D" x I) is a ribbon surface-link.

Theorem 1.1.2 is a consequence of Lemma 3.2 as follows:

Proof of Theorem 1.1.2. If a stabilization F of a surface-link F is a ribbon surface-
link, then F'is a ribbon surface-link by an inductive use of Lemma 3.2 (1). O

We are in a position to show Lemma 3.2.

Proof of Lemma 3.2. The assertion (1) = (2) holds. In fact, by Lemma 2.1, there
is a connected sum splitting I = F(D x I, D" x I)#T for a trivial torus-knot 7.
Thus, if F' is a ribbon surface-link, then F(D x I, D’ x I) is a ribbon surface-link by
(1).
We show (1). Let F#T = Fi#T U F» U --- U F, be a ribbon surface-link for a
trivial torus-knot 7T'. The following claim (3.2.1) is shown later.



(3.2.1) There is a stabilization F' = FyUF,U---UF, of F#T with [} = F\#T#2™T,
such that the following conditions (i) and (ii) hold:

(i) There is an O2-handle pair (D x I, D' x I) on F attached to F; such that the
surface-link F(D x I) is a ribbon surface-link admitting a SUPH system with the
I-handles A} (i = 1,2,...,2m) trivially attached.

(ii) There is an O2-handle pair (E x I, E’ x I) on F attached to F; such that the
surface-link F(E x I) is the surface-link F with the 1-handles A/ (i = 1,2,...,2m)
trivially attached.

By assuming (3.2.1), the proof of Lemma 3.2 is completed as follows.

By (i), the surface-link F” = F(D x I, D' x I) = F(D x I) is a ribbon surface-
link and further the surface-link F** obtained from F” by the surgery on O2-handle
pairs of all the trivial 1-handles h} (i = 1,2,...,2m) is also a ribbon surface-link.
By (ii), the surface-link F(E x I, E' x I) = F(E x I) is the surface-link F' with the
1-handles A (i = 1,2,...,2m) trivially attached. By an inductive use of Lemma 2.2
(or Theorem 1.1.1), the surface-link F is equivalent to the ribbon surface-link F™*.
Hence F is a ribbon surface-link, obtaining (3). Thus, the proof of Lemma 3.2 is

completed except for the proof of (3.2.1). O
We are in a position to prove the claim (3.2.1).

Proof of (3.2.1). Let V be a SUPH system for F#T by Lemma 3.1. Let the
component of the SUPH system V containing Fi#7 be a disk sum U#yW for a
punctured 3-ball U and a handlebody W. Let A be a 4D bump defining the connected
sum F#T with (F#T)NA=T°.

We proceed the proof by assuming the following claim (3.2.2) shown later.

(3.2.2) There are a spin loop basis (¢,£') for T° and a spin simple loop 0 in FH#T
such that Int(¢,¢') =1 and ¢ bounds a disk D" in W.

By assuming (3.2.2), the proof of (3.2.1) is completed as follows.

Let p; (i = 0,1,...,2m) be the intersection points of ¢ and ¢'. For every i > 0,
let a; be an arc neighborhood of p; in ¢, and h; a 1-handle on F'#T with a core arc
¢&; obtained by pushing the interior of «; into R*\ V. Let &; be a proper arc in
Oh; = cl(dh; \ hy N F#T) parallel to &; in h; with da; = day.

Let F' = F#T#?™T; be a stabilization of F' associated with the system of mutu-
ally disjoint trivial 1-handles h; (i = 1,2,...,2m).

Let ¢ be a simple loop obtained from ¢ by replacing o; with @; for every i > 0.
The loop / is taken to be a spin loop in F meeting ¢ transversely in just one point.
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Let A be a 4D bump of the associated bump B of an O2-handle pair (E'x I, E"x I)
on F#T in R* attached to T° with (¢,¢') = (OE,0E’). Then the loop ¢ and the trivial
1-handles h; (i = 1,2,...,2m) are taken in A.

Let WT(D') be the handlebody obtained from the handlebody W+ = W U¥™ h;,
by splitting along a thickened disk D’ x I of D’. Then the manifold V' (D’) obtained
from V™ =V U™ h; by replacing W with W+ (D’) is a SUPH system.

The SUPH system V* is ambient isotopic in R* to a SUPH system V* which is
the union of V*(D’) and a solid torus W; in A connected by a 1-handle hy in A,
where the solid torus W; has a deformed disk D’ of D’ as a meridian disk and the
loop £ as a longitude. Since the trivial 1-handles h; (i = 1,2,...,2m) are taken in the
bump B, the solid torus Wi is moved into a 4-ball disjoint from T° U™ h; and hence
the loop ¢ bounds a disk D in A not meeting 7°, h; for all i > 0 and hy,. By putting
back the ambient isotopy from the SUPH system V* to the SUPH system V7, we
see that there is an O2-handle pair (D x I, D’ x I) on the surface-link F' such that
F(D x I) is a ribbon surface-link admitting trivial 1-handles R} (i = 1,2,...,2m).
This shows (i).

On the other hand, the 1-handles h; (i = 1,2,...,2m) on F#T are isotopically
deformed in A into 1-handles b} (i = 1,2,...,2m) on F#T disjoint from the disk pair
(E, E') such that the core arcs of the 1-handles h; (i = 1,2,...,2m) are deformed
into simple arcs in F#T away from the disk pair (£, F’) in A. Hence the surface-link
F(E x I, E' x I) is the surface-link F with the trivial 1-handles h? (i = 1,2,...,2m)
attached. This shows (ii). Thus, the proof of (3.2.1) is completed except for the proof
of (3.2.2). O

The proof of (3.2.2) is given as follows:

Proof of (3.2.2) Consider a disk sum decomposition of the handlebody W into a
3-ball By and solid tori V; = St x DJZ- (j =1,2,...,9) pasting along mutually disjoint
disks in 0By. Let (¢;,m;) be a longitude-meridian pair of the solid torus V; for all j.
By [1] (see [9, (2.4.1)]), the loop basis (¢;, m;) for OV is taken as a spin loop basis in
R* for all j. The homology H,(0W;Z) has the basis [(;], [m;], (j = 1,2,...,9).

For a loop basis (¢, (') of T° with the intersection number Int(¢,¢') = 1 in T°, the
image [(7°) and the kernel K(7°) of the natural homomorphism ¢, : H(T°,Z) —
H,(W;Z) are infinite cyclic groups. Let x be an element of H,(7°;Z) such that the
image ¢.(z) is a generator of I(7°), and 2" a generator of K (7). By noting that the
intersection number Int(x,x’)=1 in 7°, let x = a[¢] + b[¢'] and 2’ = d'[¢] + V'[¢'] for
coprime integral pairs (a,b) and (a’,t’) with ab’ —a’b = 1. Let (¢”,¢") be a loop basis
for T such that [¢"] = z and [¢""] = '
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The homology class [¢"] € H,(0W;Z) is written as the sum
g
() =" a;[t;] + bs[my)
j=1

for an integral system a;,b; (j = 1,2,...,¢). Since ¢.([¢"]) # 0, there is a non-zero
integer in the integers a; (j = 1,2,...,g). By changing the orientations of ¢; and the
indexes of the solid tori V; if necessary, assume that a; > 0 for all j and a; is the
smallest non-zero integer in the integral system a; (j =1,2,...,g). For j > 2, let

aj:njal—l—rj

for an integer r; with 0 < r; < a;. By handle slides of W, we have a new disk sum

decomposition of W into a 3-ball By and solid tori V; = S' x D7 (j = 1,2,.. ., g) such
that
g ~
[0) = ay[02] + bufma) + > rle5] + blmy]
j=2

for some integers Bj (7 = 2,3,...,9) By repeating this process, we have a disk sum
decomposition of W into a 3-ball By and solid tori V; = S* x D? (j = 1,2,...,g) such
that

e S

E” o
for some integers Bj (j =1,2,...,g), where a is the greatest common divisor of the
integers a; (j =1,2,...,9).
Let

ﬁ/” Z b/ mj

for an integral system b (j = 1,2,...,9). Slnce the intersection number Int(¢”, ") =
1 in OW, we have ab} = 1 and hence a = 1. By [1] (see [9, (2.4.1)]), the loop basis
(0", 0") of T° is taken spin if we consider x + 2’ instead of x if necessary since ¢
is a spin loop. Since the intersection number Int(¢”,my) = 1 in F#T, we can take
(", 0", my and a meridian disk of my in Vi as (¢, ¢'), ¢ and D' in (3.2.2), respectively.
Thus, the proof of (3.2.2) is completed. [J

This completes the proof of Lemma 3.2. [J
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