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ABSTRACT

There is a question asking whether a handle-irreducible summand of every

stable-ribbon surface-link is a unique ribbon surface-link. This question for

the case of a trivial surface-link is affirmatively answered. That is, a handle-

irreducible summand of every stably trivial surface-link is only a trivial 2-

link. By combining this result with an old result of F. Hosowaka and the

author that every surface-knot with infinite cyclic fundamental group is a stably

trivial surface-knot, it is concluded that every surface-knot with infinite cyclic

fundamental group is a trivial (i.e., an unknotted) surface-knot.

Keywords: Trivial surface-link, Stably trivial surface-link, Orthogonal 2-handle pair.
Mathematics Subject Classification 2010: Primary 57Q45; Secondary 57N13

1 Introduction

A surface-link is a closed oriented (possibly disconnected) surface F embedded in
the 4-space R4 by a smooth (or a piecewise-linear locally flat) embedding. When a



(possibly disconnected) closed surface F is fixed, it is also called an F-link. If F is the
disjoint union of some copies of the 2-sphere S2, then it is also called a 2-link. When
F is connected, it is also called a surface-knot, and a 2-knot for F = S2.

Two surface-links F and F ′ are equivalent by an equivalence f if F is sent to F ′

orientation-preservingly by an orientation-preserving diffeomorphism (or piecewise-
linear homeomorphism) f : R4 → R4. The notation F ∼= F ′ is used for equivalent
surface-links F , F ′. A trivial surface-link is a surface-link F which is the boundary of
the union of mutually disjoint handlebodies smoothly embedded in R4, where a han-
dlebody is a 3-manifold which is a 3-ball, a solid torus or a boundary-disk sum of some
number of solid tori. A trivial surface-knot is also called an unknotted surface-knot.
A trivial disconnected surface-link is also called an unknotted and unlinked surface-
link. For any given closed oriented (possibly disconnected) surface F, a trivial F-link
exists uniquely up to equivalences (see [6]). A ribbon surface-link is a surface-link F
which is obtained from a trivial 2-link O by the surgery along an embedded 1-handle
system (see [10, 11, 12, 13], [16, II]). A stabilization of a surface-link F is a connected
sum F#sT = F#s

k=1Tk of F and a system of trivial torus-knots Tk (k = 1, 2, . . . , s).
By granting s = 0, we understand that a surface-link F itself is a stabilization of
F . The trivial torus-knot system Tk (k = 1, 2, ..., s) is called the stabilizer on the
stabilization F#sT of F .

A stable-ribbon surface-link is a surface-link F such that a stabilization F#sT of
F is a ribbon surface-link. For every surface-link F , there is a surface-link F ∗ with
minimal total genus such that F is equivalent to a stabilization of F ∗. The surface-
link F ∗ is called a handle-irreducible summand of F . The following question is a
central question.

Question 1.0. A handle-irreducible summand of every stable-ribbon surface-link is
a ribbon surface-link which is unique up to equivalences ?

A stably trivial surface-link is a surface-link F such that a stabilization of F is a
trivial surface-link.

In this paper, the following theorem is shown answering affirmatively this question
for the case of a stably trivial surface-link. This question in the general case will be
answered affirmatively in [15].

Theorem 1.1. Any handle-irreducible summand of every stably trivial surface-link
is a trivial 2-link.

The following corollary is directly obtained from Theorem 1.1:
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Corollary 1.2. Every stably trivial surface-link is a trivial surface-link.

If a surface-knot F has an infinite cyclic fundamental group, then F is a TOP-
trivial surface-knot, which was shown by Freedman for a 2-knot and by [3, 9] for a
higher genus surface-knot. In the case of a piecewise linear surface-knot(equivalent
to a smooth surface-knot), it is known by [6] that a stabilization of the surface-knot
F is a trivial surface-knot, namely the surface-knot F is a stably trivial surface-knot.
Hence the following corollary is directly obtained from Corollary 1.2 answering the
problem [17, Problem 1.55(A)] on unknotting of a 2-knot positively (see [14] for the
surface-link version):

Corollary 1.3. A surface-knot F is a trivial surface-knot if the fundamental group
π1(R

4 \ F ) is an infinite cyclic group.

The exterior of a surface-knot F is the 4-manifold E = cl(R4 \ N(F )) for a
tubular neighborhood N(F ) of F in R4. Then the boundary ∂E is a trivial circle
bundle over F . A surface-knot F is of Dehn’s type if there is a section F ′ of F in
the bundle ∂E such that the inclusion F ′ → E is homotopic to a constant map. By
[3, Corollary 4.2], the fundamental group π1(R

4 \ F ) of a surface-knot F of Dehn’s
type is an infinite cyclic group. Thus, we have the following corollary(answering the
problem [17, Problem 1.51)] on unknotting of a 2-knot of Dehn’s type positively):

Corollary 1.4. A surface-knot of Dehn’s type is a trivial surface-knot.

Unknotting Conjecture asks whether an n-knot Kn(i.e., a smooth embedding im-
age of the n-sphere Sn in the(n+2)-sphere Sn+2) is unknotted (i.e., bounds a smooth
(n+ 1)-ball in Sn+2) if and only if the complement Sn+2\Kn is homotopy equivalent
to S1 (see [8] for example). This conjecture was previously known to be true for
n > 3 by [18], for n = 3 by [20] and for n = 1 by [5, 19]. The conjecture for n = 2
was known only in the TOP category by [1](see also [2]). Corollary 1.3 answers this
finally remained smooth unknotting conjecture affirmatively and hence Unknotting
Conjecture can be changed into the following:

Unknotting Theorem. A smooth Sn-knot Kn in Sn+2 is unknotted if and only if
the complement Sn+2\Kn is homotopy equivalent to S1 for every n ≥ 1.

A main idea in our argument is to use the surgery of a surface-link on an orthogonal
2-handle pair, which is much different from the surgery of a surface-link on a single
2-handle. It is known that every surface-link F in R4 is obtained from a higher genus
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trivial surface-knot F ′ by the surgery of F ′ on a system of mutually disjoint 2-handles,
because a handlebody in R4 is obtained from a connected Seifert hypersurface of F
by removing mutually disjoint 1-handles (see [6]). Thus, for example, every 2-twist
spun 2-bridge knot in [21] is obtained from a trivial torus-knot T in R4 by the surgery
of T on a single 2-handle, because it bounds a once-punctured lens space as a Seifert
hypersurface.

In Section 2, it is shown that every stably trivial surface-link is a trivial surface-
link if and only if the uniqueness of an orthogonal 2-handle pair on every trivial
surface-link holds. In Section 3, the uniqueness of every orthogonal 2-handle pair on
every surface-link is shown, by which Theorem 1.1 is obtained.

2 A triviality condition on a stably trivial surface-

link

A 2-handle on a surface-link F in R4 is an embedded 2-handle D× I on F with D a
core disk such that D× I ∩F = ∂D× I, where I denotes a closed interval containing
0 and D × 0 is identified with D. If D is an immersed disk, then call it an immersed
2-handle. Two (possibly immersed) 2-handles D × I and E × I on F are equivalent
if there is an equivalence f : R4 → R4 from F to itself such that the restriction
f |F : F → F is the identity map and f(D × I) = E × I.

An orthogonal 2-handle pair (or simply, an O2-handle pair) on F is a pair (D ×
I,D′ × I) of 2-handles D × I, D′ × I on F such that

D × I ∩D′ × I = ∂D × I ∩ ∂D′ × I

and ∂D × I and ∂D′ × I meet orthogonally on F , that is, the boundary circles ∂D

and ∂D′ meet transversely at one point p and the intersection ∂D × I ∩ ∂D′ × I is
homeomorphic to the square Q = p× I × I (see Fig. 1).

Let (D × I,D′ × I) be an O2-handle pair on a surface-link F . Let F (D × I) and
F (D′ × I) be the surface-links obtained from F by the surgeries along D × I and
D′ × I, respectively. Let F (D × I,D′ × I) be the surface-link which is the union of
the plumbed disk

δ = δD×I,D′×I = D × ∂I ∪Q ∪D′ × partialI

and the surface

F c
δ = cl(F \ (∂D × I ∪ ∂D′ × I).
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Figure 1: An orthogonal 2-handle pair(=: an O2-handle pair)

A once-punctured torus T o in a 3-ball B is trivial if T o is smoothly and properly
embedded in B which splits B into two solid tori. A bump of a surface-link F is a
3-ball B in R4 with F ∩ B = T o a trivial once-punctured torus in B. Let F (B) be
a surface-link F c

B ∪ δB for the surface F c
B = cl(F \ T o) and a disk δB in ∂B with

∂δB = ∂T o, where note that F (B) is uniquely determined up to cellular moves on δB
keeping F c

B fixed. Here, a cellular move of a surface P in R4 is a surface P̃ in R4 such
that the complements d = cl(P \P0) and d̃ = cl(P̃ \P0) of the intersection P0 = P ∩P ′

are disks in the interiors of P and P̃ , respectively and the union d ∪ d̃ is a 2-sphere
bounding a 3-ball smoothly embedded in R4 and not meeting P0 \ ∂d = P0 \ ∂d̃.

For an O2-handle pair (D×I,D′×I) on a surface-link F , let ∆ = D×I∪D′×I is a
3-ball in R4 called the 2-handle union. Consider the 3-ball ∆ as a Seifert hypersurface
of the trivial S2-knot K = ∂∆ in R4 to construct a 3-ball B∆ obtained from ∆ by
adding an outer boundary collar. This 3-ball B∆ is a bump of F , which we call the
associated bump of the O2-handle pair (D × I,D′ × I). When the 3-ball ∆ and a
boundary collar of F c

δ are deformed into the 3-space R3, this associated bump B∆ is
also considered as a regular neighborhood of ∆ in R3 (see Fig. 2).

The following lemma shows that giving an O2-handle unordered pair on a surface-
link F is the same as giving a bump of F .

Lemma 2.1. An O2-handle unordered pair (D × I,D′ × I) on a surface-link F is
uniquely constructed from any given bump B of F inR4 with F (D×I,D′×I) ∼= F (B).

Proof of Lemma 2.1. For a bump B of F , the set of two solid tori bounded by
T o = F ∩B is unique, whose meridian-longitude disk pair is an O2-handle pair. □
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Figure 2: An associated bump B of a 2-handle union

The following lemma shows the uniqueness of the surgery of a surface-link F by
an O2-handle pair.

Lemma 2.2. For any O2-handle pair (D × I,D′ × I) on any surface-link F and the
associated bump B, there are equivalences

F (B) ∼= F (D × I,D′ × I) ∼= F (D × I) ∼= F (D′ × I).

Further, these equivalences are attained by cellular moves keeping F c
δ fixed.

Proof of Lemma 2.2. By definition, we have F (B) ∼= F (D × I,D′ × I). The
surface-link F (D × I,D′ × I) is equivalent to F (D × I) and F (D′ × I) by cellular
moves on the 3-balls D′ × I and D × I, respectively. □

Two O2-handle pairs (D× I,D′ × I) and (E× I, E ′ × I) on a surface-link F with
∂D × I = ∂E × I and ∂D′ × I = ∂E ′ × I are equivalent if there is an equivalence
f : R4 → R4 from F to itself such that the restriction f |F : F → F is the identity
map and f(D × I) = E × I and f(D′ × I) = E ′ × I.

The following characterization of equivalent O2-handle pairs is useful.
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Lemma 2.3. Let (D × I,D′ × I) and (E × I, E ′ × I) be O2-handle pairs on a
surface-link F with ∂D × I = ∂E × I and ∂D′ × I = ∂E ′ × I. Let

F (D × I,D′ × I) = F c
δ ∪ δD×I,D′×I and F (E × I, E ′ × I) = F c

δ ∪ δE×I,E′×I

for the plumbed disks δD×I,D′×I and δE×I,E′×I . Then the O2-handle pairs (D×I,D′×
I) and (E×I, E ′×I) are equivalent if and only if there is an equivalence f : R4 → R4

from F (D × I,D′ × I) to F (E × I, E ′ × I) such that the restriction f |F c
δ
: F c

δ → F c
δ

is the identity map and f(δD×I,D′×I) = δE×I,E′×I .

Proof of Lemma 2.3. It suffices to show the “if”part since the “only if”part is
obtained from the definition of equivalent O2-handle pairs. Assume that there is an
equivalence f from F (D × I,D′ × I) to F (E × I, E ′ × I) such that the restriction
f |F c

δ
: F c

δ → F c
δ is the identity map and f(δD×I,D′×I) = δE×I,E′×I . The map f is

isotopic to a diffeomorphism f ′ : R4 → R4 sending the associated bump B∆(D×I,D′×I)

of (D× I,D′× I) to the associated bump B∆(E×I,E′×I) of (E× I, E ′× I) by regarding
B∆(D×I,D′×I) and B∆(E×I,E′×I) as collars of δD×I,D′×I and δE×I,E′×I , respectively. The
diffeomorphism f ′ : R4 → R4 is modified into an equivalence f ′′ : R4 → R4 from F to
itself such that the restriction f ′′|F : F → F is the identity map and f ′′(D×I) = E×I
and f ′′(D′×I) = E ′×I. Thus, the O2-handle pairs (D×I,D′×I) and (E×I, E ′×I)
are equivalent. □

The following corollary is a concrete application of Lemma 2.3.

Corollary 2.4. Let (D × I,D′ × I) and (E × I, E ′ × I) be O2-handle pairs on a
surface-link F with ∂D × I = ∂E × I and ∂D′ × I = ∂E ′ × I. If the surface-link
F (D×I,D′×I) is obtained from the surface-link F (E×I, E ′×I) by a finite number
of cellular moves on D × I, D′ × I, E × I and E ′ × I keeping F c

δ fixed, then the
O2-handle pairs (D × I,D′ × I) and (E × I, E ′ × I) are equivalent.

Proof of Corollary 2.4. By the assumption, there is an equivalence f : R4 → R4

from F (D× I,D′× I) to F (E× I, E ′× I) such that the restriction f |F c
δ
: F c

δ → F c
δ is

the identity map and f(δD×I,D′×I) = δE×I,E′×I . By Lemma 2.3, the result is obtained.
□

A surface-link F has only unique O2-handle pair if any two O2-handle pairs on
F with the same attaching part are equivalent. A surface-link not admitting any
O2-handle pair is understood as a surface-link with only unique O2-handle pair.

We have the following characterization on a stably trivial surface-link.
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Lemma 2.5. The following (1)-(3) are mutually equivalent.

(1) If a connected sum F#T of a surface-link F and a trivial torus-knot T is a trivial
surface-link, then F is a trivial surface-link.

(2) If F is a trivial surface-link and (D × I,D′ × I) is an O2-handle pair on F , then
F (D × I,D′ × I) is a trivial surface-link.

(3) Any trivial surface-link has only unique O2-handle pair.

Proof of Lemma 2.5. (1) ⇒ (2): Let B be the associated bump of the O2-handle
pair (D× I,D′ × I). A 4-ball A obtained by taking a bi-collar c(B × [−1, 1]) of B in
R4 with c(B×0) = B gives a connected sum decomposition F ∼= F (D×I,D′×I)#T .
By (1), F (D × I,D′ × I) is a trivial surface-link.

(2) ⇒ (3): Let (D × I,D′ × I) and (E × I, E ′ × I) be O2-handle pairs with
∂D × I = ∂E × I and ∂D′ × I = ∂E ′ × I. Let F (D × I,D′ × I) = F c

δ ∪ δD×I,D′×I

and F (E × I, E ′ × I) = F c
δ ∪ δE×I,E′×I be trivial surface-links for disks δD×I,D′×I and

δE×I,E′×I in the boundaries ∂∆(D× I,D′ × I) and ∂∆(E× I, E ′ × I) of the 2-handle
unions ∆(D × I,D′ × I) and ∆(E × I, E ′ × I), respectively. Let F (D × I,D′ × I)0
and F (E × I, E ′ × I)0 be the components of F (D × I,D′ × I) and F (E × I, E ′ × I)
containing the loop ∂δD×I,D′×I = ∂δE×I,E′×I , respectively, which are made split from
the other components in R4 because all the components of every trivial surface-link
are split in R4. Since F (D×I,D′×I)0 and F (E×I, E ′×I)0 are trivial surface-knots
of the same genus, there is an equivalence f : R4 → R4 sending F (D × I,D′ × I)0
to F (E × I, E ′ × I)0 orientation-preservingly and the other components identically.
By a cellular move of δD×I,D′×I in F (D × I,D′ × I)0, this map f is modified to have
f(δD×I,D′×I) = δE×I,E′×I . Further, this map f is modified to send F c

δ ∪ δD×I,D′×I

to F c
δ ∪ δE×I,E′×I by sending all the components except for F (D × I,D′ × I)0 and

F (E × I, E ′ × I)0 identically. Thus, we have an equivalence f with f(F c
δ ) = F c

δ and
f(δD×I,D′×I) = δE×I,E′×I . By Lemma 2.3, the O2-handle pairs (D × I,D′ × I) and
(E × I, E ′ × I) are equivalent.

(3) ⇒ (1): Let Fi (i = 0, 1, . . . , r) be the components of F , and F#T = F0#T ∪
F1 ∪ · · · ∪ Fr a trivial surface-link. Let V be the disjoint union of handlebodies
Vi (i = 0, 1, . . . , r) in R4 such that ∂V0 = F0#T and ∂Vi = Fi (i = 1, 2, . . . , r).

A loop basis of F0#T of genus g + 1 is a system of oriented simple loop pairs
(ej, e

′
j) (j = 0, 1, 2, . . . , g) on F0#T representing a basis for H1(F0#T ;Z) such that

ej ∩ ej′ = e′j ∩ e′j′ = ej ∩ e′j′ = ∅ for all distinct j, j ′ and ej ∩ e′j is one point with
the intersection number Int(ej, e

′
j) = +1 in F0#T for all j. A loop basis (ej, e

′
j) (j =

0, 1, 2, . . . , g) of F0#T is spin if the Z2-quadratic function q : H1(F0#T ;Z2) → Z2

associated with the surface-knot F0#T has q(ej) = q(e′j) = 0 for all j. The fol-
lowing result is obtained from [3, Lemma 2.2] where a non-oriented spin loop basis
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(ej, e
′
j) (j = 0, 1, 2, . . . , g) of F0#T is constructed.

(2.5.1) For a surface-knot F0#T of genus g + 1 in R4, there is a spin loop basis
(ej, e

′
j) (j = 0, 1, 2, . . . , g) of F0#T . In particular, for a trivial surface-knot F0#T

bounded by a handlebody V0 in R4, every loop basis (ej, e
′
j) (j = 0, 1, 2, . . . , g) on

∂V0 with e′j (j = 0, 1, 2, . . . , g) a meridian loop system of V0 has q(e′j) = 0 and either
q(ej) = 0 or q(ej + e′j) = 0 for all j, where ej + e′j denotes a Dehn twist of ej along e′j.

The following result is obtained from [4]:

(2.5.2) For any two loop bases (ej, e
′
j) (j = 0, 1, 2, . . . , g) and (ẽj, ẽ

′
j) (j = 0, 1, 2, . . . , g)

on a trivial genus g surface-knot F0#T with q(ej) = q(ẽj) and q(e′j) = q(ẽ′j) for all
j, there is an orientation-preserving diffeomorphism f : R4 → R4 with f(F0#T ) =
F0#T such that f(ej) = ẽj and f(e′j) = ẽ′j for all j.

Let (D× I,D′× I) be an O2-handle pair on F#T in R4 attached to T o such that
(F#T )(D×I,D′×I) ∼= F . By (2.5.1), there is a spin loop basis for F0#T containing
the pair (∂D, ∂D′). Also, let (ei, e

′
i) (i = 0, 1, 2, . . . , g) be a spin loop basis for F0#T

such that e0 bounds a disk d in R4 with d ∩ V = e0 and e′0 bounds a meridian disk
d′ of V0. Since the handlebodies Vi (i = 0, 1, . . . , r) are splittable in R4 by [6], we
see from (2.5.2) that there is an orientation-preserving diffeomorphism f : R4 → R4

with f(F0#T ) = F0#T and f |Vi
= 1 (i = 1, 2, . . . , r) such that f(∂D) = e0 and

f(∂D′) = e′0. A thickening pair (d× I, d′ × I) of the disk pair (d, d′) is an O2-handle
pair with (F#T )(d× I, d′ × I) is a trivial surface-knot. Since (f(D)× I, f(D′)× I)
is an O2-handle pair on F#T , we obtain from (3) that

F ∼= (F#T )(D × I,D′ × I)
∼= (F#T )(f(D)× I, f(D′)× I)
∼= (F#T )(d× I, d′ × I).

Thus, F is a trivial surface-link. □

3 Uniqueness of an orthogonal 2-handle pair

The following theorem is our main result.

Theorem 3.1. Any (not necessarily trivial) surface-link has only unique O2-handle
pair.
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Theorem 1.1 is proved by Theorem 3.1 and Lemma 2.5, which is done as follows:

Proof of Theorem 1.1. Let F be a stably trivial link. That is, assume that a
stabilization F#sT = F#s

k=1Tk of F is a trivial link for some s ≥ 1. By Theorem 3.1
and Lemma 2.5, F#s−1

k=1Tk is a trivial surface-link. Inductively, F is a surface-link, so
that any handle-irreducible summand F ∗ of F is a trivial S2-link. □

The following lemma is a key lemma to Theorem 3.1.

Lemma 3.2. Let (D × I,D′ × I) and (E ′ × I, E ′ × I) be O2-handle pairs on a
surface-link F in R4 with ∂D × I = ∂E × I and ∂D′ × I = ∂E ′ × I. Then there
is a 2-handle D′

∗ × I on F with ∂D′
∗ = ∂D′ such that the pair (E × I,D′

∗ × I) is
an O2-handle pair on F and the 2-handle D′

∗ × I on F is equivalent to the 2-handle
D′ × I.

By assuming Lemma 3.2, the proof of of Theorem 3.1 is done as follows:

Proof of Theorem 3.1. Let (D× I,D′ × I) and (E× I, E ′ × I) be O2-handle pairs
on a surface-link F in R4 with ∂D × I = ∂E × I and ∂D′ × I = ∂E ′ × I. Then
there is a 2-handle D′

∗ × I on F be a 2-handle on F given by Lemma 3.2 such that
(E × I,D′

∗ × I) is an O2-handle pair on F and there is an equivalence f from F to
itself such that the restriction f |F is the identity map on F and f(D′

∗ × I) = D′ × I.
By Lemma 2.2 and Corollary 2.4, the O2-handle pair (E×I, E ′×I) on F is equivalent
to the O2-handle pair (E × I,D′

∗ × I) on F , which is equivalent to the O2-handle
pair (f(E)× I,D′ × I) on F and hence to the O2-handle pair (D × I,D′ × I) on F .
Thus, the O2-handle pair (D × I,D′ × I) on F is equivalent to an O2-handle pair
(E × I, E ′ × I) on F . This completes the proof of Theorem 3.1. □

Throughout the remainder of this section, the proof of Lemma 3.2 is done.

Proof of Lemma 3.2. For the core disks D, D′ E and E ′ of D × I, D′ × I, E × I

and E ′ × I, respectively, assume the following conditions (see Fig. 3):

(a) A neighborhood n(∂D) of ∂D in D coincides with a neighborhood n(∂E) of ∂E
in E and (∂D′)× I ∩ ∂E ′ = ∅ by slightly sliding ∂E ′ along F ,

(b) The disk interiors IntD, IntD′, IntE and IntE ′ meet transversely except for the
part n(∂D) = n(∂E) and D ∩D′ = ∂D ∩ ∂D′ = {pD∩D′} and E ∩ E ′ = ∂E ∩ ∂E ′ =
{pE∩E′} for distinct points pD∩D′ and pE∩E′ .
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Figure 3: Positions among the core disks D, D′, E and E ′

(c) The disk interiors E\n(∂E) and IntE ′ meet D×I with a finite number of mutually
disjoint arcs which are parallel to a fiber I of the line bundle D× I over D. Similarly,
the disk interiors IntE and IntE ′ meet D′×I with a finite number of mutually disjoint
arcs which are parallel to a fiber I of the line bundle D′ × I over D′.

The following operation, called Finger Move Canceling eliminates an intersection
point x ∈ IntE ∩ IntD′ by creating a disk D′′ with ∂D′′ = ∂D′ from the disk D′.

Finger Move Canceling. Let S be a trivial S2-knot in R4 such that the 2-sphere
S2 is disjoint from F and D′ and meets the disk interior IntE transversely in just one
point x. Let y be a double point between the disk interiors IntE and IntD′, and L a
simple arc in the disk E joining x and y not meeting the other double points between
E ′ and D. Let VL be a solid tube in R4 around the arc L such that VL ∩E = L and
VL joins a disk neighborhood dx of x in the disk D′ and a disk neighborhood dy of y
in the 2-sphere S. Then a disk D′′ with ∂D′′ = ∂D′ and E ∩ D′′ = E ∩ D′ \ {x} is
constructed so that

D′′ = cl(D′ \ dx) ∪ cl(∂VL \ (dx ∪ dy)) ∪ cl(S \ dy).
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A trivial S2-knot S used in Finger Move Canceling is constructed as follows:

Claim 3.2.1. After an isotopic deformation of F , E and E ′ keeping D and D′, there
is a trivial S2-knot S in R4 such that

(1) S ∩D = S ∩ E = {x} for a point x ∈ n(∂D) = n(∂E),

(2) S ∩ (F ∪D′ × I ∪ E ′) = ∅,

(3) There is a 3-ball BS in R4 with ∂BS = S such that BS ∩ (F ∪D′ × I) = D′.

By assuming Claim 3.2.1, let D′
1 be a disk parallel to the core disk D′ of the

2-handle D′× I on the surface-link F such that D′
1∩F = ∂D′

1 and D′
1∩ (D′× I) = ∅.

Let y be a double point between the disk interiors IntD′
1 and IntE. Apply Finger

Move Canceling to the trivial S2-knot S in Claim 3.2.1 along an arc c in E from the
point x to the point x ∈ S ∩ E which avoids the double point set E ∩ D′

1 \ {y} to
obtain a disk D′

2 such that

(1) ∂D′
2 = ∂D′

1,

(2) E ∩D′
2 = (E ∩D′

1) \ {y}, and

(3) D′
2 ∩ F = ∂D′

2 and D′
2 ∩ (D′ × I) = ∅.

By continuing this Finger Move Canceling on a trivial S2-knot parallel to S, a
2-handle D′

∗ × I on F with ∂D′
∗ = ∂D′

1 such that (E × I,D′
∗ × I) is an O2-handle

pair on F is obtained. The following claim shows that this 2-handle D′
∗ × I on the

surface-link F is a desired 2-handle in Lemma 3.2.

Claim 3.2.2. The 2-handle D∗
1 × I on F is equivalent to the 2-handle D′

1 × I.

This completes the proof of Lemma 3.2 under the assumptions of Claims 3.2.1
and 3.2.2.

The proof of Claim 3.2.1 is done as follows:

Proof of Claim 3.2.1. Let ∆ is the handle union of the O2-handle pair (D×I,D′×
I), and B = B∆ an associated bump of ∆ (see Fig. 2). Assume that the bump B is
in the 3-space R3 by an isotopic deformation of B. Let T o

B = F ∩B be an unknotted
once-punctured torus in B. Let F c = cl(F \ T o). For the sub-surface T o

∆ = F ∩∆ of
T o, the closed complement A(T o) = cl(T o

B \ T o
∆) is an annulus bounded by the loops

oF = ∂T o
B = ∂δB = ∂F c

B and o∆ = ∂T o
∆ = ∂δD×I,D′×I .

12



Assume that the disk E meets the associated bump B with the union of the loop
∂E, a set JE

D×I of trivial parallel arcs and a set JE
D′×I of trivial parallel arcs such that

(i) the set JE
D×I of trivial proper parallel arcs in B is obtained by extending the

intersection set IntE ∩ (D × I) of trivial parallel arcs in D × I and

(ii) the set JE
D′×I of trivial proper parallel arcs in B is obtained by extending the

intersection set IntE ∩ (D′ × I) of trivial parallel arcs in D′ × I.

Similarly, assume that the disk E ′ meets the associated bump B with the union of
the loop ∂E ′, a set JE′

D×I of trivial proper parallel arcs in B and a set JE′

D′×I of trivial
proper parallel arcs in B such that

(i)′ the set JE′
D×I of trivial proper parallel arcs in B is obtained by extending the

intersection set IntE ′ ∩ (D × I) of trivial parallel arcs in D × I and

(ii)′ the set JE′

D′×I of trivial proper parallel arcs in B is obtained by extending the
intersection IntE ′ ∩ (D′ × I) of trivial parallel arcs in D′ × I.

Let

J = JE
D×I ∪ JE

D′×I ∪ JE′

D×I ∪ JE′

D′×I .

Let oE = ∂n(∂E) \ ∂E. Let d(D′) be a disk in the associated bump B containing the
disk D′ in the interior such that the link oE ∪ ∂d(D′) for the boundary loop ∂d(D′)
is a trivial link in B and ∂d(D′) transversely meets the disks E and D with just one
point in the interior of the part n(∂D) = n(∂E). A situation of the intersections of
the disks E and E ′ with the associated bump B of the O2-handle pair (D× I,D′× I)
is illustrated in Fig. 4.

Notations. For a subspace A of R3[0] and a subinterval K of R the notation

AK = {(x, t) ∈ R4| x ∈ A, t ∈ K}

is used for a subspace of R4 as it is used in [16]. Since the associated bump B = B∆

of the handle union ∆ of the O2-handle pair (D × I,D′ × I) is assumed to be in the
3-space R3 = R3[0], the 4-ball

B[−1, 1] ⊂ R3[−1, 1] ⊂ R4

is a bi-collar of the associated bump of B in the 4-space R4. To avoid a confusion,
the notation AKB is used for the subspace AK in B[−1, 1] defined for a subspace A
of B and a subinterval K of [−1, 1].
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Figure 4: A situation of the intersections of the disks E and E ′ with the associated

bump B

The following situation may be imposed on the intersection of the union F ∪E∪E ′

with the 4-ball B[−1, 1]:

(3.2.1.1) The surface-knot F and the disks E and E ′ meet the 4-ball B[−1, 1] such
that

(F ∪ E ∪ E ′) ∩ B[t]B =


(o∆ ∪ J ∪ oE ∪ ∂E ′)[t]B, for 0 < t ≤ 1,
(T o

∆ ∪ J ∪ n(∂E))[t]B, for t = 0,
J [t]B, for −1 ≤ t < 0.

In (3.2.1.1), note that the annulus A(T o) ⊂ B bounded by o∆ ∪ oF is deformed
into the annulus o∆[0, 1]B ⊂ B[−1, 1] identifying o∆ ⊂ B with o∆[0]B ⊂ B[0]B and
oF ⊂ B with o∆[1]B ⊂ B[1]B.

Consider the 4-ball U = cl(R̄4 \ B[−1, 1]) for the one-point-compactification R̄4

of the 4-space R4 and the proper surfaces

R(F ) = cl(F \ F ∩B[−1, 1]),

R(E) = cl(E \ E ∩B[−1, 1]),

R(E ′) = cl(E ′ \ E ′ ∩B[−1, 1])

in the 4-ball U . The link

L = ∂R(F ) ∪ ∂R(E) ∪ ∂R(E ′)
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in the 3-sphere ∂U = B[−1]B ∪ (∂B)[−1, 1]B ∪ B[1]B is illustrated in Fig. 5, where
∂R(F ) and ∂R(E) ∪ ∂R(E ′) are given as follows:

∂R(F ) = o∆[1]B ⊂ ∂U,

∂R(E) ∪ ∂R(E ′) = oE[1]B ∪ ∂E ′[1]B ∪ L′ ⊂ ∂U

for L′ = J [−1]B ∪ (∂J)[−1, 1]B ∪ J [1]B.

Figure 5: The link L in the 3-sphere ∂U

Consider the pair (U, ∂U) as the one-point-compactification of the pair of the
upper-half 4-space

R4
+ = {(x, t) ∈ R3 ×R| x ∈ R3, t ∈ R}

and the boundary 3-space ∂R4
+ = R3 = R3[0]. The same notations for the proper

surface R(F ) ∪ R(E) ∪ R(E ′) in the 4-ball U and the link L = o∆[1]B ∪ oE[1]B ∪
∂E ′[1]B ∪ L′ in the boundary 3-sphere ∂U are used for the corresponding proper
surface in R4

+ and the corresponding link in the boundary 3-space R3 = R3[0].
By an argument of [16], a normal form of the surface R(F )∪R(E)∪R(E ′) in R4

+

is considered to obtain the following surface G from the surface R(F )∪R(E)∪R(E ′)
by an ambient isotopy of R4

+ keeping the boundary R3 = R3[0] fixed:
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(3.2.1.2) The surface G in R4
+ is given by

G ∩R3[t] =



∅, for t > 3
d(O)[t], for t = 3,

O[t], for 2 < t < 3,
(L ∪ o ∪ b)[t], for t = 2,

(L ∪ o)[t], for 1 < t < 2,
(L ∪ d)[t], for t = 1,

L[t], for 0 ≤ t < 1,

where

� d is a disk system in R3 disjoint from the link L and o = ∂d, a trivial link,

� b is a band system in R3 spanning the link L ∪ o,

� O is a trivial link obtained from the link L∪o by the surgery along b and d(O)
is a disk system bounding the trivial link O.

Let (d(D′)[0], D′[0]) be the disk pair in R3[0] corresponding to the disk pair
(d(D′)[1]B, D

′[1]B) in the 3-ball B[1]B ⊂ ∂U obtained from the disk pair (d(D′), D′)
in B. Let (ι · d(D′)[0], ι · D′[0]) be the disk pair in R3[0] corresponding to the disk
pair (d(D′)[−1]B, D

′[−1]B) in the 3-ball B[−1]B ⊂ ∂U obtained from the disk pair
(d(D′), D′) in B, where note that the disk pair (d(D′)[−1]B, D

′[−1]B) is the image of
the disk pair (d(D′)[1]B, D

′[1]B) by the reflection ιin B[−1, 1] sending the point (x, t)
to the point (x,−t) for x ∈ B and t ∈ [−1, 1].

By a replacement to a narrow band and a band slide on the band system b[2] in
(3.2.1.2), the following condition cab be imposed:

(3.2.1.3) The band system b[2] does not meet the disks d(D′)[2] and ι · d(D′)[2].
Thus, for every t with 0 ≤ t ≤ 3, we have:

d(D′)[3] ∩G = d(D′)[3] ∩ d(O)[3],

d(D′)[t] ∩G = (D′ ∩ L)[t], for 0 ≤ t < 3;

ι · d(D′)[3] ∩G = ι · d(D′)[3] ∩ d(O)[3],

ι · d(D′)[t] ∩G = (ι ·D′ ∩ L)[t], for 0 ≤ t < 3.

Let p = D′ ∩ L be the point system in B, and p[0] the point system in R3[0]
representing the point system p[1]B in 3-ball B[1]B ⊂ ∂U . Similarly, let ι ·p[0] be the
point system in R3[0] representing the point system p[−1]B in 3-ball B[−1]B ⊂ ∂U
which is ι-reflection image of the point system p[1]B.
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In (3.2.1.3), the intersection d(D′)[3]∩d(O)[3] is the disjoint union of an improper
arc system α[3] joining the point system p[3] with a point system pd[3] in the loop
∂d(D′)[3] and a proper arc system β[3] in the disk d(D′)[3].

Similarly, the intersection ι ·d(D′)[3]∩d(O)[3] is the disjoint union of an improper
arc system ι ·α[3] joining the point system ι ·p[3] with a point system ι ·pd[3] in the
loop ∂ι · d(D′)[3] and a proper arc system ι · β[3] in the disk ι · d(D′)[3].

Let β+[3] and ι · β+[3] be slightly extended arc systems of the arc systems β[3]
and ι · β[3] in d(O)[3], respectively. Let γ and ι · γ be the arc systems in R3[3, 4]
obtained respectively by deforming the extended arc systems β+[3] and ι · β+[3] as
follows:

(3.2.1.4) For every t with 3 ≤ t ≤ 4, the arc systems γ and ι ·γ in R3[3, 4] are given
by

γ ∩R3[t] =

{
β ⊓+ [t], for t = 4,
∂β+[t], for 3 ≤ t < 4,

where β ⊓+ [4] is an arc system which is deformed from the arc system β+[4] with
∂β ⊓+ [4] = ∂β+[4] and β ⊓+ [4] ∩ d(D′)[4] = ∅ (see Fig. 6), and

ι · γ ∩R3[t] =

{
ι · β ⊓+ [t], for t = 4,
∂ι · β+[t], for 3 ≤ t < 4,

where ι · β ⊓+ [4] is an arc system which is deformed from the arc system ι · β+[4]
with ∂ι · β ⊓+ [4] = ∂ι · β+[4] and ι · β ⊓+ [4] ∩ ι · d(D′)[4] = ∅ (see Fig. 6).

The deformation from the extended arc systems β+[3] and ι · β+[3] into the arc
systems γ and ι · γ in (3.2.1.4) turns the disk system d(O)[3] into a disk system
d′(O) ⊂ R3[3, 4] with the intersection

d′′(O)[3] = d′(O) ∩R3[3]

a compact multi-punctured disk system such that

d(D′)[3, 4] ∩ d′(O) = α[3] and ι · d(D′)[3, 4] ∩ d′(O) = ι ·α[3].

Let q be a point system in the arc system JE′
D×I ∪JE′

D′×I in B which is not in the 2-
handle union ∆. Let a be an arc system in the link L in B joining the point system p
with the point system q. Let a[0] and ι ·a[0] be the arc systems in R3[0] representing
the arc system a[1]B in B[1]B and the arc system a[−1]B in ι(B[1]B) = B[−1]B,
respectively. By a replacement to a narrow band on the band system b[2] and a band
slide, assume that the band system b[2] does not attach to the arc systems a[2] and
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Figure 6: The arc systems β ⊓+ [4] and ι ·β ⊓+ [4] deformed from β+[4] and ι ·β+[4]

ι·a[2]. Then the arc systems a[3] and ι·a[3] are in the boundary of the multi-punctured
disk system d′′(O)[3] with ∂a[3] = p[3] ∪ q[3] and ∂ι · a[3] = ι · p[3] ∪ ι · q[3].

Let ad[3] and ι · ad[3] be arc systems in the multi-punctured disk system d′′(O)[3]
such that ∂ad[3] = pd[3] ∪ q[3] and ∂ι · ad[3] = ι · pd[3] ∪ ι · q[3]. See Fig. 7 for this
situation where T 0

∆[3] and ι · T 0
∆[3] denote the copies of T

0
∆ ⊂ B in R3[3] via the copy

in B[1] and the reflection image in ι(B[1]) = B[−1] for the reflection ι in B[−1, 1],
respectively.

Let n(ad)[3] and n(ι·ad)[3] be regular neighborhood disk systems of the arc systems
ad[3] and ι · ad[3] in the multi-punctured disk system d′′(O)[3].

Let d∗(O) = cl(d′(O)\ (n(ad)[3]∪n(ι ·ad)[3])), and O∗[t] the trivial link obtained
from the trivial link O[t] by the surgery along the disk systems n(ad)[t] and n(ι ·ad)[t]
for every t with 2 < t < 3. Also, let L∗[t] be the link obtained from the link L[t] by
surgery along the disk systems n(ad)[t] and n(ι · ad)[t] for every t with 1 ≤ t ≤ 2.
Then the surface G∗ in R4

+ which is isotopic to G by an ambient isotopy keeping
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Figure 7: Arc systems ad[3] and ι · ad[3]

R3[0] fixed is given by

G∗ ∩R3[t] =



∅, for t > 4
d′(O) ∩R3[t], for 3 < t ≤ 4,

d∗(O)[t], for t = 3,
O∗[t], for 2 < t < 3,

(L∗ ∪ ∩o ∪ b)[t], for t = 2,
(L∗ ∪ o)[t], for 1 < t < 2,
(L∗ ∪ d)[t], for t = 1,

L∗[t], for 0 ≤ t < 1.

Let J∗[1]B∪J∗[−1]B be the arc system in the 3-sphere ∂(B[−1, 1]) = ∂U obtained from
J [1]B ∪ J [−1]B by replacing the link L[1]B with the link L∗[1]B in ∂(B[−1, 1]) = ∂U .

The multi-punctured disk system d′′(O)[3] is deformed in R3[3] so that T o
∆[0] does

not meet the neighborhood disk systems n(ad)[3] and n(ι·ad)[3]. Then the arc systems
J∗[1]B and J∗[−1]B extend to the disk system J∗[−1, 1]B in B[−1, 1].

Let F ∗, E∗ and E ′∗ be the deformation results of F , E and E ′ using G∗ and
J∗[−1, 1]B, which are obtained by isotopic deformations on F , E and E ′ keeping D
and D′ fixed. Let DS and ι ·DS be the disks in R3[0, 4] defined by

DS ∩R3[t] =

{
d(D′)[t], for t = 4,

∂d(D′)[t], for 0 ≤ t < 4,
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ι ·DS ∩R3[t] =

{
ι · d(D′)[t], for t = 4,

∂ι · d(D′)[t], for 0 ≤ t < 4,

Let S be the 2-sphere obtained from the disks DS and ι · DS by connecting the
tube ∂d(D′)[−1, 1]B in the 4-ball B[−1, 1] bounded by the loops ∂DS and ∂ι ·DS. By
construction, this 2-sphere S does not meet the surface-link F ∗ and the disks D′, E ′∗

and meets the disks D and E∗ with just one point in the part n(∂D) = n(∂E∗). By
construction, there is a 3-ball BS in R4 with ∂BS = S such that BS ∩ (F ∗∪D′×I) =
D′. Thus, S is a desired 2-sphere. This completes the proof of Claim 3.2.1. □

The proof of Claim 3.2.2 is done as follows:

Proof of Claim 3.2.2. Let S be a trivial 2-knot in Claim 3.2.1. Let D′
1 × I be a

2-handle on F with core disk D′
1 which is disjoint from D′ × I.

Let D′
2 be the disk obtained from the disk D′

1 and the 2-sphere S by taking the
surgery along a 1-handle h joining a disk d′ in D′ and a disk d in the S2-knot S and
not meeting the interior of the 3-ball B3. Let D′

2 × I be the 2-handle on F with D′
2

a core disk and with ∂D′
2 × I = ∂D′

1 × I which is obtained from the 2-handle D′
1 × I

and a collaring S × I of the trivial S2-knot S and a collaring h × I of the 1-handle
h. For the bounded surface F c

1 = cl(F \ ∂D′
1 × I), the surface-links F (D′

1 × I) and
F (D′

2 × I) are given as follows:

F (D′
1 × I) = F c

1 ∪D′
1 × ∂I,

F (D′
2 × I) = F c

1 ∪D′
2 × ∂I.

The disk union D′
2 × ∂I is obtained from the disk union D′

1 × ∂I by the surgery
along the 1-handle union h × ∂I. In Fig 8, it is shown that one 1-handle of the
1-handle union h × ∂I is a self-intersecting 1-handle connecting one disk of the disk
union D′

1×∂I and one 3-ball in the 3-ball unions B3×∂I for a collaring B3×I of B3.
This implies that the disk union D′

2 × ∂I is deformed into the disk union D′
1 × ∂I by

an ambient isotopy of R4 keeping the surface F c
1 fixed. Thus, there is an equivalence

f : R4 → R4 from F (D′
2 × I) to F (D′

1 × I) keeping the surface F c
1 identically.

The 2-handle D′
∗× I on F constructed by continuing this operation has the prop-

erty that the pair (E×I,D′
∗×I) is an O2-handle pair on F and there is an equivalence

f : R4 → R4 from F (D′
∗ × I) to F (D′

1 × I) keeping the surface F c
1 identically.

Let a′ = ∂D∩D′
1×I = ∂E∩D′

∗×I be the arc parallel to a fiber I of the line bundle
∂D′

1 × I = ∂D′
∗ × I over the circle ∂D′

1 = ∂D′
∗. The arc a′ attaching to F (D′

1 × I)
is ∂-relatively isotopic to an arc parallel to F c

1 through the disk D. Similarly, the
arc a′ attaching to F (D′

∗ × I) is also ∂-relatively isotopic to an arc parallel to F c
1

through the disk E. This means that the equivalence f is isotopically deformed into
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Figure 8: An equivalence from the disk D′
2 to the disk D′

1

an equivalence f ′ from F (D′
∗×I) to F (D′

1×I) keeping the surface F c
1 fixed such that

f ′(a′) = a′. Since the arc a′ is regarded as a core of the 1-handle D′
∗× I on F (D′

∗× I)
and a core of the 1-handle D′

1 × I on F (D′
1 × I), the equivalence f ′ is isotopically

deformed into an equivalence f ′′ from F to itself such that the restriction f ′|F is the
identity and f ′′(D′

∗ × I) = D′
1 × I (see [6]). This completes the proof of Claim 3.2.2.

□

This completes the proof of Lemma 3.2. □
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[9] A. Kawauchi, Splitting a 4-manifold with infinite cyclic fundamental group, re-
vised, Journal of Knot Theory and Its Ramifications 22 (2013) 1350081(9 pages).

[10] A. Kawauchi, A chord diagram of a ribbon surface-link, Journal of Knot Theory
and Its Ramifications 24 (2015), 1540002(24 pages).

[11] A. Kawauchi, Supplement to a chord diagram of a ribbon surface-link, Journal
of Knot Theory and Its Ramifications 26 (2017), 1750033(5 pages).

22



[12] A. Kawauchi, A chord graph constructed from a ribbon surface-link, Contem-
porary Mathematics 689 (2017), 125-136. Amer. Math. Soc., Providence, RI,
USA.

[13] A. Kawauchi, Faithful equivalence of equivalent ribbon surface-links, Journal of
Knot Theory and Its Ramifications 27 (2018),1843003 (23 pages).

[14] A. Kawauchi, Triviality of a surface-link with meridian-based free fundamental
group, preprint. http://www.sci.osaka-cu.ac.jp/ kawauchi/TrivialSLink.pdf

[15] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, II. General case,
preprint.

http://www.sci.osaka-cu.ac.jp/ kawauchi/SRibbonSLinkII(GeneralCase).pdf

[16] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, I
: Normal forms, Math. Sem. Notes, Kobe Univ. 10(1982), 75-125; II: Singularities
and cross-sectional links, Math. Sem. Notes, Kobe Univ. 11(1983), 31-69.

[17] R. Kirby(e.d.), Problems in low-dimensional topology, Algebraic and
geometric topology(Stanford, 1978)(1978), 273-312. Up-dated version:
http://www.math.berkeley.edu/ kirby/.

[18] J. Levine, Unknotting spheres in codimension two, Topology 4(1966), 9-16.

[19] C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann.
of Math. 66(1957), 1-26.

[20] J. L. Shaneson, Embeddings with codimension two of spheres in spheres and
H-cobordisms of S1 × S3, Bull. Amer. Math. Soc. 74(1968), 972-974.

[21] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115(1965), 471-495.

23


