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On the Signature Invariants of Infinite Cyclic Coverings
of Even Dimensional Manifolds

Akio Kawauchi

§ 0. Introduction

We consider a compact oriented topological 2m-manifold W with
boundary M (which may be ¢). Let 7 ¢ H(W; Z) and 7=7 |Me H\(M;
Z). Let W be the infinite cyclic covering space of W associated with 7,
whose covering transformation group is infinite cyclic and denoted by {t>
with a specified generator 7 (cf. [K3, §0]). The boundary A7 of W is the
infinite cyclic covering space of M associated with 7 (if it is not #), and
we have the signature invariants oi,(M), ae[—1, 1], of (M, 7) (cf. [K2],
[K3]). These signature invariants were defined as a result of a duality on
the cohomology ring H*(M). This duality was first observed by Milnor
[M], under the restriction that H*(Af) is finitely generated over a field.
This restriction was removed in [K1]. Neumann [N2] has independently
shown it by modifying the Blanchfield linking form. [Remark: In [M],
[K1] and [N2], it was assumed that M is triangulated, but one can find a
proof of its topological version in [K3, Appendix B]] In [K3], the author
could compute these signature invariants by using a certain linking matrix
on (M,7). By convention, o’(M)=0 if M =¢. The purpose of this
paper is to introduce and compute signature invariants, 7. (W) of (W, 7),
defined for all a4-0% e [—1, 1] (cf. § 1). It turns out that the set {e7,.o(W)
—sign Wla+0e[—1,1]} and {ot(M)|ae[—]1, 1], a% —e&(m)} determine
each other, where ¢(m)=(—1)" and sign W denotes the usual signature of
W (By convention, sign W=0 if e(m)== —1). Moreover, we shall show
that o7 ,,,,(M) can be written in terms of T ctmyvemol W), sign W and a
certain signature invariant, sign, W of (W, 7). Thus, we can see that the
signature invariants ¢/(M), ae[—1, 1], are all peripheral invariants (the
terms due to Neumann [N1]), such as an invariant of Atiyah/Singer [A/S],
called a-invariant by Hirzebruch/Zagier [H/Z] and an invariant of Atiyah/
Patodi/Singer [A/P/S], called 7-invariant by Neumann [N1], [N2]. The
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ae(—1,1].
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differences ], (W)~ sign W appear to be closely related to some kind of
7-invariants (cf. [N1], [N2]), but we do not discuss any relationship be-
tween them in this paper.

In Section 1 we state our main results together with the definitions of
th.o(W),al(M) and sign, W. In Section 2 several properties on 7, (W)
are given. In Section 3 we compute 7, W) and sign, W for a special
pair (W, ) constructed from a given pair (M, 7). In the final section §4),
we prove Theorems I, I and the Proposition, stated in Section 1.

Throughout the paper, coefficients of homology and cohomology will
be taken in the real number field R, unless otherwise specified. Since we
intend to depend heavily on the preceding paper [K3), it will be better to
note that “m™ in [K3] means “m—1" of this paper,

§ 1. Definitions and main results

We note first that the cohomology with compact support H*(W, M)
forms a finitely generated R(z)-module. In fact, the Poincaré duality
NIW]: H{W, M)= H,,_,(W) stated in [K3, Appendix A] gives a r-anti
isomorphism [In fact, () N [W]=1"'(uNt[W])=¢ “(uN[WD]and H, (W)
is finitely generated over R() by [K/S] (cf. [K3]), where [W'] ¢ H sn(W, M)
denotes the fundamental class of W in the sense of [K3, Appendix A].
By using the cup product pairing U : H7(W, M)x H (W, M)—H™(W¥,
M), we define a form

I HXW, M) X H(OF, M)—> R(tS
by the identity
I(u, v)=t_+i enl( Ut O)N [,

where ¢;: H(W)—R denotes the augmentation map. For x=u0 [
and y=vN[W], we have the identity
ewl@ Ut ) N [W]]=Inty (x, 1-%y)

by [K3, A.4], and the latter is O except a finite number of / by the defini-
tion of the intersection pairing Int,. Hence 7 is well defined. The fol-
lowing two properties are easily established:

L1 I(fu, y=fI(u, v)=1(u, fv) for fe R(tD.
1.2, I(v, w)y=e(m) I (u, v).

Here = denotes the involution on R(z) sending ¢ to ¢~'. We define a
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{-Hermitian R{t>-form
§: HT (W, M) x H (W, M)—>R{)

by the identity S(u, v)=1I(w, v) (if em)=1) or S, v)y=I(u, (t—t~v)
(it my= 1), Let TN, §)=Tor e, Hr(OF, M) and B(W, M) =
Hr(W, M) T™W, M). Since R(t} is a principal ideal domain, B(W, M)
is R(t)-free of finite rank. By (1.1), I and § induce forms

also denoted by [ and S, respectively. Let A(t) be an R(t)-matrix, which
is t-Hermitian, representing the t-Hermitian form § on BI'(W, M). For
xe[—1,1], let w, be the complex number x4 (1—x%'*i of norm 1. As
in [K3, § 5], we define

Ta +0(A(t)) :mli;r‘:o sign A(wz)

fora4+0e[—1,1]and
za-o(A(D)= lim sign A(w,)
fora—0e[—1,1]. Itiscasy tosee that z,.,(A(t)) are idenpendent of a
choice of A(r) representing S.
Definition 1.3. 7, (W) =ra.(A(1) for all a0 e [—1, 1.
We also define forms
I: H, (W)X H (W) —>R{t)
and
S: H, (W)X H,(W)—>R{t)
by the identities 7(x, ¥)=1(u, v) and S(x, =S, v) for x=uN[W], y=
v [#7]. Then we have

Zw: Inty (x, t‘iy)t":AZD]o Inty(x, 1)t

= o0

1=,

which is Tntz(x, y) in [K3, Appendix C] and S(x, »)=1I(x,y) (if eg(m)=1)
or S(x, Ny=1I(x, (t ' —1)y) (if e(m)=—1). Noting that I(fx, »)=fI(x,y)
= I(x, fy) for fe R(t), we see that and S also induce forms

B, (W)X B, (W)—>R{t),
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also denoted by I and S, repectively. Since N[I¥]induces a f-anti iso-
morphism B»(W, M)=B, (W), it follows that o W)=1,.(4()) for
any ¢-Hermitian R{z)-matrix A(f) representing the form S on B,(1¥7).
The invariants o/,(M) are briefly defined as follows (see [K3] for detalls)
Given (M, 7), we have an e(m— 1)-symmetric pairing 7™~ 1(M )X 1™ ’(M )
A "’(M) induced from the cup product pairing H™ (M) x H™ (M)
v Y H*™*J) and a t-invariant unique homomorphlsrn fa: T -2 M )—R,
where T*(M) Hom [T, (M), R, T(M)= Tor g Hye(M). The quad-
ratic form b: T™(M)x T™ 1(M)-—>R is defined by the identity b(u, v)
=puJv) (if e(m)=—1) or b(u, v)= ;n(uU(t—t Yv) (if «(m)=1). Let
T™ (M), be the p,(t)-component of T }(3f) with P.(1) being £*—2at+1
(fae(—1,1) or tF1(ifa==1). Then /(M) is defined to be the
signature of 5| T7~(M),. Let ¢'(M) be the signature of 5. Then we have
o'(M)=34er-1,904(M). We shall prove the following:

Theorem 1. For all ae(—1,1), oi(M)=1_(W)—1c (W), and
Ly (M) = e(M)(Thimy - e o W) — sign W).

Note that the invariant o7 (M) does not appear in Theorem I.
Since 74,.,(W) are locally constant on « except a finite number of g (cf.
[K3, § 5]), we see that Theorem I is equivalent to the following:

Theorem I'. For all at-0e[—1, 1), z/,_ (W) —sign W= Dvera0h(M)
(emy=1) or —3 .1 10 0l(M) (if e(m)=—1), and <, (W) —sign W =
er(a,l] GL(M) ({fa(’ﬂ):]) or —Zze[—l,a]o'i(M) ({f‘E(m)z - 1)‘

Here are two remarks on the invariant ¢, ,,,(M).

Remark 1.4.  When e(m)= — 1, we have ¢/(M)=0, so that by Theo-
rem I

ol(M)=— ECZII , ol (M)=t{_(W)=1]_(W)—sign W.
To see that ¢7(M)=0, we first assume that 7 has a leaf Uin W (see [K3]
for this terminology) so that V=9U is a leaf of ¥ in M. Then o/(M)=
sign V' (cf. [K3]), which is clearly 0. If v has no leaf in W, we consider
the product (W, M)X CP*=(W,, M) and 7, € H'(W,; Z) corresponding
to 7. Then by transversality on a map fp: W,—S" respresenting 7» (cf.
Kirby/Siebenmann [K/S]), 7 has a leaf in W, whose boundary is a leaf of
Tp in Mp. Hence o'»(M;)=0. By [K3, Lemma 1.2], ¢'>(M,)=q'(M),
so that ¢’(M)=0.

This construction (Wp, Mp, 75) from (W, M, 1) will be used later.
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Remark 1.5. When e(m)=1, (W) and sign W do not restrict
ot ,(M). In fact, we have the following:

Proposition.  For each integer 50 and each m>0 with «(m)=1,
there is a compact connected oriented 2m-manifold W with an element
7e H(W; Z) such that sign W=1,,(W)=0 for all ax+0e[—1,1}, but
a (M) =s.

To capture the invariant ¢, (M) in the case e(m)=1, we define
sign, W to be the signature of the double covering space of W associated
with the (mod 2) reduction 7(2)e H'(W: Z,) of r. By convention,
sign, W =0if ¢(m)= —1. We shall obtain the following:

Theorem 1. When ¢(m)=1, ¢’ (M) =sign, W —sign W—<7_, (W).

Before concluding this section, we give a note from the bordism
theory.

Remark 1.6. We consider a pair (M*™',7) which may not be a
boundary. If some multiple N(M, 7) (N >0) is the boundary of a pair
(W, 7), then we can see that o/(M), a e [—1, 1], are still peripheral invari-
ants. In fact, the resulting identities can be obtained as the identities in
Theorems I, II with the right hand sides divided by N. When e(m)=1,
some multiple of (M, 7) is a boundary. In fact, we have a natural iso-
morphism QF7(SHRQ=27"(SHRQ by Wall [W, p. 190] and 23(S?) =
[QENQH(S; Z) @R H(S'; Z)] by Conner/Floyd [C/F]. Q3QQ
is well-known by Thom to be the algebra on generators represented by

CP%,i=0,1,2, ---. Incase ¢(m)=1, we have 27" (SHRQ =0, imply-
ing the above assertion. When e(m)= —1, the same assertion does not

hold in general. In this case, note that ¢'(M) is a bordism invariant (cf.
Remark 1.4) and if m>>3, then by [K/S] 7 has a leaf V in M. Then we
can see that some multiple of (M, 7) is a boundary if and only if /(M) =0
(when m=1, 3) or V represents 0 in Q7> ,®Q (when m>>3 and e(m) = —1).

§ 2. Several properties on the signature invariants

Lemma 2.1, “Assume that W is closed and (W, ¥) is the boundary of a
pair (X, ¥ x) with X a compact oriented manifold and 7y ¢ H'(X; Z). Then
ot o(W)Y=0 for all a+0ec[—1, 1].

Proof. Consider the following exact part (obtained from the exact
sequence of the infinite cyclic covering space pair (X, W)):

S ] - iy ~
H, (X, IV)R(:)‘“”’Hm(I’V)R(t)“—)Hm(X)R(z)’
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where R(f) is the quotient field of R(t> and H,( Ve =Hy( Y@z R(1).
By the Blanchfield duality (cf. [K3, Appendix C}), the form I on B, (W) is
non-singular. Hence the extension of I to H, (W) (also denoted by I)
is non-singular. Similarly, we obtain the non-singular form

Ig: Hmu()?a W)R(t) X Hm(y)mn”“*R(t)

induced from Intg in [K3, Appendix C]. Note that 7(3x, y)=Iz(x, i ()
for xe H, (X, W)pu and ye H.(W)pe,. Then Ima=(Im 9)- with
respect to I on H (W)gpw. Let 4'() be a t-Hermitian R(t)-matrix
representing the extension of S to H,(W)pq. Itisecasytosee that

oA (1)== lim sign 4*(w2)
z—ax0

are well defined and independent of a choice of A*(f) and, in particular,
equal to 7. (W) Since Im 9=(Im 8)*, we have that z,.(4*()=0, so
that 77, (W)=0, for all a+0e[—1,1]. This completes the proof.

Lemma 2.2. When7=0or W is closed, t,.o(W)==sign W for all ax
0e[—1,11

Proof. When 7==0, the identities 7,.o(W)==sign W follow from the
definition of the form I When W is closed, we see from the bordism
theory (cf. Remark 1.6) that some multiple N(W,7) is bordant to a pair
(W,, 7o) with 7,=0. By Lemma 2.1 and the above remark, Nzj.(¥)=
i, (W) =sign W,=N sign W, so that o (W) =sign W. This completes
the proof.

The following is an infinite cyclic covering version of the Novikov
addition theorem (cf. [A/S, Proposition 7.1]):

Lemma 2.3. Assume that W is splitted into two compact submanifolds
w,, W, by a closed orientable (2m—1)-submanifold M, in Int W. Let
7,=T | Wyi=12 Then we have

Tfmo('W) =i (W) il o(W2)
forallax0e [—1,1].

Proof. Let B,=1Im H VI — H . (W)ro)l i =1,2. By the
Mayer/Vietoris sequence for (W; W,, W,; M,) and the Blanchfield duality,
we have an orthogonal splitting H (W) = B LB | (C®D) with
respect to the (extended) form 7 on H, (W), such that B* is a maximal
non-singular R()-subspace in B, and C=Im [Hm(ﬂo)Rm@Hm(M Ve —>
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Ho(W) ] (M=0W) and 3| D: D=1Im § for the Mayer/Vietoris boundary
8: H,(W)piy—H,u (M) zy. Using the R(t)-extension I, of the Blanch-
field duality pairing Intg,: B, _,(#,) X B, (M,))—R(t> in [K3, Appendix
C], we see that for each x+0in D, there is y, in H,(M,),, such that
I(0x, y)#0. But, I(dx,y)=I(x,y) for the image y of y, under
H, (M)~ H(W)pw. Hence we have an R(¢)-subspace C,CC such
that I|(C,@®D) is non-singular. Since /|C-=0, we have an orthogonal
splitting (C;®D) | C, of CPHD for some C, in C, so that the signature
invariants z,,, of I|(C@®D) are 0. Clearly, the signature invariants z,,,
of I| B¥ are equal to i, (W,). The result follows.

Lemma 2.4. Let (W, 7)), i=1, 2, have the same boundary (M, 7).
Then we have

T(TLIIO( W,)—sign W=z ( W) —sign W,
Joralla+0e[—1, 1]
Proof. It is direct from Lemmas 2.2 and 2.3.

Lemma 2.5. Let (Wp, M) = (W, MYXCP?* and 7,e H(W,: Z)
correspond to ¥ e H(W;Z). Then we have o2 (Wp)=1i_(W) for all
a+0e[-1,1]

Proof. Note that

B (W, Mp)=[Br (W, MYQH(CPHD[BMW, MYQH(CP]
DB (W, MYQH(CP?)

and the form I, on B™*¥W,, M,) vanishes on the first and third sum-
mands, and the second summand is orthogonal to the first and third.
The restriction I, | B;"(W, MYQH *(CP?) is clearly isomorphic to the form
I on B®(W, M). Thus the result follows easily.

§ 3. A special construction and the signature invariants

We consider a pair (M, 7) (which may not be boundary) such that M
is a closed oriented (2m— 1)-manifold and 7 e HYM; Z) has a leaf V.
We orient the product M x[—1, 1] so that M X I with the induced orienta-
tion is identified with M. Let N, be a bicollar neighborhood of V in M.
Let W,=cl(Mx[—1,1]—N,x[—1/2,0]) and U=V X[0,1]. By using
the product framing of N, x[—1/2, 0], we identify (N, x[—1/2, 0],
(N, X[~ 1/2,0]), V X (—=1/4) with (V XD, VS8 Vx0). Note that
MX[—1,1l=W, UV xD*and oW, = MxX(=1)+Vx S'+ M. By the

[
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Pontrjagin/Thom construction, we have an element 7.e H(W,; Z) such
that U is a leaf of 7,, T M=7,7,|Mx(—1)=0 and 7. VXS is repre-
sented by the projection ¥ x S'—»S1, Let A be a linking matrix on K, (V)
=Ker[i,: H, ( Vy—H, (M)] (cf. [K3]). Let 4*™-(¢) be the associated
-Hermitian matrix [(1 —¢ D—elm—1)(1—0[(1—1)4 —e(m—1)(1—1"14]
= =17+ elm)(1 -1 — 1) A+ e(m)(1 — 1 1) 4],

Lemma 3.1, tio( W) =e(m)z, . (A°™=1(1)) Joralla+0e[—1,1].

Proof. Let W’ be the manifold obtained from W, by splitting along
U. Let U* and U~ be copies of U in dW¢sothat U= =+ U. The infinite
cyclic covering space W, of W, associated with 7, is constructed from the
topological sum of copies (WD, jeZ, of W{ by pasting Ui to U7, so
that ¢ translates each (W1 to (W9),. By the Mayer/Vietoris sequence,
we have the following R(#>-exact sequence (cf. Levine [L]):

— > H VDRI 1 (W)Lt ()aR(s
I~}
A, (W)RRU— >,

where I*: U=U cw . and J is induced by the natural map from the
topological sum of (W)'s to W,. Letting W =M*+Mx(=1), we
have a homeomorphism

he (W5 M*, MX (=) =(MX[—1, 1], Mx1, M (1))
such that /! M x (1) is the identity. Note that the following square

H, (@RS g oneres

~ ~

H, (@R 5T g (Where

is commutative, where the left vertical map is induced from the inclusion

V=¥V X1CU and the right vertical map is induced from the composite

M=MX1=M*CW,. Then we see that the above exact sequence is
h—1

reduced to the following exact sequence with J’, 3’ induced from J, 0:

@ HV SR -"5B,00) "5k, (1N@RUS—0,

Let e,={c}, - - -, e,={c,} be a basis for K, ..(V). Let ¢{* and ¢ be
copies of the cycle ¢;X(1/2) in U* and U-, respectively. Let (" and
¢{”) be m-chains in W such that 0CiV =ci®.  Let s(c,) be the m-cycle
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1t — gt in W,, i=1, - - -, 5, where we identify W with (W?),C W,. By
the sequence (¥), there is an R{t)-basis &, - -+, &, &y, =+ 5 € of B, (W.)
such that &,={s(c,)} for i<{s and ¢, & ImJ" for i>s+1. Ifiorjis
>s 41, then clearly I(g,, &,)=0, since Im J’ is represented by cycles in
M (—1). Assume that both i and j are <'s. Then

1, 8))= Inth(’S(Ci)i ¢t~ 's(c)t+Int ﬁ’c(S(Ci)a s(e;) ‘l‘Intﬁ'c(S(Q): ts(e Nt
= —Inty (e, e+ Inty (&5, 27) + Ity cre,Em)

oy 1
'“Intw;(Cg Y, ('S'H)’ s

where ¢#) are m-chains similar to ¢{*’ but beginning with the cycle
¢, % (1/4) in place of ¢, x(1/2). Let A=(a,;) with a,,=Link,(c], ¢;) (cf.
[K3, §0]). Noting that 2U "~ is a translation (with opposite orientation)
of hU* in M in the positive normal direction, we have

Int,, (2%, ¢~ =e(m) Linky(c;, ¢ ))=Linky(c}, c)=a;
Inty (¢, 2§ =e(m) Linky(c;, ¢})=a,;,

Tty (517, €7 ==¢(m) Linky(c{, ¢;) =<(ma,;, and
Int, (207, &) =e(m) Link y(c, ¢ ) =e(m)ay,.

That is, we have I(e;, 8,)=(1—1)a,,+e(m)(1 —t "a;;. Hence the form J
on B,(W,) is represented by the block sum of (1—0)A 4-e(m)(1 —t N A
and a zero matrix. When e(m)=1, it is easy to see that

f{ch‘O(Wc)zfa:O((l —t)A,'}"(]- _t—l)A)'_——Ta,:o(A-x(t))-
When e(m)= -1,
(W) =1, (G HI(1 —nd’'—(1 —t YA = —=, o(AN())-
This completes the proof.

Combining Lemma 3.1 with the Main Theorem of [K3], we obtain
the following:

Lemma 3.2. For all ac(—1,1), ¢i(M) =7t (W)—zi (W) and
0 im (M) = () Ly - e cmyo( W)

Let W® be the double covering space over W, associated with 7,(2) e
H\W,;Z). Let W®=W®» UV xD* be the double branched covering
space over M x[—1, 1]=W, U V X D* with branch set V" X0V X D*,

Lemma 3.3, When e(m)=1, sign W =sign W& =gi(M).
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Proof. The first identity is a result of the Novikov addition theorem,
for sign VX D*=0. We show the second identity. Let 1’ be the
manifold obtained from M x[—1, 1] by splitting along ¥ x (0, 1]. Let U*
and U* be copies of V' X[0,1] in W’ with U*NU- =¥V x0. Let U=
U*UU-. Taking another copy (W, T,= U*UUl)of W, 0=U+*U
U~), we can consider that W @ is the union W’U W1 identifying T with
U, so that U*=U; and U"—U1 Note that (W', U)=(M x[—1, 1],
N,X1). Let e={c}, ---,e,={c;} be a basis for K, (V). By the
Mayer/V1etorls sequence, we have a basis e, - es, €41+ s 8, Of
H, (W ®) such that e,={s(c,)} for i <s and, for z>s—|—1 g, is represented
by a cycle in 9W'®, where s(c,)=¢,— ¢! for m-chains ¢, in W and ¢! in
W/ with 9,=dc;=c; X0 in ¥ X0CU=U, Ifiorjis >s+1, then
clearly Inty (2, €)==0. Let i and j be <s. Since e(m)=1, we have
Intyei(e;, 2)=a,,+a,, with a,;=Linky (c{, ¢,) (cf. The proof of Lemma
3.1).  Hence for the linking matrix A=(g,,) on K, (V), Intga is repre-
sented by the block sum of 4- 4’ and a zero matrix, so that sign W& =
sign (4++A'). The identity sign (4-+A’)=¢"(M) was given in the Main
Theorem of [K3]. This completes the proof.

Remark 3.4. The method of construction and computation which
we used in this section is familiar in knot theory (cf. for example Kauffman
[K], Contreras-Caballero [C], Litherland [Li]). Neumann [N2, p. 166]
has also used a similar construction in his computation of 7-invariants.

§4. Proof of Theorems I, IT and the Proposition

4.1.  Proof of Theorem 1. First we assume that ¥ ¢ H'(W: Z) has a
leaf Uin W whose boundary V is a leaf of 7 e H\M;Z). Let (W, M)
be a copy of (W, M). Let (W,,7,) be the pair constructed in Section 3.
By Lemma 2.4, we can assume that W is the union UxS'UW, U W,
identifying two copies of ¥ X 87, contained in U xS* and W., and then
identifying M x(—1) in W, with M, and P W=7, and 7|UXS" is a
natural extension of 7,| ¥ X S and 7| W,=0. Then by Lemmas 2.2 and
2.3, ¢l (W)=sign W +je. (W), for zi/I5'(U X $)=0. By Lemma 3.2,
(M) =z (W) —zit (W) =1l,_(W)—21, (W) for all ae (—1, 1) and
OZ(m)(-{W)ZE(”l)TzE'm);E(m)o( WC)ZE(m)(Tz(m)—e(m)O( W)_Slgn W) If r has no
leaf, then by [K/S] 7, has a leaf in W, whose boundary is a leaf of 7 pin
Mp. By Lemma 2.5 and [K3, Lemma 1.2], we have the same conclusion.
This completes the proof.

If W® is a double covering space of a closed oriented 2m-manifold
W, then it is known that sign W®=2sign W. In fact, it follows, since
Qi (K(Z., 1)RQ=00(K(Z,, 1)@Q = 00 ®Q by [W, p. 190] and [C/F].
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Hence we obtain from the Novikov addition theorem the following:

Lemma 4.2. For compact oriented 2m-manifolds W,, i=1, 2, with the
same boundary M, assume that a double covering M®— M is extended to
coverings WP->W, i=1,2. Then

sign W —2 sign W, =sign W» —2 sign W,.

The following lemma means that ¢/(M) in the case e¢(m)=1 is the a-
invariant of the double covering space of M associated with 7(2) ¢
H'(M; Z,) (though their signs are different) (cf. [H/Z)).

Lemma 4.3. When «(m)=1, o/(M)=sign, W—2 sign W.

Proof. Assume that 7 has a leaf in W whose boundary is a leaf of 7
in M. By Lemma 4.2, we can assume that (W, ) is the pair constructed
in 4.1. Then sign, W =2 sign W +sign W® =2 sign W+¢/(M) by the
Novikov addition theorem and Lemma 3.3. If 7 has no leaf, then we
consider (Wy, Mp, ¥7). By [K/S] and [K3, Lemma 1.2], we have the same
conclusion. This completes the proof.

4.4. Proof of Theorem II. 1t follows from Theorem I’ and Lemma
4.3, since O'f(M)=Zae[—1,1] ai(M).

4.5. Proof of the Proposition. Let h: S'XD*—S'XD* be an
orientation-preserving homeomorphism such that (1| S*x9D%,[S' X ¢]=
—[8* %X ql+elpxoD* and (h|S' X 0D, [pX oD = —[pxaD¥ in H(S'X
oD*; Z), where p e S, g ¢ @D? and ¢ is a non-zero integer. Let W be the
mapping torus of % and ¥ € H'(W; Z) be an element represented by the
associated bundle projection W-»S'. Since W is homotopy equivalent
to the Klein bottle, we have that H,(W)=B,(I¥)=0. Hence sign W =
o (W)=0 for all at0e[—1,1]. But T(M)=H,(M)=R{)/(t+1)
and the null space of the quadratic form b on T'(M) is easily seen** to
be (t-+1)T'(M). This means that 5 induces a non-singular form on
THM)/(t + )T (M) = R(H/(1+1), so that ¢ (M)==-41. Choose an
orientation of W so that ¢! ,(M)=1s/|5s]. Let (W, 7,) be a pair such that
W, is a boundary-disk -sum of |s} copies of W and 7,e H(W,; Z) is
determined by |s] copies of ¥. Clearly, this pair gives a desired pair in
dimension 4. A desired pair in dimension 2m is obtained from this pair
by taking the product with (m/2)—1 copies of CP* (cf. [K3, Lemma 1.2]
and Lemma 2.5). This completes the proof.

#4 Use the Duality Theorem of [K3, § 1].

N
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Notes added in proof: We used Lemma 1.1 of [K3] in this paper,
but the proof of [K3] was incorrect. The true proof is found in [K2, pp.

99-1001].

[A/S]
[A/P/5]

[C/F]
[C]

[H/Z]

[K]

[KI]
[K2]
[K3]

[(K/S]

(L]
[Li]
(M]
[N1]
[N2]
[W]
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