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§0. The statement of the main result

We consider a compact oriented topological n-manifold M. To each
ye HY(M; Z), we can consider the infinite cyclic covering space M of M,
which is defined, up to equivalence, to be the fibered product of the covering
exp: R—S' defined by exp(x)=¢*"*and amap f,: M—>S§ L with f *([S') =7,
where R is the real number field. The covering transformation group is an
infinite cyclic group with a generator ¢, specified by the transformation R— R
sending x to x-+1, and denoted by (t>. The coefficients of homology and
cohomology will be taken in R, unless otherwise specified. Then the homology

*(M oM) forms a finitely generated R{t)>-module (cf. §1) Let

T, (M, OM)=TorgH (M, oM) and T*(M,0M)=Homg[T, (M, M), R].
The signature invariants on M are defined on the basis of the following two
properties (cf. § 1):

Property 0.1. The orientation of M and y determine a unique -
invariant homomorphism ji: T"~ (M, 8M)- R.

Property 0.2. By the natural epimorphism H*(M, éM)—-T *(M,0M),
the cup product pairing

U HY(M, dM)x H" "9 Y(M, M) —— H""'(M, 0M)
induces a pairing (also denoted by L)
TYM, 0M)x T" "9~ \(M, 0M) —— T"" (M, ¢M) .
When n=2m+ 1, the pairing
u: T™(M, 0M)x T™(M, 0M) —— T*™(M, 6 M)

is e(m)-symmetric, where &(m)=(—1)". We define a t-isometric symmetric
bilinear form (called the quadratic form of M or (M, y))
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b: T™(M,M)x T™(M, 0M) —— R

by the identity A(u, v) = ji(u U (£ —t ")) (if e(m) = — 1) or fi(u U v) (if e(m)=1)
(cf. [K 1], [K2], [K3], [Mi], [N]). The signature of b'is called the signature of M
or (M, y) and denoted by ¢”(M). For each ae(—1, 1), let p(t)=t*—2at+1,
which is irreducible in R{r). Let p,()=t—1 and p_,(t)=t+1. Let
T™(M, dM), be the p (f)-component of T™(M, dM), so that

T™(M, 0M)= @ e[-1.,,T™(M, 6M), & T™(M, 0M),

where 7™(M, M), has no non-trivial p,(f)-torsion elements. The signature
of 6| T™(M, 6M), is called the local signature of M or (M,y) at a and denoted
by o2(M). Then ¢l(M)=0 except a finite number of g and

Uy(M)r-Zae(-l.l]o'Z(M)

(cf. §1). When &(m)=1, we denote the signature of 5|(t—1)T™(M, 0M), by
d(M). The purpose of this paper is to give a computation of the invariants
o’ (M), (M) and 61(M) in the case when M = 4. To state the result, we
assume that there is a bicollared proper oriented (7 — 1)-submanifold V of M
representing the Poincaré dual of y in H, _,(M, dM; Z). We call V a leaf of y.
We can obtain a leaf for any y by using the transversality on a map
f,: M—S' except at most when n=4, 5, 6 (cf. Moise [Mo], Kirby/
Siebenmann [K/S]). Let n=2m+ 1. Let K, (V) be the kernel of the natural
homomorphism i, : H,(V)—H,(M). The linking form L* (or L,
resp.): K, (V)x K, (V)R can be defined by the identity L*(x, y)=
Link,(c,, ¢,) (or L™ (x, y)=Linky(c, c,), resp.) for x={c,} and y={c,} in
K,(V), where ¢ (or ¢, resp.) denotes a cycle obtained by translating the
cycle ¢, off in the positive (or negative, resp.) normal direction (cf. Appendix
A for “Link,,”). The linking forms L* and L~ were considered by Cooper
[C] when m=1. A linking matrix on K, (V) is a matrix representing the form
L™. We construct an R{¢)-matrix A*™(t) from a linking matrix 4 on K (¥)
by the identity

A =[(1—171) —e(m)(1 - D1 — A —e(m)(1 -1~ 4] .

Since A®™(¢) is r-Hermitian, i.e., A*™(¢t~ 'Y =A4%"(f), 4*™(w) is Hermitian
for all we S'. For xe[—1, 1}, let w, =x+(1—x*)'?ie S'. Forae[—1, 1] we
define 05"™(A4) as follows (see § 5):

a{™(A)=e(m)( lim sign A™(w)— lim sign A(w))

X—a+0 x=a—0

fora# +1 and
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Toum(A)=sign(A+A4)— lim sign A )

X —e(m)—eg(m)0

c?d (A= lim signh A*™(w,) .
x— —&(m)+e(m)O
It will be seen in §5 that ¢5™(4)=0 except a finite number of a and
2aer-1.110 3" (A)=sign(4 + 4’). Note that when &(m)=1, the usual sig-
nature sign V' of V can be considered. Our main result is then stated as
follows:

Main Theorem. Assume that M = (5. Then for all ae [—1, 1), we have
0 /(M)=0a"™(A). Moreover, when g(m)=—1, o{(M)=0.'(A), so that
o'(M)=sign(4+A4"). When e¢(m)=1, ¢}(M)=0'(4) and o'(M)=sign ¥V, so
that

Zae[—l.l)aya(M) +éyl(M)=Sign(A +A,)
and a{(M)=sign V-3, _, ;6 X(A).

Remark 0.3. When e¢(m)=1, 6](M)#0}(M) in general. For example,
we take M=CP?*x S' and y to be a generator of H'(M; Z)~Z and V=
CP?x 1. Then ¢"(M)=sign CP* =1, but K,(V)=0.

Remark 0.4. In case ye H'(M; Z) has no leaf (then m=2), we con-
sider the product Mp=M x CP? and y,€ H\(M;; Z), corresponding to y
by the natural isomorphism H'(My; Z)~ H'(M; Z). By [K/S], vp has a leaf
Vp, for dim M,=9. Let A, be a linking matrix on K,(Vp). Since we can
see that ¢}(M)=0}"(M;) and ¢}(M)=é1"(M,) (cf. §1), it follows from
the Main Theorem that ¢(M)=01(4,) for a%#1 and 6'(M)=sign V, and
G{(M)=01(4p). '

In a special case that H,(M; Z)~H, (S'; Z), the Main Theorem is
deduced from a combination of methods of Erle [E] and Matumoto [Ma].
When 0M # ¥, the Main Theorem does not hold in general and the details
will be discussed somewhere else.

In §1 we remark several properties on the theory of infinite cyclic
coverings of manifolds. In §2 a splitting of the middle homology of a leaf is
given. In §3 a normal form of a linking matrix is given. In §4 we establish
relationship between a homology module and a linking matrix. In §5 we
discuss the signature invariants of a real matrix. In § 6 the Main Theorem is
proved. In Appendix A, we discuss the definitions and some properties of the
intersection and linking numbers of singular chains in a topological
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manifold. In Appendix B, the Duality Theorem, stated in §1 is proved. In
Appendex C, we describe the Blanchfield duality for the Betti modules of
infinite cyclic coverings of topological manifolds.

§ 1. Several properties on the theory of infinite cyclic coverings of manifolds

Since every compact topological manifolds is homotopy equivalent to a
finite complex (cf. (K/S]), we see that H, (M) is finitely generated over R(t).
Let S be the lift to M of a compact submanifold S< M. Since H*(S) is also
finitely generated over R{¢), it follows from the homology exact sequence of
(M, S) that H (M, S) is finitely generated over R(¢>. Let

T,(M, §)=Torg,H,(M, 5),
B,(M, §)=H M, $)/T (M, §),
T*(M, S§)=Homg[T,(M, S), Rl and - B*(M, S)=Hom[B, (M, §), R].
There are natural R{¢)-split exact sequences
0 — T (M, §) — H (M, 8§) — B (M, §) ——0
and
0—— B¥(M, §) —— H*(M, S) —— T*(M, §) —0.
There is one and only one element (called the fundamental class of the cover-
ing M—>M) uin T,_,(M, M) such that

G) (t—1)u=0 and |
(ii) The natural map H,_,(M,0M)—H,_,(M,dM) sends y to the
Poincaré dual of y®1e H'(M; ZY® R= H'(M).

The proof is given in Appendix B (though it is implicity known in [K2]). Let
fi: T""Y(M, dM)— R be a homomorphism corresponding to u by the natural
isomorphism T, _ (M, 0M)=Homg[T"~Y(M, dM), R] (which was called 1 in
[K2]). Property 0.1 is thus obtained. Assume that M is a disjoint union
0,M +3,M, where O;M may be empty. Then M =0a, M + ,M for the lifts
0;M of &;M. The following Duality Theorem is obtained by reexamining a
result of [K1] and proved in Appendix B:

Duality Theorem. (D1) The cap product
~u: H(M, 0, M)——H,_,_ (M, 6,M)

induces an R-isomorphism
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Ap: TA(M, 0, M) = T,,_q_l(ﬂ, 0, M),
(D2) The cup product pairing

v: HY(M, 0, M)x H" ™9~ Y(M, 8,M) — H"" (M, M)

induces a pairing (also denoted by )
TYM, 0, M) x T"" 1" Y(M,0,M) — T""\(M, OM)
so that the composite
~ . » - Y

TN, 0, M) x T"~ (M, 3,/1) —— T"~ (M, 8M) — R
is non-singular,

By applying the natural map j*: TYM, M)— TYM) to (D2) in the
case 0, M = (JJ, we obtain Property 0.2. Thus, when n=2m+ 1, the quadratic
form b of M and its signature invariants ¢”(M), c)(M) and 6}(M) are
defined.

Lemma 1.1, Except a finite number of a, cy(M)=0 and ¢"(M)=
Zae{—l,l]GZ(M)'

Proof. Since T™(M, dM) is finitely generated over R{z), we see that
c(M)=0 except a finite number of a. We use the identity B f(Ox, y)=
b(x, f(tY)y) for all x, y-in T™(M,0M) and all f(r) in R{:>. Then
T™(M, 0M),LT™(M, M), if a#a, and T™M,oM),LT™(M,3M),.
Moreover, T"(M, 6[4),* is a direct sum of the (¢—r)-components
T(M,0M),_,, for all r in R with r#0, +1, and

(M, dM),_, L T™(M, M), _,,, if r#r]! (in particular, if r=r,). So,
sign(b| T™(M, 6M),)=0. The result follows. Cf. [Mi, p. 129], [K2, p. 100].

Lemma 1.2. Let M,=M x CP* and ype H'(Mp; Z) correspond to y.
Then we have o P(Mp)=aX(M) for all a and 6}F(Mp)=36](M).

Proof.
T™* (M, OMp)=[T"*(M, dM)Q H°(CP?)] .
S[T™(M, dM)YQHNCP)®[T™ XM, dM)@H*(CP?)

and the quadratic form b, of M, vanishes on each of the first and third
summands and the second summand is orthogonal to the first and third.
The restriction b, | T™(M, M)® H*(CP?) is clearly isomorphic to the qua-
dratic form & of M. The result follows.
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We define a product x*yeR of xeT,_, _ (M) and yeT(M) by the
identity x*y=uuv) for ue TYM,0OM) and veT" *" 1(M oM) with
unpu=x and vAp=y. Since (w)nu=t"'(wny), the duality
Ap: TYM,0M)=T,_,_,(M)is a t-anti-isomorphism and we have tx * ty =
x*y, When n=2m+ 1, we define a form

Tm(M) X Tm(ﬁ) —R

by b(x, y)=b(u, v) for x, ye T,(M) and u, ve T™(M, dM) with u u=x,
v u=y. Clearly, the form b is t-isometric symmetric bilinear forms and
b(x, y)=x*(t"' =Dy (if e(m)= —1) or x*y (if e(m)=1). Further, we have
signb=0"(M) and  sign(b|T,(M),)= o M) for all a and
S1gn(b|(t— DT, (M),)=61(M), where T (M), is the pJt)-component of

T,(M). We assume that there is a leaf V of ye H'(M; Z). Let M’ be a
compact oriented manifold obtained from M by splitting it along V. Let
¢'M’ be the manifold resulting from JM by splitting it along dV. The
cl(0M’—0d’M") is the topological sum ¥* + V'~ with ¥'* = + V by orientation
preserving homeomorphisms. The infinite cyclic covering space M is con-
structed from the topological sum +,M; of copies M}, icZ, of M’ by
pasting V", to V7, so that ¢ translates each M} to M}, ,. By identifying V
with V', we regard V< M. Let o,V= VnaM Then 0V=0,V+0d,V. Let
I;: (V,8,V)c(M, 3,M) be the inclusion. Let T9M, d;,M) be an R(t)
submodule of H%M, ;M) such that the natural map HYM, o,M)—
T%M, ;M) induces an 1somorphlsm TYM, 6M)~T"(M 8;M). Let T*
be the restriction of I} : HYM, 8;M)—HY(V, 3,V) to TYM, a,M).

Definition 1.3. For a fixed T%M, 6, M), we define a homomorphism
T, - (M, ,M)-H,_ —q-1(V,0,¥) so that the following square is
commutatlve

glﬂ}l ;_Jr\[V]
Ty g oM, 0,01) -2 H, -1V, 87,

where [V] denotes the fundamental class of V.

According to if 6, M = &f or dM, we denote I, by I or I (and I, by Tor I)
and 7, by 7 or n, respectively. By the uniqueness of i, note that p=T LVD.
In fact, 1V — V respresents the same homology class as M {in H,_ (M, M),
so that (1— DI ([V])=0. By definition, V represents the Poincaré dual of
y®@1e HY(M).
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Lemma 1.4. The composite
Lay: T, (M, 0,M)——H, ,_ (M, 03,M)
is the inclusion map.
Proof. For ue TYM, 0, M) with unpu=xeT,_,_ (M, 6,M),
L) =LA W [V)=unL(V)=unp=x,
completing the proof,

Lemma 1.5. For xeT,_, (M) and yeT[(M), we have x*y=
Int, (n(x), n(y)), where Int, denotes the intersection pairing on V (cf.
Appendix A).

Proof. For ue T%M, 0M) and ve T"4"Y(M, M) with un u=x and
vnu=y, we have n(x)=I*(u) ~[V] and n(y)=T*()n[V], so that

Int,(n(x), 7(»)) = e, [(T*w) © F*W)) A [V]]|=eT*w v v) A [V])
=tg(uuv)np=auvv)=x*y,

where ¢, denotes the augmentation map Hy(X)—R. This completes the
proof.

§2. Splitting the middle homology of a leaf
Let n=2m+ 1. By Lemma 1.4, the composite
~ n I, ~
To(M) —— Ho(V) -+ Ho( M)

is the inclusion T,(M)<H,(M). Let T,(V)=I1;'T, (M), T=Imn and K=
Ker I,. Then we have T,(V)=T®K.

Lemma 2.1. TLK with respect to the pairing Int,: H, (V)X
H, (V)—R.

Proof. For x=nunp)=I*wyn[V]leT and y=vn[V]ek,
Inty(x, y) =&, ((TF*(u) U v) N [V =& (T*w) N p)=eq(un I () =0,
since I, (y)=0. This completes the proof.

Since V splits M into the submanifolds M* =MjuM;u - - and
M =M"_,uUM’",u---, the following three boundary homomorphisms
are considered: 0: H, . (M, V)-»H (V) and d%: H,, (M*, V)>H (V).
Since by excision, H, ., (M, V)=H, . (M*, V®H,, ., (M", V), it follows
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that K=Ker/ =Imd=K"*+ K-, where K* =Imat,
Lemma 2.2. Int,|K*=0.
Proof. Let x,yeK™* and x=3*3%.
Inty(x,. ) =Int (8" %, y) = ~Inta.(%, T2 (»)),

where Intg., denotes the intersection bairing H,,,,(M*, ¥)x &, M*)~R
and I} denotes the natural map H(V)-H (M"). Since I} (y)=0, we
have Int,(x, y) =0. Similarly, Inty | K~ =0. This completes the proof,

From.-now on we will assume that 3M = . Then 8V = DL K°=K"nK".

Lewma 2.3. The null space of Int,, | K is K°. Letting K= K°®K,,,, we
have a subspace BeH (VY such that H,(¥) has an orthagonal splitting
T1iK,,L(X°®B) with respect.to Inty.

Proof. Since: T™(Myx T*B)>T*M)E R is non-singular by the
Duality Theorem (D2), we see from Lemma 1.5 that Tty | T'is non-singular.
By Lemma 2.1, we can write: Ho(V}=TL{K@ B, for some By, Let K=
Ky ®(Null), where (Null) is the null space of Inty|X. By Lemma 2.2,
(Null) > X°, Weshave H (V)=TLK,, LINulD@B) for some B. For each
non-zero x € B, I (x) is no R{t)«torsion elétrent of H (M). So we see from
the Blanchfield duality for R(s>-Betti modules (cf. Appendix C) that there is -
an element ye H,, . (M) such that LezIntgl1 (%), 99110 in R(tY. In
particular, we find ye H, (A7) such that Intg(Z,(x), y)#0. Let e* be the
following composite:

Hos s(M) —— Hop (B, V)= Ho (1, VYD Ho o (B, V)
‘ projection . .n(ﬁ*, .
Let yy=0"€¢*(y)e H (V). Then —y, =3¢ (y) and y, € K°. Further.
Inty(yy, x)= —Intg (" (). I} (x))= ~Intq(y, I(x)) 0.

This implies that there is some X9<X® such that Int, induces an iso-
morphism BxHom,(K9, R). Then by Lemma 2.2, Int| X@8 is non-
singular. We have. H (V)=TLK, , L(KI®B)LN, for some Ny =(Null).
Int, is non-singular. So, N,=0 and K°c(Nulh= Ki®N, =K3, ie.,
(Null)= K% = X°. This completes the. proof, |

We regard T as an R(r)-module by the identity ¢ x=n(ty) for all x=
n(y)€T, so that the following diagram is commutative:
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TAM) —T—2>T,(M)

|

T, (M) —— T 2T, (M).

el A
e

T4

]

Then by Lemma 1.5, Int, | T'is r-isometric. Let T, be the p (r)-component of
T and write T=@,T,,DT,,, where T(*, has no non-trivial pa(t) torsion
elements. In other words, Tpy=nT, (M),) and T,,=n(T,(M),), writing
T (M)=@®,T,(M),®T,(M),. Note that IiylT,, if a#a, and T, 17,
W1th respect to IntV To consider a splitting of X,,(¥), we note that K (V)=
1;'(t—1H,(M)). This follows from the Wang exact sequence (cf. [Mi)).
Then by Lemma 2.3, we have ,
KuV)= 1L T L Ty LKy, LIK°@(r—1)- T, ®B™"]
a¢1' . i v
with respect to Int,, where B = T,;,@® B and the natural map B — B, (M)
is injective. By the proof of Lemma 2.3, we can find some K{’< K° so that
Int, induces B > Homgk(K§’, R) and Int, | K@ B is non-singular. Then
we have ‘
K. V)= 1 T,1LT,1lK, LKP®BY)L TV
e )
for some TVcK°@®(t—1)- Ty with I(T")=(—1)T,(M),. Let TV =
TY®KY so that I | TV : TWx~(t—1)T, (M), and KV < K°. Clearly, K°=
K3'®K%). By the isomorphism K, =(K*/K®)@®(K"/K®), we can write
K =K®K, for some K3, < K*. Then we have obtained the following:

Lemma 2.4. K (V) has an orthogonal splitting
L Tyl Ty LIKGH@®KG) L(KP@BY) L TH LK

a#1

with respect to Int,,.
§3. A normal form of a linking matrix
Lemma 3.1. L*|K*=L*|K =0.

Proof. Let x={c,}, y= {cy}el('+ and x={¢.}eH,,  (M*, V) so that
¢ x=x. Regard the translation ¢, of ¢, on V=M as a translation of ¢, on
V<M. Then
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L*(x, y)=Linkylc,, c;)= ) Intg(C,, t'c.)

i>0

= Z Int‘q(t-ié-x, C;): - Z Inty(('x“‘, Cy) ,

i>0 i>0

where ¢, ; is a cycle representing the image of {¢7'¢,} under the following
composite

H, (" M*, t7'V)—H, , (M, Vur V)

=H, (M, VOH, ..M, Vot V)
S H o (1 V)2 H (V).

Since {c, ;} € K*, we see from Lemma 2.2 that L*(x, y)=0. By the identity
L*(x, y)— L™ (x, y)=Inty(x, y) (=0), we also have L (x, y)=0. Similarly,
L* | K~ =0. This completes the proof.

Note that (t—1)- T=n((t— DT, (M)=K, (V) T.

Lemma 3.2. For x=(—1)x=t-x,—x,€(t—=1)-T and yeK, (V)
such that Int,(t-x,, y) =int,(x,, y)=0, we have L*(x, y)=0.

projection

Proof. Let W=M x[—1, 1] and 7€ H'(W; Z) correspond to 7 by the
natural isomorphism H'(W; Z)= H'(M; Z). We construct a leaf U of 7 by
using a leaf V of 7 so that

(U.UAMX(=1), UnMx)=(U, Vx(-1), tVx)=(M", V", V).

Let 7m(M x(+1)) be isomorphic to T™(M) by the obvious maps and
T™(W) be isomorphic to T™(M x 1) by the natural isomorphism H™(W)z
H™M x1). Let T™(@W)=T"(Mx(~1)@®T™(Mx1). Then the natural
map H™(W)—H™(EW) induces a map T™(W)—T™(éW). By Definition
1.4 we have the following square:

Tm+1(W?aW)—nl’ m+l(U, (’;U)

I

T(eW) ™ H (3U).

[t commutes, which can be seen by examining the following diagram:
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T™(W) »H™(U)
N | .
T™(oW) » H™(6U)
L
T, (W, oW) —|——H,,, (U, dU)
(‘.‘\; iL - \F v
T.(CW) - H (0U),

Row

where the vertical maps are the duality maps and the others are natural
except 7y and may. The map n,,: T,(0W)—H, (6U) is identical with the

map
ax(—D+a'x1: T(Mx(—1)@®T,(Mx1)
—— H (Vx(~1)®H,(Vx1),

where n'=1rnt"!, which follows by checking the following diagram (with
vertical duality maps):

T™(M) — H™(V)
\f*' \1“
T™(M) l > H™(1V)
l ] ‘
T (M) > H (V)
T,(M)— " H V).

Let x, ={c} and 7-x, ={c¢,} in T. Since ¢, is homologous to ¢ in M, we have
an (m+1)-chain & in W such that d&=c,x(—1)+(tc)x 1. Since
o: Hy, o (W,3W)—H,(6W) is injective, and {¢, x (— 1)} and {(tc) x 1} are in
T, (6W), we see that {¢'}e T, , (W, 0W). Let ¢ be an (m+ 1)-chain in U
representing the element 7, ({c’}). Then

HE" Y =My =1 x (= e, x (= DY+ x 1{(zc) x 1}
={ex(=D}+{(tc) x 1}
in H,(0U) by Lemma 1.4. Thus we have showed the following:
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Assertion 3.3. Forx, ={c}andt x, ={c,} in T, there is an (m+ 1)-chain
& in My M such that 88=c,—tc.

For y={¢;} in K[¥),

L*(x, yy=Link,lc,— ¢, ¢ )=Intg(F, 1c;)
= ]ntﬂ’(“"“ ‘C,ff,)ﬁ - lnt"(,xh y) =0
and
L™ (x, y)=Intgé, c ,’ =-—Intde, ¢, )= —Inte(t- x,, )=0.
This completes the proof of Lemma 3.2.

We denote by Tq, and T, the orthogonal summands L., 7, L 7}, and
(K@K LK DB LTVLK A of K (V) appearing in Lemma 2.4,
respectively. Since (1 1) Tiy;=T,y,, we obtain from Lemma 3.2 a linking
matrix A on K, (¥) which is the block sum of linking matrices 4, on Ty,
and 4, on Ty, [Note that LA(x, y)=s(m)L*(y, x) for all x,yeK. (V)]
Moreover, 4, is the block sum ),,.,4,B4, with A, and 4, liniking
matrices on T, and T, respectively. Let 4, be a linking matrix on
(t—1)-T,, Since

T = DT, S~ (= 1) Ty,

and T K°@(t—1)-T,,, we see from Lemmas 3.1 and 3.2 that 4, is a
linking matrix on 7*". Further applying Lemmas 3.1 and 3.2 10 the direct
summands of T}y, we have the following:

Lemma 34. A=A,BA, A= 414,04, and A, is given as follows
(C;; are matrices undetermined):

™ K% Ka K9 OBV kP
0 O Cza O C25 0
Koy 10 G, O 0 Cy O
B | €, Gy Csy Css Css Csﬁ
\o 0 o o0 G o/
§4. Relationship between 1 homology module and a linking matrix
The purpose of this section is to prove the following lemma:
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Lemma 4.1. Let A,, A, and A, are matrices appearing in Lemma 3.4.
Then tA,+e(m)A, (a#1), tA, +e(m)A,, tA; +e(m)A; and tA, +e(m)A; are
R{t)-presentation matrices of T (M), Tm(M)*, (t—OHT, (M), and
(t— )T (M), ®(a free R{t>-module), respectively.

Let e,, e,, " -+, e, be a basis for K, (V) such that each e, is in a direct
summand of the splitting of K, (V) of Lemma 2.4.

Lemma 4.2. There are elements ef, e¥, ---, ey in H (V) with
Inty (e}, e))=96;; for all i, j such that

(1) If e, is not in TV or K, then e; and e} are in the same ortho-
gonal summand of the splitting of K,(V), and moreover, if e; is in BV, then
e*isin K§"

(2) Ife isin TY, then e} is in T,

Proof. First we construct e of the case (1). The construction is easy,
since Int, is non-singular on each orthogonal summand other than 7" and
K {9 and induces B’ = Homg(KY', R) and is zero on K§’. Next we construct
e;* of the case (2). To do it, we need some preliminaries. Let K§'® B =
(KP®BY)L(KY®BY) where B¥=BY~ B with B in Lemma 2.3 and
Int, | K @B is non-singular and K{'=K$ @K .

Assertion 4.3. The composite
projection

BYcKYP@®BV < KPDT,,®B » B H,(V) —~H,(M)

is injective.

Proof. If x=x¥+xT+x%eB® (x*eKy, x"eT,, xPeB) is non-
zero and sent to 0 by the above composite, then xBe B and x®#0. So there
is an element ye K¢’ with Int,(x® y)#0. Then Int,(x, y)=Int, (x5, y)#0,
which is a contradiction. This completes the proof.

Let x,=xf+x[+x? (xFeky), x[eT,, xPeB), i=1,2, ---,r, bea
basis for B,

Assertion 4.4. The elements x|, xI, - -+, xT are linearly independent in
Ty /(t—=1)- Ty, |

Proof. If ¥ ex[e(t—1) T, then ¥ _,c;x[ is sent to 0 by the map
iy Clearly,

i*(ZE=1"ixi)=i*(Z;=1Cixf()=0 .
So i (¥i-,c:xB)=0. By Assertion 4.3, we have ¥./_,¢x;=0 and ¢;=0 for
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all i. This completes the proof.

Assertion 4.5. There are elements yI, yI, - yT in Ker(t—1)=
Ker(t—1: Ty,—T,) such that Int,(y], x}r)=5,-jf0r all i, j.

Proof. Int, induces a non-singular pairing
By Assertion 4.4 we find the desired elements, completing the proof.

To construct e ¥ of the case (2), lete;, e,, - - -, e, be a basis for 7). Note
that there are elements ej, e}, - - -, e} in T, such that Int,(e}, })=4;; and

. 1
er, ey ', e; form a basis for T,,/Ker(t—1), because T‘”—%’—»(z—l)- Ty
and T"<K°@(t—1)- T,;, and Int, induces a non-singular pairing

[To/Ker(t—1)] x (1 =1)- T;, —R.

Let ¢;;=Int (e}, x[) and e}=e! - i=1¢;¥] € Ty). Then
Inty(e*, e)=Int, (e}, €)=0;,

since

Int,(Ker(z—1), K°@(t—1)- T,,,)=0.
Moreover,

Inty(e;*, x)=Inty(e;*, x;7)
=Int, (e}, xf)~2;=,c,-klntv(y{, _xf)zcij‘cij=0 .

Hence e is orthogonal to B®. Further using that e ¥ € T,,,, we see that e* is
orthogonal to the summands other than 7. Thus, the elements e* of the
cases (1) and (2) are constructed. Hereafter, it is easy to construct e * for the
basis of K%’. This completes the proof of Lemma 4.2.

Let e, ---,€,€,,,, ,éy be a basis for H (M, V) so that, for the
boundary map ¢: H,, . (M, V)>H,(V), 0é, =e,, - - -, 0é,=e, form a basis
for K,(V) and 0¢,,,=0, - - -, 9éy=0. Let ¢ be the image of ¢, under the

excision isomorphism H,, (M, V)xH, . (M, V* U V™). Lete}, - --, e}, be.

a basis of H,(M") such that Inty.(e;, €)=9,  Let I'* be the natural injections
VeVicM'.

Lemma 4.6. For i<q, e;=e(m+1)[I](e¥)—1;(e}).

Proof. Let I;(e)={c}*} for cycles c** in Int M’. For i, j<q
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Inty (I (e¥)—1.(e}), €)= Inty (&, I (e})—1(e*)
=Inty (), ¢} " —c*7)=Link,(c;, c}* —c*)
=g(m+ )Linkp(c** —c} ™, ¢)

=&(m+1) Inty(e ¥, e)=e(m+1)s,;,

where e;={c;} and é;={¢;} for cycles ¢;in V and é; in M with d¢;=c;. For
i<qgand j>qg+1,

Inty (13(e) =1, (e}), &)=Inty(i,(eX)—i(e}), &)=0,

because ¢; is represented by a cycle in M. Since Inty.(e}, €)=24,; for all i, j,
we have ei=e(m+ 1)[1;(e})—1,(e})] for i<q. This completes the proof.

From the Mayer/Vietoris sequence, we can obtain the following R{1)-
exact sequence (cf. Levine [L]):

1.~

—— H(®R) H(M)@R(z)
Ll - H, (V@R —,

where J is an R{¢)>-map obtained by composing the identification map
H,(M)QR{t)=H,(+;M}) to the map induced by the quotient map
+M -~ M. Let K, (M’) be the subspace of H,(M’) generated byei, -, e,
Let K,(M)=J(K,(M")® R{t)). |

Lemma 4.7. The above sequence induces an exact sequence

- +

K N®RU) — "5 K (MY@RUY s K (H) —r0

and we have 1](e,, e, e)=(ey, ey eem+1)A" and 17 (e, )=
(e1, e )A and

(T —tI Yey, -, eg=(eg, ", e NA+e(mpua)
for the linking matrix A on the basis ey, ", e, of K (V).
Proof. Let Ij(e)=ajfe,+ - +ake, ajeR. Forj>q+1,
az=Inty (I%(e), é)=Inty (i (e), €)=0,

since ¢€; is represented by a cycle in M and i, (e)=0.So, I} (K, (V)< K (M)
and the above sequence is semi-exact. To show the exactness, let xe
K, (M )®R{t) with J(x)=0. Then there is an element yeH (VY®R{t)
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such that (I, —tI[)(y)=x. Consider the following commutative square:

H (V)@RC) —+ T+ H (M)®R(
g T
H,(M)®R{t) H (M)®R(t>,

where i, and j, are the maps induced by inclusions. By Lemma 4.6, we have
I =t )Y (»)=Jj,(x)=0. So, (1 — i, (y)=0 and i (y)=0, implying that
x € K,(M")® R{t). Thus, the above squence is exact. Next, let 7 £(¢))={c ¥},
e;={c;} and &={¢;} for ¢* in Int M’ and ¢, in ¥ and ¢, in M with 0¢,=c,
(i<q). Then for i, j<gq,

Linkydlc?, ¢;))=e(m+1)Linky(c;, ¢ F)=e(m+ 1) Inty (¢, ¢ F)
=e&(m+ )Inty (€, I3 (e))=e(m+ Dinty (I (e), &)=e(m+a?.
For A=(a;;) with a;;=Link(c, c;), we have
I1i (e, - e)=(e'y, - -, e’ )e(m+1)A" .
Further,
Linky(c;”, c)=e(m~+1)Linky(c;", ¢)=8(m+ Day;,
which implies that I (e, - -, e;)=(e], - - -, e,)A. This completes the proof.

If {e,, - -+, e} is a basis for T, (a#1), T,,, or TY, then we see from
Lemma 4.2 that {(1-01(e}), ' -, (1=l (e¥)} is a basis (over R) for
T(M), (a#1), T, (M), or (t—1)T,(M),, respectively.

Lemma 48. If {e,, - -+, e} is a basis for T, (a#1), T,,, or T, on
which the linking matrix is A,, A, or A,, then we have I (e, -, e)=
(1= (e}), - -, (1=l (e)e(m+1)A with A being A,, A, or A,, re-
spectively. In particular, A,, ac[—1, 1], and A, are non-singular.

Proof. Let {e, - - -, e} be the basis of T,,, a#1. By Lemmas 3.4 and
4.7, I,.(ey, - -, e)=(eq, -, e)A, Noting that JI, =1, and J(I](e})—
I, (ef)=(1-0I(e}), we see from Lemma 4.6 that I (e, -, e)=
(=01 (e}), - -, (1 =) (e¥))e(m+1)A4,. I, induces an isomorphism T,=
T,(M),. So, det 4,#0. The same proof is applicable to A4,. Let {e,, - - -, e,}
be the basis of 7). By Lemma 3.4

_ A,
I(ey  ye)=(e)y, - o e’y elnrs - m, e;)(C )
51

’

for some matrix C,;, where {e],,, --,e)} corresponds to a basis




68 A. Kawauchi

{e;+1, * * *, ,} of BV, By Lemmas 4.2(1) and 4.6, we have

I*(el’ T es)=JI;(ela T es)
=((1=0I(e}), -+, (1-0I (eN)e(m+1)A, .

Since I, induces an isomorphism T® x(1—1)T,(M),, we have det 4, #0.
This completes the proof.

Proofof Lemma 4.1. Let K (M"),(a#1), K,(M"),, K. (M), K (M’),
and K, (M")y be the subspaces of K,,(M’) which correspond to T,,,, T(*,, Tiay
7" and B by the correspondence K,(V)—K,(M’) sending e, to ¢/ By
Lemmas 3.4 and 4.7,

It - ]* ’ J "™
T, ® R Lt K(M), @R —— T (), ——0

is exact for a# 1, which shows that 4,+e(m)tAd., is an R{¢)-presentation
matrix of T,(M),, a# 1. Similarly, the sequence

J ~
T(*)®R<t> Km(M’)*®R<t> —_— Tm(M)* —0

is exact and A4, +&(m)rA4, is an R{s)>-presentation matrix of T, m(if)*. The
same reason also implies that the sequence

- +

I; -} ) J -
T ® R(E L KM, @Rty — K, (M), ——0

is exact, where K, (M), =J(K,(M’),@ R(1). Noting that Torg,, K, (M), =
(t—- DT, (M )1, we see that A4, +&(m)tA, is an R{t)-presentation matrix of a
direct sum of (t— 1) T,(M), and a free R<s>-module. By Lemmas 3.4 and 4.7
we have I15(T")c K, (M), ®K,(M')L. Let (I —tI}), be the composite

St}
TOQRt) K M) DK, (M) 1@ Rt
projection
* m(M’)l®R<t> .

By Lemmas 4.2(1) and 4.6, J(K, (M) ;@ R{t)>)=0. So we have a semi-exact
sequence

TO@R(S =T b (MY, @RS —La (1= DT (1), — 0.

By Lemmas 3.4 and 4.7 we have
(I =t ey, - - e)=(ef, « -, e XAy +e(m)dy) .

By Lemma 4.8, det A4, #0 and hence (I, —t[]), is injective. This implies
that dimg Coker(/, — I ), =the size of 4, =s. Since dimg(l —f)T,,,(M W=
dimg T"=s5 and J sends Coker(I, —tI}), onto (t—1)T,(M),, we see
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that J sends Coker(/, —tI}), isomorphically onto (f— DT, (M),. So the
above semi-exact sequence is actually exact. Thus, 4, +&(m)tA | is an R{t)-
presentation matrix of (£— DT, (M );- This completes the proof of Lemma
4.1.

§5. The signature invariants of a real matrix

Let A(x)=(a;(x)) be a Hermitian matrix such that g;(x) are con-
tinuously variable on x in a space X. Let r=max, ,rank. 4A(x)>1, C being
the complex number field.

Lemma 5.1. For any x,eX with rankc A(x,)=r, there is a neigh-
borhood N(x,) of x, in X such that sign A(x)=sign A(x,) for all x e N(x,).

The following is direct from Lemma 5.1:

Corollary 5.2. Assume that X is connected and rank¢ A(x) is constant
on X. Then sign A(x) is constant on X.

Proof of Lemma 5.1. We use a standard argument on a relationship
between the signature and the principal minors (cf. Iyanaga/Kodaira [I/K]).
We can take principal submatrices A,(x)cA,(x)c: - cA,(x)cA(x)
(cmeans a principal submatrix) so that

(1) Ayx) is of size i,

(2) Letting F(x)=det A(x), we have F,(x,)#0,

(3) If F{x,)=0 for some i, then F,_,(xy)F;. (%) <0,
where we let Fy(x)=1 for all x.

Then we have sign A(xy)=>"1-, sign(ﬂ_l(xo)l‘",-(xo)), where signc=c/|c| (if
ce R—{0}) or 0 (if c=0). Let N(x,) be a neighborhood of x, in X so that
sign F(x) =sign F{(x,) for all xe N(x,) and i with F{x,)#0. If F(x,)=0 for
some x, € N(x,) and some i, then F(x,)=0, so that F;_,(x)F;.,(x;)<0.
Thus, we have sign A(x)=Y"_, sign(F;_;(x)F(x)) for all xeN(xy). If
F(x,)=0, then F,_(x)F;,;(x)<0 and hence sign(F;_,(x)Fy(x))+
sign(F(x)F,, (x))=0 for all xeMN(x,). This implies that sign A(x)=
sign A(x,) for all x e N(x,), completing the proof.

Let A(¢) be a t-Hermitian R{¢)-matrix. Then A(w) is Hermitian for all
we S! and by Lemma 5.1 sign 4A(w) is locally constant except a finite number
of w, for rank; 4(w)=rankg,A(f) except a finite number of w. Recall the
notation w_=x+(1 —x*)'?ie S! for xe[—1, 1].

Definition 5.3. For ae[—1,1), t,,4(A4())=lim__,,,,sign A(w,) and
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forae(—1,1], 7,_o(4())=lim_,,_, sign A(w,).

Note that 7,.,(A4(#)) are locally constant on a except a finite number of
a. For a real square matrix 4 and ¢= + |, we define a ~-Hermitian R{z)-
matrix A%¢) by
AW =[1—t"HY—e(1-D)[(1-DA—e(1 -1t~ 1HA].
Definition 5.4. For ae(—1, 1), a¥A4)=¢[t, . o(4%(D)—1,_o(4%(?))] and
0 {(A) =sign(A4 + A") —1,_,o(A4%(1)) and 0° (A) =7_,, o(4?)).

Using that 7, 4(A4%(?)) are locally constant on a except a finite number
of a, one can easily check that a5(4)=0 except a finite number of a and

Zae[—l.l]oas(A)ZSign(A +A’)

Lemma 5.5. Let A be areal square matrix,e= +1 anda,e[—1, 1]. We
assume that A+¢tA’ is an R{t)-presentation matrix of an R{t>-module whose
pJt)-components are trivial except when a=a,. Then 1, . ,(A%(t))=
sign(4+ A4’) (if ex>ea,) or 0 (if ex<ea,).

Proof. Let ¢=1. Then A'(Q)=@—t"Y1—-t)(4+1t"'4) and
rank (4 +w, ' 4’) is constant on xe[—1, 1] with x#a,, since Pa(w 1) #0.
Note that A'(w,)=2(1-x)[(1+x)+(1—x)'"?j(A+w;'4’). Let x<a,.
Then a, # — 1. By Corollary 5.2,

Tero(A (D) =lim _ _ ,osign[(1 +x) 7124 (w,)] =sign[i(4 — 4],

which is 0 [To see this, note that sign C, =sign C, for a Hermitian matrix
C, and its conjugate C,. Since A4 is real, sign[i(4 — 4")}=sign[— (4 — 4")} and
sign[i(A — A")]=0]. Let x>a,. Then a, #1. By Corollary 5.2,

T eo(AN (D)) =lim _; _,sign A(w )=lim ., _,sign[(1 —x?)"'4Y(w,)]
=lim,_,, _osign[{1 +(1 —x)"?(1 + x)/*2i}(A+w [ ' 4")]=sign(4 + 4") .
Next, let e= — 1. Then
AT (O=(0-D*A =1 A4—-17'4)

and ranko(4—w;'4’) is constant on xe[—1,1] with x#a,, since
Pa (@ ')#0. Let x<a,. Then aq, # —1. By Corollary 5.2,

T, 10(A () =sign 47 (— 1) =sign(4 + 4').
Let x>a,. Then a; #1. By Corollary 5.2,

————— e,
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T so(d () =lim,.., -osign 4 “'{ay)
=lim,.; -gsignlll —o?) " (l-e)d—o, AN
=sign(— (4 - 4)}=0.
This completes the proof.
The above method of proof is similar to Matumoto’s one [Ma],
obtaining similar-results when. i is tion-sinigular and s=+1.
§6. Proof of the Main Theorem

Lemma 6.1. For A, ae[—1.1), appearing in Lemma 3.4, we have
o (M) =sign(A,+A,) -except when elm)=1 and a=1. When s(m)=1,
o' (M) =sign¥ and G](M)=sign(4, + 41)

Proof. Let gm)=1. Then note that A 44, (a#1) and A, + 4] are
intersection. mattices on T(,, and {1 —1)- Ty, respectively, since

Intye, e L0 )~ L7003l e )4 sl * (3. %)
for x, ye K, (V). So, by Lemma. 1.5
slgn(d, + 49 =sign{inty | T,) =a2(M)

for a#1 and
sign(A, + A7) =sign(lnty | (¢~ 1)- Ty )= {(M)..
By Lemmas 1.5, 2.2 and 2.3, we also have o'(M)=sign(Inty | T)=sign V.
Next let g(m)=— 1, By Lemma 4.8, '
I ey, ~, &)=((}— OBled), -0 — il e,

for a basis e;, * -+, ex0f T, (as%1)or T""and its dual basis ef, - - -,e? for

Tw a# ) or 7},,/Ker(t~ 1), reSpechVely By using'a nonssingular pairing

[T,,,(M yKer(t — 1)) x(1 --t)T,,(-,,f,;‘aj-»R ‘indiced by +, we can take a basis
., &.* for T, (M), (a#1) or T_(M),/Ker(t—l) so that

Ers(1-leN)=4;.

Assertion 6.2. m(&y, - -, 8N =(e}, ' -, ePA,, where when a=1, we
regard © as the tsomorpinsm T (M), Ker(t— 1y T, /Ker(z— 1),

Proof. Let n(éP)=ake?+--- +aler Then
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a}=Int,(n(Z}), ) =Inty (n(&}), nl,(e))=E¥* I (c;) .
Let A,=(a;;). Then
L(ep=a;(1-0l(eP)+ - +a,(1-DI(e}),

so that af= et «l(e)=ay and n(é}, ---,é¥)=(e}, -, e*A - as de-
sired.
Let b, be the restriction of the form & to T,,(M),. Note that the form b,

induces a form (also denoted by b,)
[7,(M),/Ker(t— )] x [T, (M),/Ker(t— )] >R .
By Assertion 6.2, we have
((A=net, - (1=0eN=(A -0l (e}), -, 1 =D (N4, .
That is, (1 - 0é¥ =a, (1 — DI (e})+ - - +a,(l —01.(e¥). Then
beF, ef)=é¥x(t™ ' —n)ér=é¥*(1— Nér+ér*x(1—nét=a;+a;.

Thus, the form b, is represented by the matrix A,+A4;, and o}(M)=
sign b, =sign(4,+ A4;) for all a. This completes the proof of Lemma 6.1.

When ¢(m)= —1, the proof of Lemma 6.1 suggests a simpler proof of
Erle’s result [E]. The identity o”(M)=sign V in the case e(m)=1 was also
observed by Neumann [N] in connection with the first higher Novikov sig-
nature.

6.3. Proof of the Main Theorem. We use the splitting of 4 appearing
in Lemma 3.4. Note that 4*™)(r) = AZ™(H)@ A2™(¢)

AT =@ s AT(ODAX™(D) .

We show that 1, ,4(4 ;™) =1,,o(41™(#) for all x. 42™(F) is glven as
follows:

T Ksh Ko K B® Ky
T A1) 0 0 0. Dy 0
Ko |0 0 Dys(r) 0 D,s(y 0
Kaw [0 Dy (1) 0 0 Dys(t) 0
kP |o 0 0 0 Dy O
B | Dsi(t)  Dsy(t) Dss(f) Dsg(t) CHD) Dig(t)

K \o 0 0 0 Dy 0O




Signature Invariants of Infinite Cyclic Coverings 73

where for i<j Dy(t)=[(1—1"")—em)(1 -1 -1)Cy;—e(m)(1—1"")C}]
and D;(1)=D,;(t™')". By the identity Int,(x, y)=L*(x, y) +&(m)L*(y, x) for
x, ye K,(V), the matrices

( 0 C23+8(m)C'32) and ( 0 C45+3(m)C'54)
Cs, +em)Cl; 0 Csa+emCys Css+em)Cis;

are intersection matrices on K(,,®K,, and K ’®BY, respectively and
hence non-singular. So, det D,,(¢)#0 and det D,5(¢) #0. Since det 4, #0 by
Lemma 4.8, we have det 4 {™(#) #0. These imply that except a finite number
of weS’, det A5™ (w)#0 and det D,; (») #0 and det D, (w) #0. For any
such w, we can see that 4;™(w) is equivalent to a block sum of 4 ™(w),

( 0 D23(a))) ( 0 D45(w))
D;,(w) 0 " \Dg,(w) 0

and a zero matrix. This implies that 7., ,(A8™(8) =1, ,o(45™(2)) for all
x. By Lemmas 4.1 and 5.5 note that sign(4, +4,)=1,,4(4 f,f"‘)(t))=0 for
all x. Then we have 7, ,o(4*™() =3 1¢(-1,11Tx £o{4 X™(2)) for all x, so that
by Lemmas 4.1 and 5.5

Tet e(m)o(Ae('")(t» = Z sign(4,+4,)

e{m)a < e(m)x

and

TeemoA“PW) = Y sign(4,+4)).

g(m)a <e(m)x

Next, we show that sign(4,+ 4;)=sign(4, + A4;). When e(m)=1, this is
clear, because by the identity Int,(x,y)=L*(x,y)+e(m)L*(y, x) and
Lemma 2.4, 4, + A is a block sum of 4,+ 4,

( 0 C23+C'32) ( 0 C45+C'54)
C3,+Ch; 0 7 \Cs4+Cls Css+Clgs

and a zero matrix. When e(m)= —1, Lemmas 4.1 and 5.5 imply that
Teroldy (D) =sign(4. + 4;) -

and T,4o(4 [ () =sign(4, + A4;) for all x. Since
Tero(ds D) =T, 40(4, (),

we have sign(4, + 4;)=sign(A4, + 4;). Hence

sign(A+A)=3 (-1, 5ig0(A4,+ 4), for sign(4,+A4,)=0.
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The identity o 2™(A4)=sign(4,+ A.) for all a is now easily established. By

combining it with Lemma 6.1, we complete the proof of the Main Theorem.

Appendix A: The intersection and linking numbers of singular chains in a
topological manifold

A topological manifold is understood to be a paracompact Hausdorff
manifold. We consider singular p- and g-chains ¢, and ¢, in an oriented

topological n-manifold X such that
ptg=n and [dc;|n e |=|0c|n ey =&,

where |c| denotes the underlying space of a chain ¢, which is a compact
subset of X. Then it is easy to find a neighborhood system (N}, N}; N2, N2)
of (J¢; |, | 8ey I; | €2 |, | Oc,]) such that Nl < Niand Ni are openin X and N/ are
closed in X and N A N2=N2n N!=. Since N! x N2 and N} x N? are
open in N} x N2, we have the Kiinneth isomorphism

H, (N, NY®H, (N, N)= H (N}, N)x (N, N?),
taking real coefficients. So the cross product
{1} x {e} e H((N], N1)x (N2, N))
of {c,} e H,(N;, N}) and {c,} € H(NZ, N?) is well defined. Let
UeH'(X x X, X x X—6(X))
be the orientation class of X given by the orientation of X. Let
it (N1, N (N2, NY)c(Xx X, X x X—8(X))
be the inclusion.

Definition A.l. The intersection number Inty(c,, c,) of ¢, and c, is
defined by the identity

Inty(c,, c))=e(plex « x[U N i, ({c;} x {c3})]
(cf. Dold [D, p. 197)).

By the naturality of the cross product, one can easily check that
Inty(c,, ¢;) is independent of any choice of a neighborhood system
(N, N}; N}, N2). Clearly, we have Inty.(c,, c,)=Int,(c,, c,) for any n-
submanifold X’ containing |c¢,| and |¢;|. Let Nic N, and N3N, be
subspaces of X such that N{nN,=N;nN,=¢. Then Int, induces a
pairing
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H,N,, N{)x H(N,, N}) — R,
called the intersection pairing. Similary, Int,(c,, ¢,) is defined.
Proposition A.2. Inty(c,, ¢;)=¢(pq) Inty(c,, c,).

Proof. Let T be the self-map of (X x X, X xX—d(X))interchanging the
factors. By Spanier [S, pp. 235 and 305], we have

Tyi({e} x {e))=e(pg)i’ ({cr} x {c}})

where i (N2, N x(NL,ND)c(XxX, XxX—06(X)), and T*U=¢n)U.
The desired identity follows.

The family {H (X, (X— K) U 8X)| K is compact in X} forms an inverse
system (directed by inclusion on K), whose limit is denoted by Hi(X, 6X). By
(S, p. 301], the orientation of X determines a unique element of H¢(X, éX),
which we call the fundamental class of X and denote by [X]. We consider that
¢X 1s a disjoint union J; X + 0, X, where é,X may be empty. The cohomology
with compact support H?(X,d,X) is the limit of the direct system
{H(X,(X—K)u d,X)|K is compact in X}. The cap product
N[X]): HXX, 6, X)—>H(X, 8,X) is well defined by taking the limit of the
usual cap product

A[X]e: HYX, (X—K) U8, X) — H(X, 3,X),

where [X] 1s the image of [X] under the projection H (X, éX)—
H(X,(X-K)ucX).
The Poincaré Duality Theorem: n[X]: HX(X, 0, X)= H (X, 0,X).

The proof of the case ¢, X=37,X=J is given by, for example, Milnor/
Stasheff [M/S]. The cases ¢, X=¢ and ¢,X=0X are then obtained by
considering the following commutative and sign-commutative diagrams with
€xact rows:

0-—— H2(X, 0X) —— HADX) — HX(X) ——0
l A[X] = l ~DX] l LX)
0—— HfX) ——H{DX)—— H(X,éX)—0

and
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o HPTHX) —— HY(X, 6X) — HI(X) — H2@X) —>

l n[AX] j N[X] J N[X] ~ l ~éX]
—— H@X) —— H(X)——H(X,0X)——H, ;(0X) —,

e

where DX denotes the double of X (cf. Komatu/Nakaoka/Sugawara [K/N/S,
p. 656] for these techniques). The above general case is then obtained from
the following sign-commutative diagram with exact rows:

—— HI"6, X) — HAX, 6,X) — HXX) —— HI0,X)—
= l n[¢ X] l n[X] = l n[X) > ln[a,X]
—— H (0, X) —— HYX, 0,X)——H/(X,0X)— H,_(0;X) —.
There is another dgscription of Poincaré duality by means of the slant prod-
uct (cf. [S]). Let X*=X—0,X. Let N,(0,X) be an open collar neighborhood of

;X in Xif 9,X# ¢, or & if 8, X=. Let X!=X—N,0,X). For a compact
subset K< X2 —0,X we define a map

Ul: H{K U N,(8,X), N0,X))~H?(X?, X2~ K)
by the identity
(UNX)=[U[(X2, X2 = K) x (KU N,(0,X), N(8,X))]/x .

Note that X2 — K is a cobounded neighborhood of 8, X in X?2. Passing to
the direct limit on K, we have a map (also denoted by U/)

Hq(Xl, Ny(8,X)) ‘—’Hcp(Xcza 0, X) .
By using the natural isomorphisms
H(X', No(6,X))=H(X, 0,X) and HP(X, 0, X)=H!X? 8,X),
we identify this map with a map H (X, 6,X)—-H!(X, 0, X).
Proposition A.3. The inverse of the Poincaré duality map ~[X] is
e(pm)U/.

Proof. We prove it for the case d,X=0,X= . The general case then
follows from an argument similar to the above proof of the Poincaré Duality
Theorem. Let y € H (X). Take a compact subset K< X and yg € H (K) so that
i X(yx) =y, where i*: K< X. Let p, be the projection X x X— X to the i factor
and pf=p |XxK and pf=p,|KxX and pf=p,|Kx X with image K.
Let Ugy=U|(X,X—K)x K and Ux=U|Kx (X, X—K). Let T'=T|Xx K
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with image K x X and T” = T[(X, X— K) x K with image K x (X, X— K) and
it Kx (X, X—K)< (X x X, X x X—6&(X)). Then by [S, 6.1.6],
(A XDUND) =Ug/ye) O [XIg=p U 0 (X1 X ¥
=p 8T [Ux n ((XTe x )l =e(pmp 5[ Uk N (yx x [X1)]
=a(pm)py[U N iy (yx X [XT] s

since T""*U y=¢&(n)U, (for T*U=e(n)U) and T ([X]x x yx) =e(ng) yx x [X]x
and e(ng +n)=¢e(pn). By [S, 6.3.11], it equals

e(pr)py U iy (v X [ XNl =e(pn)i s p Uk 0 (k% [X])]
=&(pmi JU(U"/[1X10) ~ yel =e(pn)y ,
since Uy/[X)x=1 by [S, p. 301]. This completes the proof.

Proposition A.4.  For {c,} e H(X, 8,X) and {c,} € H/(X, 0,X), we have
Int,(c,, ¢,) =&x[(u; U uy) N [X]] for u, e H(X, 0,X) and u, e HX(X, 0, X) with
u O [X]={c}).

Proof.

Inty(c,, ) =e(P)exxIU N iy({er} x {c;})]

=e(P)ex(UN{e) n{e}l  (by [S, 6.1.6)
=e(pq)ex(u; N {e,})=e(pg)exl(, L uy) N [XT]
=gy[(u, v u) N [X]],

since (U/X{c,})=e(pn)u, by Proposition A.3 and £(p+pn)=e&(pq). This
completes the proof.

Next, we consider boundary p- and s-cycles z, and z, in X such that
p+s+l=n and |z;|n|z|=.

Definition A.5. The linking number Link(z,, z,) of z, and z, is defined
by the identity Linky(z,, z,) =Int,(¢,, z;) for any (p + 1)-chain ¢, with d¢, =
2.

We see easily that Inty(c,, z,) is independent of a choice of ¢, and
Linky.(z,, z,) =Linky(z,, z,) for any n-submanifold X" in which z, and z, are
boundary cycles. For disjoint subspaces X;, X, c X, let K(X,) and K(X;) be
the kernels of the natural maps H,(X,)— H,(X) and H(X,)—H/(X), re-
spectively. Then Link, induces a pairing
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Kp(Xl) X KS(XZ) -——_’R ’
called the /inking pairing. Similarly, Link,(z,, z,) is defined.
Proposition A.6. Linky(z,, z;)=¢&(ps+ 1)Linky(z,, z,).

Proof. Let ¢, and ¢, be (p+1)- and (s+ 1)-chains in X whose
boundaries are z; and z,, respectively. Let (N, &; N2, N2) and (N}, N\
N2, &) be neighborhood systems of (|z,], &; |¢;1, |z;]) and (J¢,], |z, ;
|z, |, &) used to defined the intersection numbers. Let 1: C{(X)QC,(X)—
Cy(X x X) be the Eilenberg/Zilber chain equivalence (cf. [S, p. 232]). Using
that d(c; ®@c,)=(0c;)®c, +&(p+1)c, ®dc, (cf. [S, p. 228]), we have

{1(z2,®c,)} +e(p+ 1){1(c; ®z,)} =0

in Hy(X x X, X x X—4(X)), noting that 1(z, ®c,) and t(c, ®z,) are cycles in
(Xx X, X x X—8(X)). Since 7 induces chain equivalences

CANI®CLNE, NJ) —— C{(N} x (N2, N?))
and
CANI, NDRCUNZ) ——C(N, N )X N?),
it follows that
Wz} x{e)={1(;®¢,)} and  i({c)} x {z,})={1(c,; ®2,)}
in H(Xx X, Xx X—6(X)), where
PP NIX(NLNHc(Xx X, XxX—8(X))

and
(N NDXN2c(X X X, X x X=6(X)).
Thus,
({2} x{e: ) =e(p)i({cy} x {z,})
and

Inty(z,, ) =e(Pex U M i1z} x {es])]
=exxlUniy({e)} x {zD]=e(p+ D Inty(c,, 25) .
By Proposition A.2, this implies that
Linky(z,, z,)=e(ps+ 1)Link,(z,, z,) .
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This completes the proof.

Appendix B: Proof of the Duality Theorem

Lemma B.1. Assume that ye H'(M; Z) has a leaf V. Then there is an
element 1 in T,_ (M, 0M) with (t—1)i’ =0 such that for any TYM, o, M),

M N’ : T‘Q(M, 61A‘Z)"———’Tn—q—l(ﬂy aZAZ)
is an R-isomorphism,

Proof. We consider that # is the union of M’s, as it is stated in §1.
Let M} = =M UM, U and M7 =M"__UM’”__,uU--- be the sub-
manifolds of A. By consndermg the Mayer/Vietoris sequence of (M;
M,* Ud,M, M U3, M) and then taking the limits r, s— + oo, we obtain the
following exact sequence

——HYM, o M)—-—»hm{m(M M} UBIM)}(-ma{H"(M Juo, M)}
{.]r }+{js } H(M,alM)m*Hg-‘-l(M, alM)‘—'——"*,

where j,” and j denote the natural inclusions, We use the Poincaré duality
AM]: B2 (M, 0,M)=H,_,_ (M, 8,M),

stated in Appendix A. By considering the case that olM & and g=0,
we let ' =6(1) n[M)eH (M, 0M). Since 11=1 and {M]=[M], we see
that (¢ —1)u’=0. For any q, the composite

HY(H, 8, K1) —2s HO*\(H1, & v § Pl ALl P

H,_,_ (M, 6, M)
is given by n . In fact, for ue H(M, 3, M),
W) N [M]=6(uu 1) [M]=uud)) n[M]
=un(@)n[M)=uny .

Let D? be the image of {j,;**} +{j "} in HY(M, 3, M). By [K1, Lemma 1.5],
Dic BY(M, 0, M), so that the natural map T9(M, 9 AZ)AH“(M d M)/D"
is injective. Since & induces an injection H%(M, 51 M)/D%— H3* (M, 6, M),
we see that

" HY(M, 6, M)/D*"~H, —g- (M, 8,M)
1s injective. Thus,

Ny TYAM, 0, M) —w—>H,,_q_1(A~4, 0, M)
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is injective. The identity (tu) N u’=t"Y(u n p’) implies
TYM, M)~y < Tn_q_l(ﬂ, 8,M) .

So we obtain a monomorphism

A TYM, 8, M) ——T,_,_ (M, 8,M).
Similarly, we have a monomorphism

Ap' T\ (M, 0,M) ——»Tq(ﬂ, M),
which shows that

dimg T,_ (M, 0,M)<dimg T (M, 8, M) .
This implies that

A TS, 0, ——T,_,_,(, 3, 1)
is an isomorphism. This completes the proof.

Lemma B.2. Therc is one and only one element i in T,_ (M, 0M) with
the properties (1) and (ii).

Proof. 1fy has a leaf ¥, then we noted in § 1 that I_([¥]) has (i) and (ii).
Let u=I([V]). To see the uniqueness of u, note that T,(M), is R{t)-
isomorphic to a direct sum of some copies of R{t>/(t—1) (cf:[K2, Lemma
1.1]). By Lemma B.1, T,_,(M, 8M), is also so. By the Wang exact sequence
(cf. [Mi)), the natural map T,_,(M, 6M), - H,_ (M, M) is injective, show-
ing the uniqueness of x. If y has no leaf, then we consider M,= M x CP? and
yp€ H'(Mp; Z) corresponding to y, which has a leaf V, by [K/S]. By the
isomorphism T, ,4,_(Mp, OMp)=T,_,(M, dM)® H,(CP?), we have one
and only one ye T,_,(M, M) such that I ([V,])= u x {CP?]. This completes
the proof.

Lemma B.3. When M is connected and y#0, we have (D1).

Proof. First, assume that y has a leaf V. By Lemma B.1 and [K2,
Lemma 1.1], T,_,(M, 0M), = To(M), = R. Since 1’ and u are non-zero, there
is a non-zero r in R with pg=ru’. By the proof of Lemma B.1, we have a
duality |

Ap: TYM, 0,M)=T,_,_ (M, ,M)

and a monomorphism
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Ay HY(M, 6, M)/DI — w—q—1(M, 0, M).
Since N p is a t-anti-map, we see that BY(M, 8, M)/D? is R{t>-free. Let
Rt BYM, 8, M)/D* — BYM, 3, M)
be a right inverse R{¢)-homomorphism of the natural map
BY(M, 8, M) —— BYM, 3, M)/ D" .

If xe BYM, 9, M)/D? is non-zero, then L.(I}(/(x)) n[V)=U(x) n I (V])=
I(x)np=xn p+#0, so that I¥(/(x))#0. This implies that the composite

~ ~ i ~ ~ *
BY(M, 8, M)/D" —— BY(H, 8, M) L~ HY(V, 3, V)

is injective. Noting that H4(V, 8, V) has a finite R-dimension, we have that
B4(M, 8, M)/D7=0. Then the duality

MM TQ(M, alﬂ)g Tn—q-'l(ﬁ? aZM)
induces a duality
Nu: T(M, 0,My=T,_,_ (M, 3,M).

If 7 has no leaf, then we consider Mp, y, and V, as in Lemma B.2. Let
aiMp=0iMX CPZ. NOte that

T(M p, 3, Mp)=[T%(M, 8, )@ HY(CP?)|®[T*~*(M, ,/)
QHHCP)®IT* 4(M, 0, M)@ H*(CP?)]
and
Tnstr-q-1(Mp, 0, Mp)=[T,_,_ (M, 6,/1)@ H(CP?)]
OIT,_ g (M, 3,M) ® Hy(CPY)] @ [T,_,.5(M, 0,/1) ® Hy(CP?)].
For pp=I([Vp])=u x [CPY, the duality
A tip: T (M, 3y M= Tty gy (M, 3,M,)
induces, for example, a duality
Nux[CP?): TM, 8, MY@H(CP)=T,_, (M, 3,M)QH,(CP?),
which is equivalent to
~p: TYM, 0, M)=T,_,_ (M, 3,M).

This completes the proof.
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Let M,, -, M, be the components of M such that y|M;#0, j=
I, -+, c For the lift M; of M, to M, let y;e T,_,(M,, M) have (i) and (ii).
By Lemma B.2, we have u=u,+ - +u..

Proof of (D1). Let 8,M ,.-_-:(a,M yn M 7 Then the duality
Ap: TA(M, 6, M)=T,_,_ (M, 3,M)

1s obtained as a direct sum of the dualities
oY T"(ﬂj, élflj)—_": T,,_q_1~(ﬂj, 82A7j), j=1, -, ¢,
of Lemma B.3. This completes the proof.

Proof of (D2). By the natural map H"~ (M, 6M)—T"" (M, 8M), the
cup product pairing

w: HYM, 8, M)x H* " NM, 3,M ) —— H" """ (M, oM)
induces a pairing (also denoted by L)
HYM, o, M)x H" *""Y(M, 3,M) — T"~\(M, M) .

For this pairing, we have that if ue BY(M, 6, M) or ve B"~ ¢~ *(M, 0, M), then
u U v=0, because

BY(M, 0,M)nu=B"*""YM, ,M)nu=0,
and ¥ U v=0 if and only if
wuv)ynpu=un(vn@W=(—=D""1"Yy~(unp
is 0 by the duality |
A T WM, 0M)=Ty(M) .
So there is an induced pairing (also denoted by w)
THM, o,M)x T"" "M, ,M) —T" (M, éM) .
To show that the composite
TS(M, 6, 5) x T* 4~ (M, 6,M) —~— T" (A1, ONT) —— R

is non-singular, suppose that fi(u U v)=0 for all ve T" 9~ }(M, &,M). Using
the identity

fluvuv)=¢eglluvv)ynp=egun(vn ),

we see from the duality
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A TN M, 0,M)=T, (M, 6, M)

that eg(un T (M, 3, M)=u(T(M, 0, M))=0, ie., u=0. Similarly, if
fi(uw v)=0 for all ue TYM, &, M), then v=0. This completes the proof.

Appendix C: The Blanchfield duality for the Betti modules of infinite cyclic
coverings of topological manifolds

We consider M and 8M =8, M+d,M in § 1. We define a pairing
Inty: H(M, 6, M)x H(M, 3,M) — R(z)

by the 1dent1ty Intg(x, p)=3, Intg(x, r'y)t ™ for xe H,(M, 3, M) and
veH( M, 8, M), p+q=n, where the sum is easily checked to be a finite sum.
If we define Inty: H (M, 3,M)x H,(M, 8,M)—R(t) similarly, then we
have that Intg(p, x) = e(pq)Tnt,,—,(x ), where —— stands for the involution
of R(t) sending ¢ to ¢~'. Note that Intg(f(r ')x, y)=f(O)inty(x, y)=
Intz(x, f()y) for f(t) € R{t>, so that Int x induces a pairing (also denoted by
Inty)

B,(M, 0, M) x B(M, 8,M) —— R{t) .
The following was given by Blanchfield [B] when M is triangulated:
The Blanchfield Duality Theorem (for Betti Modules). The pairing
Intg: B,(M, 8, M) x B(M, &,M)— R{t)

is non-singular in the sense that the associated matrix of Intg relative to any
R{t)-bases of BP(AZ, &, M) and Bq(ﬁ, 8,M) is invertible in R{t>.

To prove it, we need some preliminaries. We consider an infinite cyclic
covering space pair (X, X;) of a compact topological pair (X, X ). The
singular chain complex C,(X, X,) forms a free chain complex over R(¢>. The
cochain complex with compact support, C*(X, X,) is the subcomplex of the
singular cochain complex C*X, X,) consisting of all cochains f such that
SC((X—K) L X,)=0 for a compact K= X. Clearly, C¥X¥, X,) is a cochain
complex over R{r). Let C§<,>(Y, X,) be the R{z)-cochain complex
Homy, s [Cy(X, X)), R(tD]. We define a map

¢: C:(Ys X’x) _““"C“Ra)(i}, /‘71)

by the identity ¢(f)x)=Y ;- f(#'x)t * for fe CHX, X,) and xe Cy(X, X))
where the sum is easily checked to be a finite sum. The following is directly
proved:
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Lemma C.}. The map ¢ is a cochain R{t>-homomorphism and natural
with respect to maps between infinite cyclic covering space pairs, lifting maps
between compact topological pairs.

Note that the cohomology of CYX, X)) is H*(X, X,). Let H% X, X))
be the cohomology of C R<,>(X , X))

Lemma C.2. If (X, X)) is a compact polyhedral pair, then
¢*: H:‘(j;, f?l)*H}kz(:)(j;a “71)
is an isomorphism.

Proof. Let (X', X{) be a finite simplicial pair which is a triangulation
of (X, X,) and (X", X{), the lift of (X, X7{). Let C“(X’ X{) be the finite
simplicial cochain complex and CR<,>(X L X))= HomR<,>[C,,(X X)), RG]
for the simplicial chain complex Co(X', X)), Wthh 1s R{t)-free of finite rank.
Then the map ¢’ Cf(X Xp-ct <,>(X X 1) defined by

()= iez [(£X)
is easily seen to be bijective. So the induced map
¢ *: H¥X', ') —H% (X', %)

is an 1somorphlsm Since there are natural isomorphisms H ¥ <,>(X X)=
H,"{<,>(X ', X{) [Use the universal coefficient theorem over R{1t>] and
HXX, X, )= HX(X’, X}), we see that ¢* is an isomorphism and complete
the proof.

By [K/S] every compact manifold pair is homotopy equivalent to a

compact polyhedral pair. So we see from the naturality of ¢ and Lemma C.2
the following:

Corollary C.3. For a compact manifold pair (X, X,),
¢* H*(X Xl)_"H <z>(X X)
is an isomorphism.

Proof of the Blanchfield Duality Theorem. Let xe H, (M, 0, M) and y=
{c,}e H(M, 0,M), and xz€ B,(M, 6, M), yge B(M, 8,M), the images of x,
y. By Proposition A4, Intglx,py)=eguny)=flc) for u=
.y e HAM, 3,M) with un[M]=x. So, Intg(x,y)=3,;_fi(fc )™ =
¢(f)(c,). By the universal coefficient theorem over R{t), note that



Signature Invariants of Infinite Cyclic Coverings 85

H% (M, 0,M)[Torg, H% (M, 3,M )y =Homg ,[H (M, 3,M), R(t)]
=Homg,,,[B,(M, 6,M), R(1)].
Let S be the composite t-anti-isomorphism (cf. Corollary C.3)
B, 0,51) "L 9.t 3,81 Torg,, HHH, ,4)

—

* =

¢ L
——Homg,[B,(M, 8,5), R(t)].

Then Intg(xg, vg)= ¢( J)¢,)=P(xg)(¥g). This implies that 'I'nt,q is non-
singular and completes the proof.
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