KNOTS IN THE STABLE 4-SPACE; AN OVERVIEW

Akio KAWAUCHI

Let M be a smooth connected oriented (n+2) -manifold. We call an
oriented n-sphere smoothly imbedded in Int(M) a G-knot in M, and a
knot in M if it is null-homotopic in M. A G-link ( link, resp.) in M
is a disjoint union of finitely many G-knots (knots, resp.) in M. A G-
link L in M is called a B-link in M if I is null-homologous in M.
Two G-links Ll'L in M are equivalent if there is an orientation-

2
preserving diffeomorphism of M sending Ll to L2 orientation-
preservingly. The equivalence classes of G-links are called the types of
G-links. The stable 4—52255! which we denote by SR4, is any smooth 4-
manifold diffeomorphic to the universal covering space of T4#Szx52,
which is obtained from the 4-space, R4, by stabilization, that is, by a
connected sum with countabiy infinite copies of Ssz2 (c£.§ 1). The
stable 4-space SR4 is so huge that we can imbed all 3-manifolds
smoothly and properly in it. The purpose of this paper is to give an
overview of the author's recent results on several properties of links in
SR4. No proof is given here. Details will be published elsewhere in
separated forms ([12]). In § 1 we discuss the stable 4-space SR4 itself.
We characterize open 4-manifolds which become SR4 after stabilization.
It follows that any exotic 4-space (cf. Gompf [ 5]) becomes SR4 after
stabilization. In § 2 we characterize the group of a link in SR4 and

discuss related topics. In § 3 the torsion pairing invariant of a B-link

. 4 ., 1
in SR 1s introduced. In § 4 we observe that there are many knots in




SR4 with no minimal Seifert manifolds and discuss the supporting degree.
In § 5 we observe that there are many links in SR% which are not 1I-
equivalent. In § 6 the Triviality Theorem for a G-link in SR4 is stated
and the prime decomposition and the unknotting number of a knot in SR4

are discussed.

51 The stable 4-space
Let W be a non-compact connected oriented smooth n-manifold (n 1)
Let { Bi}i:l be a family of disjoint n-balls Bi in Int(W). This
family is said to be discrete, if for each compact set C in W C ﬂBi=
# except a finite number of i. Then note that w- U.:

i=1

smooth manifold with boundary LﬁflaBanw' W is connected at infinity,

Int(Bi) is a

if for each compact set C in W there is a compact set C' in w

such that cC'oc and W-C' is connected. W is l-connected at infinity,
if W is connected at infinity and for each compact set C in W with
W-C  connected there is a compact set C' in w such that C' >¢ ang
W-C' is connected and the natural homomorphism vl(w—c') - Wl(W—C) is

trivial.

Lemma 1.1. If w jis connected at infinity, then for any two
discrete families {Bi}ifl' { Bi}ifl there is an orientation~preserving

diffeomorphism of w sending Bi to Bi for all i.

Let n =4 and assume that w is connected at infinity. Taking a
connected sum of W ang countably infinite copies of S2xs2 along a
discrete family of 4-balls in W, we obtain a smooth 4-manifold whose
diffeomorphism type is indeéendent of a choice of a discrete family of 4-

balls in w by Lemma 1.1.




Definition. This 4-manifold is the stabilization of W and denoted

by SW.

4
Theorem 1.2. SW is diffeomorphic to the stable 4-space SR if
and only if W is a l-connected spin open 4-manifold which is l-connected

at infinity.

For example, the stabilization of a punctured K3-surface is diffeomorphic

Corollary 1.2.1. Any W stated in Theorem 1.2 is smoothly imbedded
4 ; 4
in SR with complement diffeomorphic to SR+ of the upper half 4-space
4
R '«
+
; 4
Corollary 1.2.2. For any compact smooth 4-submanifold W of SR

4 Y g 4 ;
with 9W a 3-sphere, SR -Int(W) is diffeomorphic to SR with an open

4-ball removed.

. . w4 vd .
Corollary 1.2.3. For any exotic 4-space R, SR is diffeomorphic
4 vd oo . 7 4 ;
to SR and R is smoothly imbedded in SR with complement

4
diffeomorphic to SR+.

" . 4 , 4
Remark 1.2.4. The existence of an exotic 4-space R with R #iTl

2 2 s . 4, m 2 2 - . P

s xsi diffeomorphic to R #i_ls xSi for some finite m is equivalent to
the existence of an exotic 4-sphere whose punctured manifold is an exotic
4-space. The author is grateful to R. Gompf for correcting an error of the
first draft as above and informing him that the existence of an exotic

; : ’ : 4 . ;
4-sphere whose punctured manifold is diffeomorphic to R is equivalent

to the failure of the 4-dimensional smooth Schtnflies conjecture, which is




&

still conceivable, for as J. Tao observed, any punctured homotopy n-sphere

with n > 4 is diffeomorphic to Rn.
Recall that a map is proper if the preimage of any compact set is compact.

Theorem 1.3. Any (possibly, non-compact or disconnected) smooth

oriented 3-manifold is smoothly and properly imbeddable in SR4.

The idea of the proof is to construct a 4-manifold which contains a given
" ol : a4 |
3-manifold and has the conditions of Theorem 1.2. Since SR is a proper
. 5 : T
smooth submanifold of R™, we have the following Corollary, generalizing

a result of Hirsch [7] to the non-compact case:

Corollary 1.3.1. Any smooth oriented 3-manifold is smoothly and

properly imbeddable in R5 with a trivial normal bundle.

Remark 1.3.2. For each compact connected oriented topological 4-
manifold there are infinitely many compact connected oriented 3-manifolds
which are not topologically imbeddable in it (ef. [10]).

§2 The groups of links

Let L Dbe a G-link in a smooth connected oriented (n+2)-manifold M.
A smooth compact oriented (n+l)-submanifold V of M is called a Seifert
manifold for L if 3V =L and V has no components of closed manifolds.

Let <t> be the infinite cyclic group generated by a letter t.

Lemma 2.1. The following conditions on a G-link I in M are

equivalent:




(1) L is a B-link,
(2) L has a Seifert manifold,
(3) There is an epimorphism v ﬂl(M—L) > <t> sending each meridian of

L to t.

We call y in (3) a B-epimorphism. A link in M is trivial if it has a
Seifert manifold consisting of disjoint (n+l)-balls. We consider a G-link

i 4
L 1in SR . Let E(L) = SR4—L. We call G(L) = T&(E(L)) the group of L.

Sy . ‘ 4 . " T
Definition. We say that a B-link L in SR is G-ribbon if it has

. i " 3 1 2 .
a Seifert manifold diffeomorphic to S #iTlS xSi with open 3-balls

removed.

The normal closure of elements x ' X

1 ,...,xs in a group G is denoted by

2

(xl,xz,...,xs) .

Theorem 2.2. The group G(L) of an r-component link L in SR4

is a finitely presented group with Hl(G(L)); ® 2 and (ml,m2,...,mr)G(L)
¥

= G(L) for meridians m.,m

4 2,...,mr of L. Further, for any finitely

presented group G and elements ml,mz,...,mr with Hl(G);; ® Z2 and
r
G ] 3 " 9 4
(ml,mz,...,mr) = G, there is an r-component G-ribbon link in SR whose

group is G and whose meridians are ml,mz,...,mr.

3 i 4
Theorem 2.2'. The group G(L) of an r-componment B-link L in SR
is a finitely presented group with unique B-epimorphism and (ml,mz,...,

G
(L)= G(L) for meridians ml,mz,...,mr of L. Further, for any

m )
x
finitely presented group G and an epimorphism Y: G > <t> and elements

G .
ml,mz,...,mr such that (ml,m2,...,mr) = G and Y(mi) = &, I= 1,20 0608

UT




C

. " . " 4 :
there is an r-component G-ribbon B-link in SR~ whose group is G and

whose B-epimorphism is +y and whose meridians are m_,m

h ,...,mr.

2

Theorem 2.2". The group G(L) of an r-component G-link L in

O i G
SR4 is a finitely presented group with (ml,mz,...,mr) (L G(L) for

meridians m_,m

1 ,...,mr of L. Further, for any finitely presented group

2

G and elements m_,m

1 ,...,mr with (ml,m

2

G «
2,...,mr) = G, there is an r-

; ; 4 7 i o
component G-link in SR whose group is G and whose meridians are ml,

m2,...,mr(cf. Gonzélez—Acdﬁa[G]).
: i . 4 5 g . 4 .
A G-ribbon link in SR is obtained from a G-link L* in SR with a

trivial normal bundle by the following operation (F):

(F) Perform a surgery on the boundary of a collar L*x[0,1] of ©L*

in SR4 along disjointly imbedded l-handles, not meeting L*x(0,1).

i Gt . . 4 ; i B 8 ;
Definition. A link in SR is Q-ribbon if it is obtained by the
operation (F). from a G-link L*, equivalent to the union of a trivial link

4 2 4

5 q e i 4 2 2
in R and some pjxsj's under an identification SR = R #

i=lS xSi.
4
Theorem 2.3. The class of the groups of Q-ribbon links in SR
’ ) ; 4
equals that of closed oriented surfaces smoothly imbedded in R .
Corollary 2.3.1. For each r > O there are infinitely many r-
component G-ribbon links in SR4 whose groups are not isomorphic to the

groups of Q-ribbon links in SR4.

A compact smooth 4-submanifold W of SR4 is called a support of a G-

. y 4 ¢
link L in SR if 9W is a 3-sphere and L c Int(W). The closed 4-




manifold w+, obtained from W by attaching a 4-ball is called a closed
support of a G-link L in SR4. By Lemma 1.1 and Corollary 1.2.2, the
G-link L in SR4 is obtained from L in Int(W) by stabilization
along a discrete family of 4-balls disjoint from L. Then we call that

. 4 | 3 : .
the G-link L in SR is obtained from a G-link L in W, Int(W) or

ot § o i . " ; : 4 ;
W by stabilization. If L is a link (B-link,resp.) in SR, then L is
also a link (B-link,resp.) in any support W of L. For a link Ll in

3 . ; 1 1 3
S with components ki, i=1,2,...,r, we consider the product S x (ST,
1 o . 5
L"). Choose disjoint 3-balls Bi' 1 = 1y2, ems pty 1H S3 so that Biﬂki

. g 5 1.3 i L

1s an unknotted arc in Bi. Perform surgeries on S xS replacing S xBi

2 ’ 1 R | ’ 1

by D xBBi. Then we obtain from S x(S”,L”) an r-component link, S(L7),

4 -
din 8 #F lssz?.
i=1 i

TR 3 " 4 . ;
Definition. A link L in SR is the surgery-spun link of a link

Ll in S3, if it is obtained from the link S(Ll) stated above by

stabilization.

The type of L in SR4 is uniquely determined by the type of Ll in
S3. The group G(L) is Qeridian—preservingly isomorphic to the group
ﬁl(SB—Ll). Further, L is Q-ribbon and each component of L 1is contained
in a 4-ball in SR4 as the spun 2-knot of the corresponding component of

v,

Lemma 2.4. For a G-link L in SR4 the following are equivalent:
2 4 , 2 4 ’
(1) Any map f: S > SR is homotopic to a map f': s° + SR with
f'SzﬂL =g,

(2) L is a link in SR4 with H2(G(L)) = 0.

i s ’ ; 4 3 s
Definition. A link L in SR ; given by Lemma 2.4 is called a




flexible link.

; : 4 ¢
Corollary 2.4.1. For the surgery-spun link I in SR of a link
Ll in S3 the following are equivalent:
(1) L. is flexible,

: . i ; 4
(2) L 1is contained in a 4-ball in SR 7

(3) The 1link Ll is completely splittable.

By Theorem 2.3 and, for example, Litherland's result[17], we have the

following:

Corollary 2.4.2. For each r > 0 there are infinitely many r-

component Q-ribbon links in SR4 that are not flexible links.

By Theorem 2.2, Kervaire's result[13] and Yajima's results[22],[23], we

have the following:

Corollary 2.4.3. The class of the groups of flexible links in SR4
: +
equals that of links in Sn 2 for n > 2 and is contained in that of

O-ribbon links in SR4.

By arguments in § 3 we can show that there are infinitely many flexible

links that are not G-ribbon (and hence O-ribbon) .

§ 3 The torsion pairing invariant

For a module H over the integral group ring A of <t>, let TH
be the ) -torsion part of H and BH = H/TH. When H is finitely
generated over j , let DH be the maximal finite J-submodule of H(cf.

[11]): Let ElH = ExtI:\L(H,A). For a B-link L in SR4, let ’E(L) be




-0

n
the covering space of E(L) associated with the B-epimorphism. Hq(E(L))
is a finitely generated A-module when q # 2 and a direct sum of a
finitely generated A-module and a free A-module of infinite rank when

q = 2. The following is essentially a consequence of the Second Duality

Theorem of [11]:

g i 4 " . "

Theorem 3.1. For any B-link L in SR there is a t-isometric

symmetric non-singular pairing
2 : D.x D > Q/Z
such that
(1) (DL,QL) is an invariant of the type of L, and
; i " . A 1 Y P
(2) There is a t-anti epimorphism 6 : DHl(E(L)) > E (BHZ(E(L))) which
is an invariant of the type of L and whose kernel is DL.
; 4 ; ) 4 i 1 ;

If a knot K in SR is obtained from a knot in S by stabilization,

then the pairing RK: DK X DK -+ Q/7 coincides with the Farber/Levine
- o . 4 BT
pairing of the original knot in S (cf. [3]1,[16]). We call our pairing lL

. i ; " 4
the torsion pairing of a B-link L in SR, the terms borrowed from [16].

- . . 4 .
Proposition 3.2. If a B-link L in SR is G-ribbon, then D_= 0.

Corollary 3.2.1. For each r > 0 there are infinitely many r-

component flexible links that are not G-ribbon.

N n
For a knot K in SR4 we have t-1 : Hl(E(K)) = Hl(E(K)), so that

t-1 : D, = DK. The following characterizes the torsion pairings of knots
4




(0

Theorem 3.3. For any finite A-module D with t-1: D =D and any

t-isometric symmetric non-singular pairing 2: D x D> Q/Z, there is a
4 ! , .
knot K in SR such that (DK,QK) is A-isomorphic to (D,%2) and
N
D_ = H, (E(K)).
X l( (X))
. i 4

It is unknown whether all pairs (D,%) are realizable by knots in S (cf.

[16]1).

§ 4 Knots with no minimal Seifert manifolds and the supporting degree

Let V be a Seifert manifold for a B-link I in a smooth connected

oriented (n+2)-manifold M.

Definition. If the natural homomorphism nl(Int(Vj)) > ﬂl(M—L) is
injective for each component Vj of V, then we say that the Seifert

manifold V is minimal.

For n =1 any B-link in M has a minimal Seifert surface. This is well-
known by the loop theorem.

Proposition 4.1. In case n>2, any B-link in M with a B-
epimorphism whose kernel is finitely presented has a minimal Seifert

manifold.

This is proved by a surgery argument(cf. Farrell([4,p. 325]). Note that
a B-link L in SR4 has a minimal Seifert manifold if and only if L

+
has a minimal Seifert manifold in some closed support W of L.

o . ; 4 -
Proposition 4.2. Any surgery-spun link in SR has a minimal

Seifert manifold.




-y ’ ] ) 4
Definition. The supporting degree, sd(L), of a G-link L in SR

is the least number m such that L has a closed support diffeomorphic

m 2 2

4
tor S5°#, .5 x8..
L i

1

Theorem 4.3. For each m > 0, there are infinitely many (up to
o . 4
equivalences) systems of knots Ki, i=0,l,sesym, in SR such that

" 5 ; ; 4 e .
(0) KO is obtained from a fibered knot in S by stabilization,

(1) Any two of G(Ki), i=0,1,...,m, are meridian-preservingly
isomorphic,

(2) No two of Hz(E(Ki)), i=20,1,...,m, are A-isomorphic,

(3) sd(Ki) =i, i=0,1,...,m, and

(4) For each i # 0, Ki has no minimal Seifert manifold.

Remark 4.3.1. Lee[l5] gave, in our terminology, examples of non-

: ; 4 . . ;
flexible knots K in SR with sd(K) # 0 (in fact, sd(K) = 1) by using

4
the fact that any knot XK' in SR with sd(K') = 0 has H2(G(K')) = 0.

Theorem 4.3 tells us that there are many flexible knots K in SR4 with
sd(K) # 0. Tamura[2l] also considered a similar problem on higher

. 5 s ; n _nt+l
dimensional simple knots, such as genus one knots in S xS (n > 2).

. e ] ; 3 4
The following proposition is useful to construct certain knots in SR

with no minimal Seifert manifolds (though it is not applicable to the

proof of Theorem 4.3):

. ; 4 Zw .
Proposition 4.4. If a knot K in SR has a minimal Seifert
manifold and the commutator subgroup [G(K),G(K)] of G(K) is finitely
generated, then [G(K),G(K)] is isomorphic to the fundamental group of a

closed oriented 3-manifold.

The proof is similar to that of Neuwirth[20,Theorem 4.5.1].




Example 4.4.1. Let G be the fundamental group of the O-surgery
’ 3 X
manifold of a non-trivial fibered knot in S°. G 1is the group of a knot
; 2 2 ; 4 i 4 5
in S xS and hence in SR . Any knot in SR with group G has no
minimal Seifert manifold by Proposition 4.4, for [G,G] is isomorphic to
the fundamental group of a closed orientable surface of genus > 0, not to

the fundamental group of a closed orientable 3-manifold.

Theorem 4.3 tells us that there are many knots K in SR4 such that
[G(K),G(K)] is isomorphic to the fundamental group of a closed oriented
3-manifold but K has no minimal Seifert manifold. It is unknown whether
all knots in S4 have minimal Seifert manifolds. Theorem 4.3 is obtained
as an application of the torsion pairing invariant.
§ 5 Cobordism

For any 2-component link in R3 with linking number # 0, the
components never bound disjoint compact oriented surfaces in R4. Such

+

a phenomenon does not happen for links in SR4.

§a s . ‘ 4
Proposition 5.1. For each link in SR, the components bound

Tt s . : g : 4
disjoint compact oriented smoothly imbedded 3-manifolds in SR x[0,+w).

Definition. Two G-links L, L' in SR4 are I-equivalent, if
there is a 3-manifold W, topologically imbedded in SR4x[O,l], such that
W =~1Lx[0,1], (QW)DN SR4xO = (-L)x0, (OW) ﬂSR4xl = L'kl and (9W) ﬂSR4x(0,
1) = @. Moreover, if W is smoothly imbedded in SR4x[O,l], then G-

links L, L' are cobordant.

. . 4 . . St
A link in SR is called a boundary link if the components have disjoint

Seifert manifolds, and a weakly split link if the link has a disconnected

Seifert manifold. The following is essentially due to Kervaire[l4]:




. . . 4 .
Proposition 5.2. Every boundary link in SR is cobordant to a
. . . 5 4 .
trivial link. In particular, every knot in SR is cobordant to a

trivial knot.

) ; ; 4 . ]
It is unknown whether all links in S (more generally, all flexible links
r 4 R .
in SR') are cobordant to trivial links (cf. Cochran[l]), but there are

. X . 4 ; ;
many non-flexible links in SR which are not I-equivalent.

Theorem 5.3. For each r > 1 there are infinitely many (up to I-
; 8 . 4 ; ;
equivalences) r-component links L in SR which are I-equivalent to
none of flexible links, weakly split links and links with supporting

degree < r-1.

Theorem 5.4. For each r > 1 there are infinitely many (up to I-
equivalences) pairs of r-component non-flexible links L, L' in SR4
such that the groups G(L), G(L') are meridian-preservingly isomorphic
but the links L, L' are not I-equivalent.
We use the torsion pairing invariant to show Theorem 5.4.
§ 6 Arithematic .

Let p be a point of a G-link L in SR4. We call a half-open

4
interval, o , smoothly and properly imbedded in SR a string relative

to (L,p) if 3a = p and (a-p) NL = @.

Lemma 6.1. For any two strings o , a' relative to (L,p), there is
J p : . 2 4 .
an orientation-preserving diffeomorphism of SR sending o to o' and

fixing L.

. 4 ; : .
For G-knots Ki in SR and strings o, relative to (Ki,pi), i = 1,2,

we choose tubular neighborhoods T(ai) so that (T(ui),T(ai) ﬂKi) are

2 )




diffeomorphic to (D3x[0,+m),D2xl), where D2CID3 is a standard disk
pair. We attach (SR4—Int(T(ai)),Ki-Int(T(ai)ﬂ Ki)); i = 1,2, by an
orientation-reversing diffeomorphism between the boundary pairs. The
result is a pair (SR4,K') with KXK' a G-knot in SR4. The type of K'
does not depend on any choice of strings by Lemma 6.1 and is determined

only by the types of Ki'

Definition. The G-knot K' is the sum of Ki, i=1,2, and

denoted by Kl#Kz'

e . 4 i ;
Definition. A G-knot K in SR is prime if K = Kl#K2 means
that Kl or K2 is trivial.
. 4 . e "
Theorem 6.2. Any knot in SR is the sum of finitely many prime

; 4
knots in SR .

This result is a combination of Maeda's Theorem[18] and the following

Triviality Theorem for G-links, essentially due to Matumoto[19]:

2 o8 s . 1 4 . P
Theorem 6.3 (Triviality Theorem). A G-link L in SR is a trivial

link if and only if G(L) is a free group with a meridian basis. 1In
; 3 4 - x
particular, a G-knot K in SR is a trivial knot if and only if G (K)

= Z.

To state Maeda's Theorem, we consider a pair (G,m) with the following

conditions: (1) G is a finitely presented group, (2) Hl(G) Z,(3)(m)b = G.

We call this pair a pair of type K (cf. Theorem 2.2). For pairs (Gi,

mi), i =1,2, of type K the pair (Gl*G2/ml=m ,ml) is also of type K

2




|5

and called the sum of (Gi,mi), i =1,2, and denoted by (Gl’ml)*(GZ’mz)'

. ] 5 + - * =
A pair (G,m) 1is prime if (G,m) (Gl,ml) (G2,m2) means Gl or G2_

. 4 . » ; i o
Z. A knot K in SR is prime when (G(K),m) is prime for an meridian

m of K, by the Triviality Theorem. Two pairs (G,m), (G',m') are

equivalent if there is an isomorphism from G to G' sending m to m'.

*
Maeda'E_Theorem.) Any pair (G,m) of type K is the sum of
finitely many prime pairs. Moreover, the sum is unique (up to equivalences

and the orders of sums).

It is still unknown whether the sum in Theorem 6.2 is unique. Next, to
discuss the unknotting number of a knot in SR4, we note that the boundary
surface of a solid torus smoothly imbedded in SR4 is unique up to
ambient isotopies of SR4 (cf. [8]). We call this surface a trivial
surface in SR4. Using that a knot has a Seifert manifold, we can
transform any knot in SR4 into a trivial surface by surgeries along
a finite number of imbedded l-handles (cf. [8]).

Definition([9]). The least number of these imbedded l-handles is

the unknotting number of a knot K in SR4 and denoted by u(K).

. ; 4
Let c¢ be a null-homologous, smooth simple closed curve in SR -K.
. 4 2 3 .

Perform a spin surgery SR -T(c) (D x0D along a tubular neighborhood

L .3 . . ; : 4
T(c) = S™xD of c¢. Since the result is also diffeomorphic to SR, we

" : 4

obtain a new knot K' in SR4. We can show that any knot in SR is

transformed into a trivial knot by spin surgeries along tubular

neighborhoods of a finite number of such curves c.

*)The finiteness part was independently proved by Dunwoody/Fenn[2] .




Definition. The least number of these curves c¢ is the weak

; ) 4
unknotting number of a knot K in SR and denoted by uw(K).

Let b(K) be the least number of meridian generators of G(K) and w(K),

the least number of elements > I

1 2’
G (K)
...,XS) = [G(K),G(K)] and e(K), the least number of A-generators of

2,...,xS of G(K) such that (xl,x

N
Hl(E(K)). Then we have the following:

Theorem 6.4. e(K) < w(K) = uW(K) <u(kK) < b(k)-1.
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