SUPPLEMENT TO A CHORD DIAGRAM OF A RIBBON SURFACE-LINK

Akio Kawauchi

Osaka City University Advanced Mathematical Institute Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@sci.osaka-cu.ac.jp

Abstract

A revised proof is given to an assertion on chord diagrams of a ribbon surface-link.

Keywords: Chord diagram, Ribbon surface-link, Chord diagram move. Mathematics Subject Classification 2010: 57Q45, 57M25, 57M05

1 Statement of result

In a previous paper $[\mathbf{K}]$, it is shown as the main result (Theorem 4.1) that any two cord diagrams of faithfully equivalent ribbon surface-links are deformed into each other by a finite number of the moves M_0 , M_1 , M_2 on the chord diagrams. Blake Winter recently suggested that a procedure of increasing chords in the argument of $[\mathbf{K}]$ is not clear for equivalences of one-fusion ribbon 2-knots, for T. Yasuda in $[\mathbf{Y}]$ has given the necessary example to increase a chord for a one-fusion ribbon 2-knot. The author would like to thank him for this suggestion.

Corollary 4.7 of [K] was an essential part to obtain the main result of [K] and is revised as Theorem in this paper. Terminologies, notations and references are completely borrowed from [K].

A connected chord graph $(o; \alpha)$ is called *in a standard shape* if it is in the shape of Fig. 23 of $[\mathbf{K}]$, namely the based loop system o consists of the

loops o_i (i = 0, 1, 2, ..., n) and the chord α_i spans o_0 and o_i for every i with $1 \le i \le n$ and the chord α_j with j > n is a self-connecting chord attached to o_0 . A disconnected chord graph $(o; \alpha)$ is said to be in a standard shape if every connected component of $(o; \alpha)$ is in a standard shape. Unless otherwise mentioned, a chord graph is in a standard shape.

For a chord diagram $C(o; \alpha)$, assume by the move M_0 that the loops in the based loop system o are mutually disjoint simple loops with counterclockwise orientation in the plane so that o bounds the system d of mutually disjoint oriented disks d_i (i = 0, 1, 2, ..., n) in the plane. Then the pair (d, α) is called a disk chord system. Corollary 4.7 of $[\mathbf{K}]$ was stated as follows:

Corollary 4.7. After a finite number of the moves M_0 , M_1 , M_2 on the chord diagrams $C(o; \alpha)$ and $C(o; \alpha')$, the chords α are homotopic to the chords α' in \mathbb{R}^3 by a homotopy relative to the based loops o.

In this paper, the following theorem with the exact assumption of Corollary 4.7 included here for convenience is shown:

Theorem. Let $f': \mathbf{R}^3[-3,3] \to \mathbf{R}^3[-3,3]$ be an orientation-preserving homeomorphism preserving $\mathbf{R}^3[-3]$ and $\mathbf{R}^3[3]$, respectively. Let $(\bar{o}, \bar{\alpha})$ and $(\bar{o}, \bar{\alpha}')$ be chord graphs in $\mathbf{R}^3[1]$ with $f'(\bar{o}) = \bar{o}$ such that $f'(\bar{\alpha})$ is homotopic to $\bar{\alpha}'$ in $\mathbf{R}^3[-3,3]$ by a homotopy relative to o[-3,3]. Assume that the restriction $f'|_{\bar{o}\cup u[-3,3]}$ is the identity map for a simple arc system \bar{u} in \bar{o} containing the attaching points of the homotopically corresponding chord systems $\bar{\alpha}$, $\bar{\alpha}'$. Then every chord diagram $C(o;\alpha)$ is deformed into a chord diagram $C(o;\alpha')$ by a finite number of the moves M_0, M_1, M_2 on $C(o;\alpha)$, $C(o;\alpha')$ and homotopic deformations of the chord systems $\bar{\alpha}$, $\bar{\alpha}'$ in $\mathbf{R}^3[-3,3]$ by homotopies relative to o[-3,3].

Theorem and Corollary 4.7 are the same assertion except that the homotopies and the moves M_0, M_1, M_2 are mixed in Theorem. If $f'(\bar{\alpha})$ is homotopic to $\bar{\alpha}'$ in $\mathbf{R}^3[-3,3]$ by a homotopy relative to o[-3,3], then the chord system $\bar{f}'(\bar{\alpha})$ in $\mathbf{R}^3[1]$ obtained from $f'(\bar{\alpha})$ by the projection $\mathbf{R}^3[-3,3] \to \mathbf{R}^3[1]$ is homotopic to $\bar{\alpha}'$ in $\mathbf{R}^3[1]$ by a homotopy relative to \bar{o} . Then by Lemma 4.6 their chord diagrams are deformable into each other by the moves M_0, M_1, M_2 . Thus, Theorem and Corollary 4.7 are equivalent statements.

Proof of Theorem. The proof will be done by assuming that $f'(\bar{\alpha}) = \bar{\alpha}'$. The following observation is used in our argument:

Observation 1. If a disk chord system $(\bar{d}', \bar{\alpha}')$ in $\mathbf{R}^3[1]$ is obtained from a disk chord system $(\bar{d}, \bar{\alpha})$ in $\mathbf{R}^3[1]$ by a homotopic deformation in \mathbf{R}^4 deforming the pair $(\bar{d}, \bar{d} \cap \bar{\alpha})$ into the pair $(\bar{d}', \bar{d}' \cap \bar{\alpha}')$ isotopically, then the chord system $\bar{\alpha}'$ is homotopic to the chord system $\bar{\alpha}$ in $\mathbf{R}^3[-3, 3]$ by a homotopy relative to o[-3, 3] by regarding as $\partial d = \partial d' = o$.

The proof of Observation 1 is obtained by taking a homotopic deformation fixing the part $(\bar{d}, \bar{d} \cap \bar{\alpha})$. The following observation is a key observation for the proof of Theorem:

Observation 2. After a finite number of the moves M_0 , M_1 , M_2 on chord diagrams $C(o; \alpha)$, $C(o; \alpha')$, homotopic deformations of the chord systems $\bar{\alpha}$, $\bar{\alpha}'$ by homotopies relative to o[-3,3] and isotopic deformations of f', the disk chord systems $(\bar{d}; \bar{\alpha})$ and $(\bar{d}; \bar{\alpha}')$ have the properties

$$f'(\bar{\alpha}) = \bar{\alpha}'$$
 and $f'(\bar{\alpha} \cap \bar{d}_i) = \bar{\alpha}' \cap \bar{d}_i$ $(i = 0, 1, 2, \dots, n)$.

Let B be an oriented 3-ball in $\mathbf{R}^3[1]$ containing the disk chord system $(\bar{d}; \bar{\alpha})$. Let $(d^{f'}; \alpha^{f'})$ be the disk chord system in the 3-ball f'(B) obtained from $(\bar{d}; \bar{\alpha})$ by the homeomorphism f', and $(\bar{d}^{f'}; \bar{\alpha}^{f'})$ a disk chord system in $\mathbf{R}^3[1]$ obtained from $(d^{f'}; \alpha^{f'})$ by deforming f'(B) into $\mathbf{R}^3[1]$ in $\mathbf{R}^3[-3,3]$. Since $f'|_{\bar{o}\cup u[-3,3]}=1$ (before deforming f'), the chord graph $(\bar{o}; \bar{\alpha})$ is equivalent to the chord graph $(\bar{o}^{f'}; \bar{\alpha}^{f'})$ in $\mathbf{R}^3[1]$, where $\bar{o}^{f'}=\partial \bar{d}^{f'}$. Hence a chord diagram $C(\bar{o}; \bar{\alpha})$ is deformed into a chord diagram $C(\bar{o}^{f'}; \bar{\alpha}^{f'})$ in by the move M_0 (see $[\mathbf{8}, \mathbf{9}, \mathbf{14}]$). Since Observation 1 can be applied between $(\bar{d}; \bar{\alpha}')$ and $(\bar{d}^{f'}; \bar{\alpha}^{f'})$, Theorem is obtained.

Observation 2 is shown by an inductive argument on the component number r of the chord graph $(\bar{o}; \bar{\alpha})$ in $\mathbf{R}^3[1]$, which will be done from now.

Let $(\bar{o}^{(i)}; \bar{\alpha}^{(i)})$ (i = 1, 2, ..., r) be the connected components of $(\bar{o}; \bar{\alpha})$. Let $\bar{d}^{(i)}$ be the disk sub-system of \bar{d} with $\partial \bar{d}^{(i)} = \bar{o}^{(i)}$. To show this observation, the homeomorphism f' is regarded as a diffeomorphism on some smooth structures on $\mathbf{R}^3[-3,3]$ with d[-3,3] as a smooth submanifold (see [2, p. 128]). Then the intersections $d[-3,3] \cap (f')^{-1}(\bar{d})$ and $d[-3,3] \cap f'(\bar{d})$ are considered as mutually disjoint simple loops and arcs including \bar{o} by a transversality argument. Deform these simple loops into sets of mutually disjoint intersection annuli, denoted by a and a', respectively. Let a and a' have orientations induced from $(f')^{-1}(\bar{d})$ and $f'(\bar{d})$, respectively. Every annulus in a or a' is assumed to have a disk which is orientation-preservingly embedded into \bar{d} by

the projection $\mathbf{R}^3[-3,3] \to \mathbf{R}^3[1]$. Let e and e' be such disk systems in a and a' with the projection images \bar{e} and \bar{e}' in \bar{d} , respectively. By a choice of \bar{e} and \bar{e}' , the disks in $f'(\bar{e})$ and \bar{e}' are made disjoint in \bar{d} . Let

$$\begin{array}{ll} a^{(i)} &= a \cap d^{(i)}[-3,3], & a'^{(i)} = a' \cap d^{(i)}[-3,3], \\ e^{(i)} &= e \cap d^{(i)}[-3,3], & e'^{(i)} = e' \cap d^{(i)}[-3,3], \\ \bar{e}^{(i)} &= \bar{e} \cap \bar{d}^{(i)}, & \bar{e}'^{(i)} = \bar{e}' \cap \bar{d}^{(i)}. \end{array}$$

Consider the connected component $(d^{(1)}; \alpha^{(1)})$. Every point p' of the finite set $\Delta'^{(1)} = f'(\bar{\alpha}^{(1)} \cap (\bar{d}^{(1)} \setminus \bar{\sigma}^{(1)}))$ is moved into an $e'^{(1)}$ -part in the first meeting annuli in $a'^{(1)}$ by a slide of p' along $f'(\bar{d}^{(1)})$ avoiding the simple arcs in $d^{(1)}[-3,3] \cap f'(\bar{d}^{(1)})$ and the finite set $o[-3,3]) \cap f'(\bar{d}^{(1)})$. Then the set in the disk system $e'^{(1)}$ obtained from $\Delta'^{(1)}$ by these deformations is moved into $\bar{e}'^{(1)}$ vertically. Every point p of the finite set $\Delta^{(1)} = \bar{\alpha}^{(1)} \cap ((f')^{-1}(\bar{d}^{(1)}) \setminus \bar{\alpha}^{(1)} \cap \bar{d}^{(1)}$ is moved into an $e^{(1)}$ -part in the first meeting annuli in $a^{(1)}$ by a slide of p along $(f')^{-1}(\bar{d}^{(1)})$ avoiding the simple arcs in $d^{(1)}[-3,3] \cap (f')^{-1}(\bar{d}^{(1)})$ and the finite set $o[-3,3]) \cap (f')^{-1}(\bar{d}^{(1)})$. Then the set in the disk system $e^{(1)}$ obtained from $\Delta^{(1)}$ by these deformations is moved into $\bar{e}^{(1)}$ vertically.

These deformations deform the chord systems $\bar{\alpha}$, $f'(\bar{\alpha}) = \bar{\alpha}'$ into chord systems $\tilde{\alpha}$, $f'(\tilde{\alpha}) = \tilde{\alpha}'$ in $\mathbf{R}^3[-3,3]$ (which may not be in $\mathbf{R}^3[1]$) on the based loop system \bar{o} . Then the homeomorphism f' is isotopically deformed so that

$$\tilde{\alpha}^{(1)} \cap \bar{d}^{(1)} = \tilde{\alpha}^{(1)} \cap (f')^{-1}(\bar{d}^{(1)}) \subset A^{(1)}$$

by letting $A^{(1)} = \bar{e}^{(1)} \cup (f')^{-1}(\bar{e}'^{(1)})$. It is noted from construction that

$$A^{(1)} \subset \bar{d}^{(1)} \cap (f')^{-1}(\bar{d}^{(1)}).$$

Because the chord systems $\tilde{\alpha}$ and $\tilde{\alpha}'$ meet $d^{(1)}[-3,3]$ only in $A^{(1)}$, the chord systems $\tilde{\alpha}$ and $\tilde{\alpha}'$ can be pushed into $\mathbf{R}^3[1]$ by the projection $\mathbf{R}^3[-3,3] \to \mathbf{R}^3[1]$ and slight modifications of $\tilde{\alpha}$, $\tilde{\alpha}'$ and f' to obtain new chord systems on $\bar{\sigma}$ in $\mathbf{R}^3[1]$, denoted also by $\bar{\alpha}$ and $\bar{\alpha}'$, respectively which have an additional property that

$$\bar{\alpha}^{(1)} \cap \bar{d}^{(1)} = \bar{\alpha}^{(1)} \cap (f')^{-1}(\bar{d}^{(1)}) \subset A^{(1)} \subset \bar{d}^{(1)} \cap (f')^{-1}(\bar{d}^{(1)}).$$

Let $\bar{d}^{*(1)}$ be a disk system in $A^{(1)}$, and $\bar{\beta}^{*(1)}$ a simple chord system for the based loop system $\bar{o}^{*(1)} = \partial \bar{d}^{*(1)}$ in the disk system $\bar{d}^{(1)}$ such that

- $(1) \quad \bar{\alpha} \cap \bar{d}^{(1)} = \bar{\alpha} \cap \bar{d}^{*(1)},$
- (2) $\bar{d}^{*(1)} \cap \bar{\beta}^{*(1)} = \bar{o}^{*(1)} \cap \bar{\beta}^{*(1)} = \partial \bar{\beta}^{*(1)},$

(3) there is a strong deformation retraction $\bar{d}^{(1)} \to \bar{d}^{*(1)} \cup \bar{\beta}^{*(1)}$.

By the move M_1 , a chord diagram $C(\bar{o}; \bar{\alpha})$ is deformed into a chord diagram of a chord graph $(\bar{o}^{*(1)} \cup (\bar{o} \setminus \bar{o}^{(1)}); \bar{\alpha} \cup \bar{\beta}^{*(1)})$ in a non-standard shape, which is made in a standard shape by the chord slide move $M_{1,1}$ on the simple chord system $\bar{\beta}^{*(1)}$.

Let $d^{**(1)} = f'(\bar{d}^{*(1)})$ be a disk system in $f'(A^{(1)}) \subset \bar{d}^{(1)}$. Let $\bar{\beta}^{**(1)}$ be a simple chord system for the based loop system $\bar{o}^{**(1)} = \partial \bar{d}^{**(1)}$ in $\bar{d}^{(1)}$ such that

- (1)'
- $\bar{\alpha}' \cap \bar{d}^{(1)} = \bar{\alpha}' \cap \bar{d}^{**(1)}), \\ \bar{d}^{**(1)} \cap \bar{\beta}^{**(1)} = \bar{o}^{**(1)} \cap \bar{\beta}^{**(1)} = \partial \bar{\beta}^{**(1)},$ (2)'
- there is a strong deformation retraction $\bar{d}^{(1)} \to \bar{d}^{**(1)} \cup \bar{\beta}^{**(1)}$. (3)'

By the move M_1 , a chord diagram $C(\bar{o}; \bar{\alpha}')$ is also deformed into a chord diagram of a chord graph $(\bar{o}^{**(1)} \cup (\bar{o} \setminus \bar{o}^{(1)}); \bar{\alpha}' \cup \bar{\beta}^{**(1)})$ in a non-standard shape, which is made in a standard shape with the identical based loop system by the chord slide move $M_{1,1}$ on the simple chord system $\bar{\beta}^{**(1)}$.

Let $\bar{f}'(\bar{\beta}^{*(1)})$ be the projection of $f'(\bar{\beta}^{*(1)}) (\subset \mathbf{R}^3[-3,3])$ into $\mathbf{R}^3[1]$ which is a chord system on $\bar{o}^{**(1)}$ not meeting the interior of the disk system $\bar{d}^{**(1)}$ by construction.

Using the properties (1), (2), (1)', (2)', one can deform a chord diagram of a chord graph $(\bar{o}^{**(1)} \cup (\bar{o} \setminus \bar{o}^{(1)}); \bar{\alpha}' \cup \bar{f}'(\bar{\beta}^{*(1)})$ in a standard shape into a chord diagram of a chord graph $(\bar{o}^{**(1)} \cup (\bar{o} \setminus \bar{o}^{(1)}); \bar{\alpha}' \cup \bar{\beta}^{**(1)})$ in a standard shape by the moves M_1 , M_2 and M_3 without changing the intersection data on $\bar{\alpha}'$ and $d^{**(1)}$ (although the chord system $\bar{\alpha}'$ may be deformed homotopically). By this deformation, the homeomorphism f' is isotopically deformed to send the intersection data on $\bar{\alpha}$ and $\bar{d}^{*(1)}$ to the intersection data on $\bar{\alpha}$ and $\bar{d}^{**(1)}$ identically and the chord graph $(\bar{o}^{*(1)} \cup (\bar{o} \setminus \bar{o}^{(1)}); \bar{\alpha} \cup \bar{\beta}^{*(1)})$ to the chord graph $(\bar{o}^{**(1)} \cup (\bar{o} \setminus \bar{o}^{(1)}); \bar{\alpha}' \cup \bar{\beta}^{**(1)}).$

Next, apply the same argument to the connected component $(d^{(2)}; \alpha^{(2)})$ in the chord graph $(\bar{o}^{*(1)} \cup (\bar{o} \setminus \bar{o}^{(1)}); \bar{\alpha} \cup \bar{\beta}^{*(1)})$. Since we have

$$d^{*(1)}[-3,3]\cap (f')^{-1}(\bar{d}^{(2)})=\emptyset\quad \text{and}\quad d^{**(1)}[-3,3]\cap f'(\bar{d}^{(2)})=\emptyset$$

by choosing smaller disk systems $d^{*(1)}$ and $d^{**(1)}$, the homeomorphism f' is isotopically deformed to send the intersection data on $\bar{\alpha}$ and $\bar{d}^{*(1)} \cup \bar{d}^{*(2)}$ to the intersection data on $\bar{\alpha}'$ and $\bar{d}^{**(1)} \cup \bar{d}^{**(2)}$, and the chord graph $(\bar{\sigma}^{*(1)} \cup \bar{d}^{*(2)})$ $\bar{o}^{*(2)} \cup (\bar{o} \setminus \bar{o}^{(1)} \cup \bar{o}^{(2)}); \bar{\alpha} \cup \bar{\beta}^{*(1)} \cup \bar{\beta}^{*(2)})$ to the chord graph $(\bar{o}^{*(1)} \cup \bar{o}^{*(2)} \cup (\bar{o} \setminus \bar{o}^{*(2)} \cup \bar{o}^{*(2)}))$ $\bar{o}^{(1)} \cup \bar{o}^{(2)}); \bar{\alpha}' \cup \bar{\beta}^{**(1)} \cup \bar{\beta}^{**(2)}).$

By continuing this process, the homeomorphism f' is isotopically deformed to send the intersection data on $\bar{\alpha}$ and $\bar{d}^{*(1)} \cup \bar{d}^{*(2)} \cup \cdots \cup \bar{d}^{*(r)}$ to the intersection data on $\bar{\alpha}'$ and $\bar{d}^{**(1)} \cup \bar{d}^{**(2)} \cup \cdots \cup \bar{d}^{**(r)}$, and the chord graph

$$(\bar{o}^{*(1)} \cup \bar{o}^{*(2)} \cup \dots \cup \bar{o}^{*(r)}; \bar{\alpha} \cup \bar{\beta}^{*(1)} \cup \bar{\beta}^{*(2)} \cup \dots \cup \bar{\beta}^{*(r)})$$

to the chord graph

$$(\bar{o}^{*(1)} \cup \bar{o}^{*(2)} \cup \cdots \cup \bar{o}^{*(r)}; \bar{\alpha}' \cup \bar{\beta}^{**(1)} \cup \bar{\beta}^{**(2)} \cup \cdots \cup \bar{\beta}^{**(r)}).$$

Thus, Observation 2 is obtained and the proof of Theorem is completed. \Box

Acknowledgment.

This work was supported by JSPS KAKENHI Grant Number 24244005.

References

[K] A. Kawauchi, A chord diagram of a ribbon surface-link, Journal of Knot Theory

and Its Ramifications 24 (2015), 1540002 (24 pages).

[Y] T. Yasuda, Ribbon 2-knots with distinct ribbon types, J. Knot Theory Ramifications, 18 (2009), 1509-1523.