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Abstract 

In this article, we explain some introductory facts of spatial graphs and then introduce a concept 

of the unknotting number of a spatial graph generalizing the usual unknotting number of a knot. 

We explain that there are infinitely many prime spatial graphs which are almost identical to a 

given graph. We apply this result to a prion-tangle, a topological model of prion proteins to obtain 

a linking property of a prion-tangle.  
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Figure 1:  A spatial graph 

 

1. Introduction  

 

We consider a finite graph Γ without any vertices of degrees 0 and 1. A spatial graph of Γ is 

defined to be a topological embedding image G of Γ into Euclidean 3-space R
3
 such that there is 

an orientation-preserving homeomorphism h: R
3
 → R

3
 sending G to a polygonal graph in R

3 

(see Fig.1). Spatial graphs are one of the main research objects in knot theory 
[1]

.We consider a 

spatial graph G by ignoring the degree 2 vertices for our convenience, so that we have an edge 

with just one vertex (see Fig.2). For an edge α of a spatial graph G, let G＼α denote the spatial 

sub-graph obtained from G by deleting α with the vertices missed which is called the α-reduction. 

When α is an edge with only one degree 3 vertex, we have a degree one vertex in G＼α.  In this  



case, we may understand the edge reduction G＼α as the graph obtained by deleting the arc with 

the degree one vertex. If Γ is a loop, then G is called a knot, and it is trivial if it is the boundary of 

a disk in R
3 

(see Fig.3). When Γ is the disjoint union of finitely many loops, G is called a link, 

and it is trivial if it is the boundary of mutually disjoint disks
 
in R

3
 (see Fig.4). A knot is 

considered as a link with one component. Since the 3-sphere S
3 

is topologically the one point 

compactification of R
3
 adjoining the infinite point {∞}, we can also consider spatial graphs as 

graphs in S
3 

without making a confusion. In Section 2, we explain a diagram of a spatial graph. In 

Section 3, the notion of the equivalence on spatial graphs is explained to describe a central 

problem, the equivalence decision problem. The equivalence of spatial graphs is also stated there 

in terms of the generalized Reidemeister moves. A role of a constituent link of a spatial graph is 

also observed there. In Section 4, we explain how the notion of the unknotting number of a knot 

is generalized to the notions of the unknotting number and the Γ-unknotting number of a spatial 

graph. In Section 5, we show the existence theorem of prime spatial graphs which are almost 

identical to every given spatial graph. In Section 6, we apply the existence theorem to a 

prion-tangle which is a topological model of prion proteins based on the Prusiner theory
[2]

 to 

show a linking property of the prion-tangles. 

 

                  

 

Figure 2:  An edge α with just one vertex 

 

              

 

A trivial knot       A non-trivial knot (Trefoil knot) 

 

Figure 3 

 

                     
 

A trivial link        A non-trivial link (Hopf link) 

 

Figure 4 



2. Spatial graph diagrams 

 

For a vector a orthogonal to a plane P in R
3
 , let pa: R

3
 → P be the orthogonal projection to P. 

Assume that every point x∈pa(G) has one of the following neighborhoods in pa(G) (see Fig. 5):  

(1)  pa
-1

(x)∩G ={x
*
 } with x

*
 a non-vertex point of G.  

(2)  p a
-1

(x)∩G ={x
*
+,  x

*
-} with x

*
+ and x

*
- non-vertex points of G.  

(3)  pa
-1

(x)∩G = {x
*
} with x

*
 a vertex of G of degree≧3.  

 

(1)  A single point     (2)  A double point         (3)  A vertex point 

 

Figure 5:  A projection image point x of a spatial graph 

 

In (2), we take x
*
+  and x

*
-  so that they satisfy the inner product inequality a・x

*
+ > a・x

*
-.  

Then x
*
+ is called an upper crossing point and x

*
- is called a lower crossing point. We put the 

following definition:  

 

DEFINITION 2.1.  

A diagram D=DG of a spatial graph G is the image pa(G) in a plane P⊂R
3 

for
 
an orthogonal 

vector a to P together with the upper-lower crossing point information on every double point so 

that a small open neighborhood of every lower crossing point is removed (see Fig. 1).  

 

3.  Equivalence of spatial graphs  

 

Two spatial graphs G and G' are equivalent if there is an orientation-preserving homeomorphism  

h: R
3
 → R

3 
sending G onto G'. A fundamental topological problem on spatial graphs is:  

 

PROBLEM 3.1 (Equivalence Decision Problem).    

By an effective method, decide whether or not two given spatial graphs of a graph Γ are 

equivalent.  

 

A special problem relating to the molecular chemistry is:  

 

PROBLEM 3.2(Chirality Problem).  

Determine whether or not a given spatial graph is equivalent to the mirror image. 

 

Even for knots and links, these problems are unsolved, although lots of effective methods on  



topological invariants are known. The following theorem is a fundamental result in knot theory 

and sometimes useful in arguments on the equivalence decision problem.  

 

THEOREM 3.3 
[1], [3], [4], [5], [6]

. 

Two spatial graphs G and G' are equivalent if and only if any diagram D of G is deformed into 

any diagram D' of G' by a finite sequence of the generalized Reidemeister moves I-V (see Fig. 6). 

 

 

 

Figure 6: The Reidemeister moves I-III and the generalized Reidemeister moves I-V 

 

A consituent link of a spatial graph G is a link contained in G. The following proposition is direct 

from the definition of an equivalence of spatial graphs:  

 

PROPOSITION 3.4. 

If two spatial graphs G
* 

and G are equivalent, then there is a graph-isomorphism q: G
*
→ G such 

that every constituent link L
* 
of G

*
 is equivalent to the corresponding constituent link L=q(L

*
) of 

G= q(G
*
).  

 

A spatial graph of the graph Γ shown in Fig. 7(1) is called a θ-curve. A θ-curve is trivial if it is 

equivalent to the θ-curve in a plane as in Fig. 7(1). We see that the θ-curve in Fig. 7(2) is 

non-trivial, because the trivial θ-curve has only three trivial constituent knots shown in Fig. 8(1) 

and the θ-curve in Fig. 7(2) has a non-trivial constituent knot (Trefoil knot) shown in Fig. 8(2).  

   

(1)  A trivial θ-curve      (2)  A non-trivial θ-curve 

 

   Figure 7  



       

 

(1) The constituent knots of a trivial θ-curve  (2) A non-trivial constituent knot 

 

Figure 8 

 

As we see in this example, knot theory is useful in determining non-equivalence for some spatial 

graphs. A difficult point of Problems 3.1 and 3.2 comes from the fact that the converse of 

Proposition 3.4 does not hold for any spatial graph G with at least one vertex with degree≧3, 

which will be explained in Section 5. Here is one famous example of a non-trivial θ-curve with 

only the trivial constituent knots.  

 

EXAMPLE 3.5 (Kinoshita’s θ-curve).   

The θ-curve K shown in Fig. 9 is called Kinoshita’s θ-curve
[7]

 which has only the trivial 

constituent knots shown in Fig. 10. The non-triviality of K can be proved by a traditional knot 

theoretical method such as Alexander ideals
[1]

. A different geometric proof is given by 

considering the double branched covering of S
3
 branched along a constituent trivial knot, because 

the ambient manifold is again the 3-sphere S
3 

and the remaining arc lifts to a non-trivial knot 

whereas, for a trivial θ-curve, the remaining arc must lift to a trivial knot.  

 

               
 

Figure 9: Kinoshita’s θ-curve 

 

          

 

Figure 10: The constituent knots of Kinoshita’s θ-curve 

 



4.  The unknotting number of a spatial graph 

 

          
 

Figure 11:  Deforming a diagram into a based diagram 

 

The unknotting number of a knot or link is a well-known topological invariant
[1]

. We explain here 

how this notion is generalized to the unknotting number and the Γ-unknotting number of a spatial 

graph by introducing the concepts of an unknotted spatial graph and a Γ-unknotted spatial graph. 

A connected spatial graph G is obtained from a maximal tree T (a smallest tree graph containing 

all the vertices of degrees≧3 of G) by adding the remaining edges which we call T-edges. By 

definition, T=φ if G is a knot, and T is one vertex if G has just one vertex of degree≧3. Let D be 

a diagram of G, and Dα  the sub-diagram of D corresponding to a T-edge α of G. The diagram D is 

a based diagram (on a based tree T) and denoted by (D;T) if there are no crossing points of D 

belonging to T. For a spatial graph G with connected components Gi (i=1,2,…,r) , a based 

diagram (D,T) of G is a union of based diagrams (Di,Ti) of Gi (i=1,2,…,r) such that D is a 

diagram of G and there are no crossing points of D belonging to T=T1∪T2∪…∪Tr. We can 

deform every diagram of a spatial graph G into a based diagram by a finite sequence of the 

generalized Reidemeister moves (see Fig. 11). Let (D;T) be a based diagram of a connected 

spatial graph G. A T-edge diagram Dα is monotone if there is an orientation on the edge α such 

that a point going along the oriented T-edge diagram Dα from a vertex if T≠φ or from a 

non-vertex point if T=φ meets first the upper crossing point at every crossing point (see Fig. 12) . 

A based diagram (D;T) of a connected graph G is monotone if the T-edge diagram Dα is 

monotone for every T-edge α and there is an ordered sequence on the T-edges such that the 

T-edge diagram Dα is upper than the T-edge diagram Dα' for every ordered pair α <α' (see Fig. 13). 

In general, a based diagram (D;T) of a graph G with connected components Gi (i=1,2,…,r) is 

monotone if (D;T) is a union of monotone diagrams (Di,Ti) of Gi (i=1,2,…,r) such that the 

diagram Di is upper than the diagram Dj for every i<j after, if necessary, changing the indices of 

Gi (i=1,2,…,r). The warping degree d(D;T) of a based diagram (D;T) is the least number of 

crossing changes on the T-edge diagrams of (D;T) needed to obtain a monotone diagram. For 

example, the diagram in Fig. 14 is a monotone diagram obtained from a based diagram of the 

spatial graph of Fig. 1 by crossing changes. The complexity of the based diagram (D;T) is the pair 

cd(D;T)=(c(D;T), d(D;T)) together with the dictionary order where c(D;T) denotes the crossing 

number of (D;T). We put the following definitions
[6],[8]

.  

              



                    

 

Figure 12:  Monotone T-edge diagram 

 

 
 

Figure 13 

                            

 
 

Figure 14:  A monotone diagram 

                           

DEFINITION 4.1.  

The complexity γ(G)=(cγ(G),dγ(G)) of a spatial graph G is the minimum in the dictionary order of 

the complexities cd(D;T) for all based diagrams (D;T) of G.  

 

The complexity γ(G) is a topological invariant of G. We call the topological invariants cγ(G) and 

dγ(G) the γ-crossing number and the γ-warping degree of G, respectively. The complexity γ(G) 

goes down until G becomes a graph in a plane by the crossing change or the splice at a suitable 

crossing point on G. As similar notions, we have the crossing number c(G) which is the minimum 

of the crossing numbers c(D) of all diagrams D of G and the warping degree d(G) which is the 

minimum of the warping degrees d(D;T) of all based diagrams (D;T) of G. The warping degrees 

of knots and links have been more or less discussed 
[6], [9], [10], [11]

.  

 

DEFINITION 4.2.  

A spatial graph G is unknotted if d(G)=0, γ-unknotted if dγ(G)=0, and Γ-unknotted if G is a 

γ-unknotted spatial graph of a graph Γ such that cγ(G) is minimal for all spatial graphs of Γ. 

 



A link L is unknotted if and only if L is a trivial link, and a spatial graph G of a plane graph Γ is 

Γ-unknotted if and only if G is equivalent to a graph in a plane. For example, in Fig. 15, a 

Γ-unknotted spatial graph K6 of the 6-complete graph Γ6 and a Γ-unknotted spatial graph K7 of 

the 7-complete graph Γ7 are shown. In these notions, the following Conway-Gordon theorem 

must keep in mind.  

 

  

              A Γ-unknotted K6            A Γ-unknotted K7  

 

Figure 15 

 

 

THEOREM 4.3 (Conway-Gordon
[12] 

).   

Every spatial 6-complete graph K6 contains a non-trivial constituent link and every spatial 

7-complete graph K7 contains a non-trivial constituent knot.  

 

For example, K6 and K7 in Fig. 15 have a Hopf link constituent link and a Trefoil constituent knot, 

respectively. Nevertheless, we have the following properties of an unknotted spatial graph:  

 

THEOREM 4.4
[8]

. 

(1)  For every graph Γ, there are only finitely many unknotted spatial graphs G of Γ up to 

equivalences.   

(2)  An unknotted connected spatial graph G is deformed into a maximal tree of G by a sequence 

of the α-reductions on trivial edges α shown in Fig. 16.   

(3)  An unknotted connected spatial graph G is equivalent to a trivial bouquet of circles after the 

edge contractions of a maximal tree (see Fig. 17). 

 

              
 

Figure 16:  A trivial edge reduction  

 



 

 

Figure 17:  An edge contraction  

 

The following notion
[8]

 is a natural generalization of the unknotting number of a knot or a link. A 

similar notion is further generalized to a spatial graph with at least two degree one vertices
[8]

 .
 

 

DEFINITION 4.5.  

The unknotting number u(G) (or the Γ-unknotting number uΓ(G), respectively) of a spatial graph 

G is the minimal number of crossing changes needed to obtain a diagram of an unknotted spatial 

graph (or a Γ-unknotted spatial graph, respectively) from a diagram of a spatial graph equivalent 

to G.  

 

For example, Kinoshita’s θ-curve G in Fig. 9 has u(G)= uΓ(G)=1, because the crossing change at 

any crossing point except one crossing point gives an unknotted θ-curve which is also a 

Γ-unknotted θ-curve (The crossing change at this exceptional crossing point gives a θ-curve 

equivalent to the mirror image of Fig. 7(2)). As another example, the spatial graph G of a plane 

graph Γ in Fig. 18 is unknotted, so that u(G)=0, but is not Γ-unknotted because a Hopf constituent 

link is contained. We have uΓ(G)=1 by taking the crossing change at any crossing point. In 

general, we can see that for any graph Γ and any positive integer n, there is a spatial graph G of 

Γ such that u(G)= uΓ(G)=n
[8]

. 

 

              

 

Figure 18:  An unknotted, non-Γ-unknotted spatial graph    

     

5.  Existence of spatial graphs with the same constituent knots and links 

 

In this section, we explain how the converse of Proposition 3.4 does not hold. For this purpose, 

we use the following notion where a similar useful notion is studied by Taniyama et al. 
[13]

. 

 

DEFINITION 5.1.  

A spatial graph G is prime if G is not equivalent to any spatial graph G' in the cases (0)-(2) (see 

Fig. 19): 



(0)  There is a plane in R
3
 which does not meet G' and separates G' into two spatial sub-graphs. 

(1)  There is a plane in R
3 
meeting G' in one point which separates G' into two spatial graphs 

(with at most one vertex of degree one).  

(2)  There is a plane in R
3 
meeting G' in two points x1, x2 which separates G' into two spatial 

graphs G'1, G'2 (with at most two vertices of degree one) such that the spatial graph G'i∪[x1, x2] 

with [x1, x2] the interval between the points x1, x2 is not equivalent to a trivial knot for i=1,2. 

 

 

              (0)                 (1)                       (2) 

 

Figure 19:  Non-prime spatial graphs 

 

A spatial graph G
*
 is said to be almost identical to a spatial graph G if G

*
 is not equivalent to G 

and there is a graph-isomorphism q : G
*
→G such that the α

*
-reduction G

*＼α
*
 is equivalent to the 

α-reduction G＼α for every edge α
*
 of G

*
 and α =q(α

*
). We have the following theorem: 

 

THEOREM 5.2
 [14], [15]

. 

For every spatial graph G, there are infinitely many (up to equivalences) prime spatial graphs G
*
 

which are almost identical to G. This family contains the following families:  

 

(1) A family of infinitely many prime spatial graphs G
*
 with  

                   max{u(G)-2, 1}≦u(G
*
)≦max{u(G), 1}. 

(2) A family of infinitely many prime spatial graphs G
*
with  

                  max{uΓ(G)-2, 1}≦uΓ(G
*
)≦max{uΓ(G), 1}.  

 

The first half of this theorem is proved by the topological imitation theory
[14]

. The latter half of 

this theorem is proved by observing that a technique on the crossing change in the topological 

imitation theory
[15]

 is applicable to the unknotting numbers u(G) and uΓ(G) of a spatial graph G 

by the same way as we have done for the unknotting number of knots and links. By a special 

feature of the topological imitation theory, the compact exteriors E(G
*
) of the spatial graphs G

*
 

regarded as graphs in S
3 

are hyperbolic 3-manifolds with non-torus components totally geodesic. 

Thus, the compact exteriors E(G
*
) are far from the compact exterior of an unknotted spatial graph 

which is seen to be a handlebody from Theorem 4.4. The following corollary, obtained directly 



from Theorem 5.2 shows how the converse of Proposition 3.4 does not hold.  

 

COROLLARY 5.3. 

For every spatial graph G with at least one vertex of degree≧3, there are infinitely many (up to 

equivalences) prime spatial graphs G
*
 with a graph-isomorphism q: G

*
→G such that every 

constituent link L
*
 of G

*
 is equivalent to the constituent link L=q(L

*
) of G. In this family, there 

are infinitely many prime spatial graphs G
*
 with max{u(G)-2, 1}≦u(G

*
)≦max{u(G), 1} and 

infinitely many prime spatial graphs G
*
 with max{uΓ(G)-2, 1}≦uΓ(G

*
)≦max{uΓ(G), 1}. 

 

A spatial graph G of a plane graph Γ is said to be minimally knotted if G is almost identical to a 

graph in a plane
 
(in R

3
). Theorem 5.2 was used to confirm the Simon-Wolcott conjecture

[16]
 that 

there is a minimally knotted spatial graph of every plane graph. Since a graph G in a plane
 
(in R

3
) 

has u(G)=uΓ(G)=0, we have the following corollary with additional properties:  

 

COROLLARY 5.4. 

For every plane graph Γ, there are infinitely many (up to equivalences) minimally knotted prime 

spatial graphs G
*
 of Γ with u(G

*
)=uΓ(G

*
)=1.  

 

6.  An application to a topological model of prion proteins 

 

 

 

Figure 20:  Prion Precursor Protein 



An illustration of Prion precursor protein is in Fig. 20
[17]

 (where the responsibility of this English 

translation comes to the author). Some points of the Prusiner theory 
[2] 

on a prion protein are the 

following points (1)-(3): 

 

(1) By losing the N-terminal region, Prion precursor protein changes into Cellular PrP, denoted by 

PrP
C
 or Scrapie PrP, denoted by PrP

SC
, and α-helices change into β-sheets.  

(2) The 1-dimensional structures on PrP
C
 and PrP

SC
 are the same and a main difference of PrP

C
 

and PrP
SC

 may come from a difference of the conformations of PrP
C
 and PrP

SC
. 

(3) There is one S-S bond. 

 

Let  

H+ = { (x1,x2,x3)∈R3|x3≧0 }   and    H
- 

= { (x1,x2,x3)∈R3|x3≦0 }  

be the upper-half and lower-half 3-dimensional spaces, and  

∂H+ = ∂H
- 

= { (x1,x2,x3)∈R3|x3=0 }  

the boundary plane. We consider a topological model of prion proteins on PrP
c
 and PrP

SC
 to 

investigate a topological difference between PrP
c
 and PrP

SC
 as follows (see Fig.21):  

 

 

 

A prion-string                A prion-tangle of 3 strings 

 

Figure 21 

 

DEFINITION 6.1.   

A prion-string K in the upper-half 3-space H
+
 is a union of a trivial loop l(K) (called the S-S loop) 

in the interior of H
+ 

and an arc α(K) (called the GPI-tail) in H
+ 

joining a point (called the S-S 

vertex) in (K) with a point (called the GPI-anchor) in ∂H+. A prion-tangle of r strings is the union 

of mutually disjoint r prion-strings whose S-S loops form a trivial link 

 

We note that the one point compactification (R
3∪{∞},H-∪{∞}) is homeomorphic to a pair 

(S
3
,B) with B a 3-ball in the 3-sphere S

3
. Given a prion-tangle T, we can construct a graph G(T) in 

S
3 

by shrinking the 3-ball B to a point in S
3
, which may be considered as a spatial graph in R

3
 in a 

unique sense up to equivalences (see Fig. 22). Two prion-tangles T and T' are equivalent 
 
if there 

is an orientation-preserving homeomorphism h: H+ → H+ sending T to T'. By a shape of 

prion-tangles, we see the following lemma:  



 
 

Figure 22:  Constructing a spatial graph from the prion-tangle of 3-strings in Fig. 21 

 

LEMMA 6.2. 

Two prion-tangles T and T' are equivalent if and only if the spatial graphs G(T) and G(T') are 

equivalent. 

 

In terms of diagrams of prion-tangles, we obtain the following corollary by combining Theorem 

3.3 with Lemma 6.2 :   

 

COROLLARY 6.3.  

Two prion-tangles T and T' are equivalent if and only if any diagram D of T is deformed into any 

diagram D' of T' by a finite sequence of the generalized Reidemeister moves I-V in the interior of 

H
+
 after a suitable position change of the GPI-anchors.  

 

If G(T) is unknotted, Γ-unknotted
  

or prime, then we say that the prion-tangle T is unknotted, 

Γ-unknotted  or prime, respectively. A prion-tangle T* is almost identical to a prion-tangle T if  

the spatial graph G(T
*
) is almost identical to the spatial graph G(T), which is equivalent to saying 

that T
*
and T are not equivalent and there is a graph-isomorphism q: T

*
→T such that for every S-S 

loop or GPI-tail α
*
of T

* 
and

  
α=q(α

*
), the α

*
-reduction T

*＼α
*
 is equivalent to the α-reduction  

T＼α. A prion-tangle T is trivial if T is equivalent to a prion-tangle with no crossing point. For a 

prion-tangle, we see that T is trivial if and only if T is unknotted if and only if T is Γ-unknotted.  

For example, the prion-tangle of 3 strings in Fig. 21 is trivial. A prime prion-tangle is non-trivial. 

Our topological model of prion proteins occurred by supposing that the GPI-tails of some 

prion-strings happened to cross each other or to pass through the S-S vertices of prion-strings. 

Some elementary properties of prion-tangles are investigated by Yoshida
[19]

 who also makes some 

calculations of the Yamada polynomial
[18] 

useful in identifying spatial graphs. For example, every 

prion-tangle T of one string is a trivial prion-tangle because G(T) has a unique edge with the 

vertex of degree one whose contraction gives a trivial knot. As a consequence of Theorem 5.2, we 

can observe the following property on prion-tangles.  

 

THEOREM 6.4.   

For every prion-tangle T of r(≧2) strings, there are infinitely many (up to equivalences) prime 

prion-tangles T
*
 almost identical to T. Further, this family contains infinitely many prime 

prion-tangles in the following two types: 



 

Type I:  A prime prion-tangle T
*
 constructed from T by one crossing-change on the GPI tails.  

TypeII:  A prime prion-tangle T
*
 constructed from T by a GPI-tail passing through an S-S vertex 

once.  

 

Some examples of types I and II are shown in Fig. 23 where the type II example is given by 

Yoshida
[19]

, who showed that this example gives a minimal crossing diagram among the 

non-trivial prion-tangle diagrams by showing that the prion-tangles with diagrams of crossing 

numbers≦3 are trivial. By Theorem 6.2, we can observe the following prime addition property of 

prion-tangles： 

 

COROLLARY6.5 (Prime Addition Property). 

Let T and T' be any prion-tangles such that T and T' are separated by an upper-half plane in H
+
. 

Then the prion-tangle T∪T' is changed into a prime prion-tangle with T and T' as sub-tangles 

both by one crossing-change on the GPI tails and by a GPI-tail passing through an S-S vertex 

once.  

 

            

 

An example of Type I                An example of Type II 

 

Figure 23 

 

7.  Conclusion  

 

The spatial graph induced from a prion-tangle is a spatial graph of a connected plane graph 

obtained from a finite number of loops by connecting a base point to a point of every loop with 

an edge and has a unique trivial constituent link. Since it is a relatively simple object in knot 

theory, a complete classification of prion-tangles may be expected. In our topological models of 

Cellular PrP’s and Scrapie PrP’s, we suppose that the Cellular PrP’s are trivial prion-tangles and 

the Scrapie PrP’s are non-trivial prion-tangles. Then the prime addition property of prion-tangles 

may support a conformal difference of Cellular PrP and Scrapie PrP, and also may explain a 

mysterious fact that the Scrapie PrP’s are produced from the Scrapie PrP’s and the Cellular PrP’s, 

namely sPrP
SC

 + tPrP
C 

→ (s+t) PrP
SC

. 
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