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Abstract

A conformal structure of a prion protein is thought to cause a prion disease by S. B. Prusiner’s theory.
Knot theory in mathematics is useful in studying a topological difference of topological objects. In
this article, concerning this conjecture, a topological model of prion proteins (PrP¢, PrP%) called
a prion-tangle is introduced to discuss a question of whether or not the prion proteins are easily
entangled by an approach from the mathematical knot theory. It is noted that any prion-string with
trivial loop which is a topological model of a prion protein cannot be entangled topologically unless
a certain restriction such as* Rotaxsane Property” is imposed on it. Nevertheless, it is shown that
any two split prion-tangles can be changed by a one-crossing change into a non-split prion-tangle
with the given prion-tangles contained while some attentions are paid to the loop systems. The proof
is made by a mathematical argument on knot theory of spatial graphs. This means that the question
above is answered affirmatively in this topological model of prion-tangles. Next, a question of what
is the simplest topological situation of the non-split prion-tangles is considered. By a mathematical
argument, it is determined for every n > 1 that the minimal crossing number of n-string non-split
prion-tangles is 2n or 2n — 2, respectively, according to whether or not the assumption that the loop
system is a trivial link is counted.

Keywords: Topological model, Prion protein, Prion-string, Prion-tangle, Spatial graph,
Prion-bouquet, Unknotting number
1. Introduction

A conformal structure of a prion protein is thought to cause a prion disease by

S. B. Prusiner’s theory (see for example, [1, 8, 27]). An illustration of a precursor
prion protein is in Figure 1 (see [25]). As previously known experimental facts, a
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Figure 1: A precursor prion protein

prion precursor protein PrP which is regularly folded with the both ends fixed turns
into a cellular prion protein, denoted by PrP¢, or a scrapie prion protein, denoted by
PrP5¢ by losing an N-terminal region. The GPI-anchor of Pr P still remains in PrP¢
and PrP°¢ although PrP¢ can be considered to leave from and re-attach to the cell
surface at the GPI-anchor(cf. [2]). A set of p elements of PrP¢ and a set of ¢ elements
of PrP5¢ form a set of p + ¢ elements of PrP°“. The linear structures of PrP¢ and
PrP5¢ are considered as the same one, although an a-helix of PrP¢ is changed into
a [(-sheet in PrPS¢. There is one S-S bond in PrP. There is a problem asking how
cellular prion proteins PrP¢ and scrapie prion proteins PrP°¢ are changed into all
the scrapie prion proteins PrP*“. By counting these experimental facts, a topological
model of prion proteins (PrP¢, PrP5°) is proposed as follows: namely, a prion-string
K is a graph consisting of a trivial loop ¢(K) and an arc «(K) in the upper-half 3-
space H? = {(z,y,2) € R*|y = 0} such that the arc a(K) joins a point in the loop
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Figure 2: A prion-string

((K') with a point in the boundary plane 0H? = {(,0, 2) € R*} (see Figure 2). The
loop ¢(K) and the arc a(K) are called the SS-loop and the GPI-tail of the prion-string
K, respectively. The SS-vertex is the endpoint of the GPI-tail a(K) attaching to the
SS-loop ¢(K) and the GPI-anchor is the endpoint of the GPI-tail a(K) attaching to
the boundary plane 0H? . If PrP®s and PrP°%s are topologically distinct, then the
topological difference between PrP%’s and PrP°%’s are theoretically supposed to be
constructed by crossing changes (see Figure 3) through the S-S bond or the GPI-
anchor although any biological evidence is unknown except that PrP SC’s finally
change into Amyloid fibrils (cf. [5, 6]).
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Figure 3: A crossing change

Figure 4: Prion-tangles in a standard position

The purpose of this article is to study how a system of prion strings is entangled
by a knot theoretical approach and to study whether or not the prion proteins can be
easily entangled. Because the one-crossing change is the most complexity-minimizing
operation in the crossing changes, it is particularly interesting to ask how a system
of prion strings K; with ¢ = 1,2,...,n(n > 1) which is in a standard position as
in Figure 4 is entangled by a one-crossing change. A possibility of the GPI-tail
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a(K;) or the SS-loop ((K;) passing through the SS-vertex of an SS-loop ¢(K) or
a possibility of the GPI-tail «(K;) or the SS-loop ¢(K;) passing through the GPI-
anchor of a GPI-tail o(K;) (where i = j is granted) is considered (see Figure 5).
The crossing change is said to be of type I, II or III, respectively, if it is made on a
pair (a(K;), a(K;)), (U(K;), a(K;)) or (£(K;), (K;)) for some ¢ and j granting ¢ = j.
The SS-loop system U ((K;) is still a trivial link! after any one-crossing change
of Type I or II. A one-crossing change of type III happens to make the SS-loop
system a non-trivial link. In fact, any one-crossing change on (¢(K;),¢(K;)) (i # j)
always produces a non-trivial link such that the pair (¢(K;), (X)) comes to have the
linking number £1 but the linking numbers of the other distinct pairs are still zero
in any orientations. In this case, all the knot components ¢(K;) (i = 1,2,...,n) are
still trivial. On the other hand, some one-crossing change on (¢(K;), ¢(kK;)) happens
to produce a non-trivial link such that the knot component /(K;) comes to be a
non-trivial knot, but the linking numbers of all distinct pairs are still zero in any
orientations. An n-string prion-tangleis defined to be the union 7" of mutually disjoint
n prion-strings K; (i = 1,2,...,n) in the upper-half 3-space H?, but it is imposed
(unless otherwise mentioned) that the SS-loop system ((T) = U | U(K;) is a trivial
link. An example of a 3-string prion-tangle is illustrated in Figure 6. It is a standard
technique in knot theory to make various non-trivial links from the SS-loops ¢(K;)
(1t = 1,2,...,n) by one-crossing changes of type III (see Figure 7). Two n-string
prion-tangles T"and 7" are defined to be equivalent if there is an orientation-preserving
homeomorphism A : Hi — H_:i”_ sending T to 7", whose meaning is also explained from
now by a diagram-like approach. A diagram Dy of an n-string prion-tangle 7 is the
projection image of T' to the upper-half plane H? = {(z,y) € R* |y = 0} with, as the
singularities, only crossing points (that is, transversely intersected double points apart
from the vertices together with upper-lower information around the double points)
under the projection H? — H? sending (z,y, 2) to (x,y). Every n-string prion-tange
T has a diagram D after a slight isotopic deformation of 7'. Then, as it is seen
from Lemma 3.1, two n-string prion-tangles 7" and 1" are equivalent if and only if
their diagrams Dy and Dy are transformed into each other by a finite number of
generalized Reidemeister moves I-V(see Figure 8) in the interior of H? after making
a position change of the GPI-anchors of T and T" in the boundary plane 0H?. An
n-string prion-tangle 7" is defined to be trivial if it is equivalent to a prion-tangle with
a diagram without crossing points (see Figure 4). It is noted in §3 that every prion-
string K with ¢(K) a trivial knot is trivial, but a non-trivial prion-string can occur
under a certain non-topological assumption. An n(2 2)-string prion-tangle 7" is split
if it is equivalent to the union 7" of two n;(= 1)-string prion-tangles T; (i = 1, 2) with
ny +ny = n such that the diagrams Dy, of T; (i = 1,2) in a diagram Dy of 7" do not
meet. The split n-string prion-tangle 7" is also called a split sum of the n;-string prion-
tangles T; (i = 1,2). The existence of non-split n-string prion-tangles is explained in

1See §2 for the definition of a trivial link.



§3 so that for every split n(= 2)-string prion-tangle 7', there are infinitely many (up
to equivalences) non-split n-string prion-tangles 7" which are “almost identical”to
T. Further, this family contains infinitely many non-split n-string prion-tangles 7™
obtained from T by one-crossing changes of types I, II, ITI. As a result,the following
non-split addition property on prion-tangles can be observed (see Corollary 3.6 later [

0-P 33

Figure 5: Creating crossing types
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Figure 6: A prion-tangle

Addition property. Let 77 and 75 be any p-string and ¢-string prion-tangles such
that T} and T are separated by an upper-half plane in H3. Then the split (p + ¢)-
string prion-tangle 7' = T} UT5, can be changed into a non-split prion-tangle 7™ which
is a union of two prion-tangles equivalent to 7} and 75, respectively, by a one-crossing
change of any type I, II or III.

= =

Figure 7: 2-string prion-tangles with non-trivial links by one-crossing changes of type
I1I



It can be observed that the SS-loop system ¢(7*) is equivalent to the SS-loop
system ((T') except the case of any one-crossing change of type III on any pair of
distinct SS-loops in ¢(7") making always ¢(7*) a distinct llink from ¢(7°). In the
present topological models of PrP® and PrP%¢, it is regarded that a set of cellular
prion proteins, PrP%’s forms a trivial prion-tangle and a set of scrapie prion proteins,
PrP5%s forms a non-split prion-tangle. Then one can ask as mathematical problems
in knot theory, for example, how a conformal difference of the cellular PrP and the
scrapie PrP is explained and how the fact that a set of m scrapie PrP’s and a set of
n cellular PrP’s can produce a set of (m + n) scrapie PrP’s, namely how

mPrP* + nPrPY — (m 4 n)PrpP>°

is explained, which are imposed in S. B. Prusiner’s theory. The addition property of
prion-tangles may answer this problem theoretically. As another result of this paper,
the minimal crossing number among the non-split prion-tangles with n strings for
every n > 1 is determined in either case of assuming or not assuming that the loop
system is a trivial link. This result is shown in §4. In fact, it will be shown that
every diagram Dr of any non-split n-string prion-tangle 7" with ¢(T") a trivial link
has ¢(Dr) 2 2n and there is a non-split n-string prion-tangle 7" such that ¢(7") is a
trivial link and a diagram Dy of T has ¢(Dy) = 2n, for every integer n = 2. Likewise,
it will be shown that every diagram Dp of any non-split n-string prion-tangle 7'
granting that ¢(7") is a non-trivial link has ¢(Dr) 2 2n — 2 and there is a non-split
n-string prion-tangle 7" such that ¢(7") is a non-trivial link and a diagram Dy of T
has ¢(Dy) = 2n — 2, for every integer n = 2. In §2, some basics on a spatial graph
needed for our study are explained. In particular, a special spatial graph which is
called a bouqet is introduced there as an object useful in studying a prion-bouquet
in mathematical knot theory. In §3, prion-tangles are studied in terms of prion-
bouquets. In §4, the minimal crossing numbers of prion-tangles are discussed. In the
final section (§5), a concluding remark and a further question are stated.

2. Some basics on a spatial graph

A spatial graph of a finite graph [ is the image G' = Gy of a topological embedding
I' — R3 such that there is a homeomorphism h : R* — R? sending G to a polygonal
graph in R3. The spatial graph G is called a link if I is the disjoint union of finitely
many loops, and it is trivial if it is the boundary of mutually disjoint disks in R3.
A knot is a link with one component. For a general reference of knots, links and
spatial graphs, refer to [14], and for a particular explanation on this section, refer to
[16, 17]. A diagram D¢ of a spatial graph G is the projection image of G to the plane
R? with, as the singularities, only crossing points (that is, transversely intersected
double points apart from the vertices together with upper-lower information around
the double points) under the projection R* — R* sending (x,y,2) to (z,y). Every
spatial graph G has a diagram D¢ after a slight isotopic deformation of G. Let ¢(Dg)
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Figure 8: Generalized Reidemeister moves

be the number of crossing points of Dg. A spatial graph G is equivalent to a spatial
graph G if there is an orientation-preserving homeomorphism A : R* — R3 such that
h(G) = G'. To consider the equivalence of a spatial graph, it is sufficient to consider
a spatial graph G without degrees zero and one vertices. Also, the degree two vertices
are ignored since they are useless in the present topological argument. Let [G] be the
class of spatial graphs G’ equivalent to the spatial graph G. It is known that two
spatial graphs G and G’ are equivalent if and only if any diagram D¢ of G is deformed
into any diagram D¢ of G' by a finite sequence of the generalized Reidemeister moves
(see Figure 8), where only the moves I-1II are needed for knots and links which are
called the Reidemeister moves in this case (see [10], [11], [14]). Let [Dg] be the class
of diagrams obtained from a diagram D¢ of G by the generalized Reidemeister moves
I-V, which can be identified with the class [G]. This induces a topological invariant,
the crossing number of G denoted by ¢(G) which is the minimal crossing number of
all diagrams in [Dg].

(2;\ =L

S

Figure 9: A bouquet

Our main concern here is a certain spatial graph called an n-string bouquet. To
state it, some terminologies are needed. Let a graph « in R? be the union of simple
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arcs o; (i =1,2,---,n) such that the intersection «; N ¢; is a fixed point v for every
distinct ¢ and j. This spatial graph « is called an n(2 2)-string total tail with base
point v and tails ;. An n-string bouquet A is the union of a link ¢ of n components
l; (i=1,2,...,n) in R® and an n(= 2)-string total tail a with the base point v and
the tails o; (i = 1,2,...,n) such that /Na; = v; is the endpoint of a; except v. Some
2-string bouquets are classified by Moriuchi [24] and Ishii, Kishimoto, Moriuchi, and
Suzuki [9]. See Figure 9 for an example of a 3-string bouquet. The link ¢, the knots
l; (1 =1,2,...,n), and the points v; (( = 1,2,...,n)) are called the loop system,
the loops, and the vertices of A, respectively. An n-string bouquet A* is said to be
almost identical to an n-string bouquet A if A* is not equivalent to A and there is a
homeomorphism? ¢ : A* — A such that g(o}) = a; for all i after re-indexing the tails
af (1=1,2,...,m) and the spatial graph cl(A*\«}) deleting the tail o is equivalent
to the spatial graph cl(A\q;) deleting the tail «; for every i. An n-string bouquet
A is said to be split if there is an n-string bouquet A’ equivalent to A such that a
2-sphere in R® meets A’ at the base point v and separates A’ into two n;(> 0)-string
bouquets A; (¢ = 1,2) with ny + ny = n (see Figure 10). This notion of a split
graph is generalized to every spatial graph without degrees zero and one vertices as
follows: A spatial graph G' (without degrees zero and one vertices) is split if there is
an essential 2-sphere S in R? which does not meet G' or meeting G only at a vertex of
G, where the 2-sphere S is essential if every connected component of R*\S meets G.
For example, every connected spatial graph G without any cutting vertex is non-split.

The following theorem is a basic theorem in this article.

SRS

Figure 10: A split bouquet

Theorem 2.1. Let A be an n(2 2)-string bouquet obtained from an n-string bouquet
A’ by a one-crossing change on any pair of tails or loops. Then there are infinitely

2This map ¢ is usually assumed to be extendable to a smooth map ¢+ : S$® — S2 so
that(g™) 1 (A) = A* (see [12, 13]), but we do not use the property in this paper.



many (up to equivalences) non-split n-string bouquets A* which are almost identical
to A and obtained from A’ by certain one-crossing changes on the same pair of tails
or loops.

Proof of Theorem 2.1. Theorem 2.1 is a combination result of [12] and [13] (see
[20] for an explanation) where infinitely many n-string bouquets A* are constructed
with an important property that the compact 3-manifold E* obtained from S* by
removing an open regular neighborhood of A* is a hyperbolic 3-manifold with totally
geodesic boundary. This hyperbolicity of E* is sufficient to see that the n-string
bouquet A* is non-split. This completes the proof of Theorem 2.1.

B
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Figure 11: A based bouquet diagram

Concerning a crossing change, the unknotting number of a bouquet is discussed
from now. A diagram D, of an n-string bouquet A is based and written as (Dy, «)
if the diagram D, of of the total tail o in D, does not contain any crossing point of
D,. Every n-string bouquet A is equivalent to a bouquet with a based diagram by
first deforming a to a planar tree isotopically and then deforming the loop system /¢
of A to be disjoint from a\{vy,vs,...,v,}. For example, see Figure 11 for a based
diagram of a 3-string bouquet obtained by deforming the 3-string bouquet of Figure 9
isotopically. A knot diagram D, which is the diagram of ¢; in D, is monotone if
there is an orientation on /¢ such that a point going along the oriented diagram Dy,
from the vertex v, always meets first the upper crossing point at every crossing point
(see Figure 12). Similar notions are discussed in Lickorish and Millett [22], Ozawa
[26], Shimizu [28, 29], the author [15], Fujimura [3], Fung [4], Okuda [23]. A based
diagram (D,, «) of an n-string bouquet A is monotone if there is an ordered sequence
of the components ¢, (kK = 1,2,---,n) of the loop system ¢ of (A, «) such that the
knot diagram D,, is monotone for all £ and the knot diagram Dy, is upper than the
knot diagram Dy, for every k < s. The notion of a monotone diagram is generalized to
every spatial graph and leads to the complexity and its related numerical invariants
of every spatial graph (see [16, 17]). The unknotting number u(A) of an n-string
bouquet A is defined as follows. An n-string bouquet A is said to be unknotted if
A is equivalent to an n-string bouquet A’ with a monotone diagram, which is seen
to be equivalent to a graph on a plane in the case of n-sptring bouquets. Thus, an
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unknotted n-string bouquet A exists uniquely up to equivalences for every n and has
the crossing number ¢(A) = 0. The unknotting number u(D,) of a diagram D, of
an n-string bouquet A is the minimal number of crossing changes needed to obtain
a diagram of an unknotted n-string bouquet. The unknotting number u(A) of an n-
string bouquet A is the minimum of the unknotting numbers of all diagrams in [D,].
Since a monotone diagram can be obtained from any based diagram (Dy,«) by a
finite number of crossing changes, the inequality u(A) £ u(D,) < +o0 always holds.
Taniyama’s method in [30] is used to determine that a given bouquet is non-split.
To explain it, a disk D in R3? is said to be essential for G if the boundary 0D of
D is either in G with at least two vertices of G contained or in G with at most one
vertex and the interior intD of D meets G’ with at least one point transversely. Then
a spatial graph G’ is called an essential quotient of a spatial graph G if there is a
finite sequence of spatial graphs G; (i = 0,1,2,...,m) with Gy = G and G’ = G,,
such that G; is obtained from G;_; by the contraction along an essential disk D; for
G; for every i = 1,2,...,m. Then the main theorem of [30] says that if an essential
quotient G’ of a spatial graph G is non-split, then the spatial graph G is non-split.
Some calculations are done in SS3-4 on the prion-tangles of Figures 18, 23 and 24.

@ &

Figure 12: Monotone diagrams

Figure 13: A monotone bouquet diagram

3. From a prion-tangle to a prion-bouquet

First, it is explained how an n-string prion-tangle is regarded as an n-string bou-
quet. For the lower-half 3-space H? := {(z,y, 2) € R*|y < 0}, the one point compact-
ification (R* U {oo}, H~ U {oo}) is homeomorphic to a pair (S* B*) of the 3-sphere
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S? and a 3-ball B? in it. For an n-string prion-tangle 7" in H?, a unique n-string
bouquet Ay in S? can be constructed by shrinking the 3-ball B3 to a point in S3,
which may be considered as a graph in R® so that every diagram D of T induces
a diagram D), of Ap uniquely. In particular, the crossing number ¢(Dr) is seen
to be equal to the crossing number ¢(D,,.) for every diagram Dy of every n-string
prion-tangle 7" and the induced diagram D,,. This spatial graph Ay is called the
n-string prion-bouquet of the n-string prion-tangle 7. An n-string prion-bouquet Ap
is nothing but an n-string bouquet with a trivial link as the loop system. The crossing
number ¢(T') of an n-string prion-tangle T is defined to be the crossing number ¢(A7)
of the n-string prion-bouquet A;. Then the crossing number ¢(7") of T" is an invariant
of T up to equivalences. For example, the 3-string prion-tangle 7" in Figure 6 induces
a 3-string prion-bouquet A; of Figure 14 which is a trivial 3-string bouquet, so that
¢(T) = 0. The following lemma is obtained by reminding the definition of equivalence
of n-string prion-tangles and the definition of equivalence of n-string bouquets.

5 ., R

Figure 14: From a prion-tangle to a prion-bouquet

Lemma 3.1. Two n-string prion-tangles 7" and 1" are equivalent if and only if the
n-string prion-bouquets Ay and A;v are equivalent as spatial graphs. Equivalently, a
diagram Dy is transformed into a diagram D+ by a finite number of the generalized
Reidemeister moves I-V in the interior of the upper-half 3-space H? after making a
position change of the GPI-anchors of T and 7" in the boundary plane H? if and
only if a diagram D,,. is transformed into a diagram D,_, by a finite number of the
generalized Reidemeister moves I-V.

The following two corollaries are direct from Lemma 3.1.

Corollary 3.2. An n(2 2)-string prion-tangle 7" is split if and only if the n-string
prion-bouquet Ay is split.

Corollary 3.3. An n-string prion-tangle 71" is trivial if and only if the n-string prion-

bouquet Aj is unknotted. Thus, every prion-string K with ¢(K) a trivial knot is
always trivial.
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Figure 15: Triviality of a prion-string

By Corollary 3.3, the unknotting number u(T') of an n-string prion-tangle 7" is defined
by w(T") = u(Ay). The latter-half of Corollary 3.3 is seen from the observation that for
every prion-string K with ¢(K) a trivial knot, the 1-string prion-bouquet Ay is always
equivalent to a plane graph without crossing point (see Figure 15). On the other hand,
in molecular chemistry there is a known concept called “Rotaxsane Property” (see[7])
meaning that ring molecules around a stick molecule cannot be excluded from the
stick molecule by the stoppers of the stick molecule (see Figure 16). Analogously,
under the assumption that a string of a non-trivial knot and the cell surface cannot
pass through the SS-loop, a non-trivial prion-string can occur (cf. Figure 17). One
of the main theorems is the following theorem which is obtained from Theorem 2.1
by interpreting an n-string prion-tangle as an n-string prion-bouquet.

2

\ Stopper /

Figure 16: Rotaxsane Property

Figure 17: Non-triviality of a prion-string

Theorem 3.4. 0 Let T be an n(2 2)-string prion-tangle obtained from an n-string
prion-tangle 7" by a one-crossing change on a pair on GPI-tails and SS-loops of 7.

12



Then there are infinitely many (up to equivalences) non-split n-string prion-tangles
T* which are almost identical to 7' and obtained from 7" by certain one-crossing
changes on the same pair on GPI-tails and SS-loops of 1".

A non-effective pair among the GPI-tails and the SS-loops of a prion-tangle 7" is a
pair on the tails and the loops of 1" such that there is a crossing change of a diagram
Dy of T on the pair making an n-string prion-tangle equivalent to 7. It is seen that
any pair of the GPI-tails of T and the pairs (¢(K), a(K)), (¢(K), ¢(K)) for any string
K of T are non-effective. The following corollary is obtained from Theorem 3.4 by
taking T'=T":

Corollary 3.5. For every n(2 2)-string prion-tangle 7', there are infinitely many
(up to equivalences) non-split n-string prion-tangles 7* which are almost identical to
T and obtained from T by certain one-crossing changes on any non-effective pair of
type I, IT or III (see Figure 5).

As a remark, any one-crossing change on the pair (a(K;), a(K;)) (i # j) can be
realized as an operation of the GPI-tail a(K;) passing through the GPI-anchor of
the GPI-tail o(K;) once and any one-crossing change on the pair («a(Kj;),¢(K;)) or
(U(K;), L(K;)) can be realized as an operation of the GPI-tail a(K;) or the SS-loop
((K;) passing through the SS-vertex of the SS-loop ¢(K;) once, respectively . The
following addition property of prion-tangles is a direct consequence of Theorem 3.4.

Corollary 3.6 (Addition Property). Let 77 and 75 be any p-string and g¢-string
prion-tangles such that 7} and T, are separated by an upper-half plane in H _?; Then
the split (p + ¢)-string prion-tangle 7" = 77 U Ty can be changed into a non-split
prion-tangle 7™ which is a union of two prion-tangles equivalent to 77 and 75 by a
one-crossing change of any type I, 1I or III.

It can be observed that the SS-loop system ¢(71*) is equivalent to the SS-loop system
((T') except the case of any one-crossing change of type III on any pair of distinct SS-
loops in ¢(7") making ¢(7*) a distinct link from ¢(7’). In Figure 18, some examples of
non-split 2-string prion-tangles are given so that they are almost identical to a trivial
2-string prion-tangle and obtained from a trivial 2-string prion-tangle by one-crossing
changes of types I, IT and III, respectively. The 2-string prion-bouquet A of the type
I example T is listed as 6,9 in [9]. The 2-string prion-bouquet Az of the example 7"
of type II is introduced as Figure 2(c) of [24] and listed as 4, in [9]. The non-splitness
of these 2-string prion-tangles can be shown by algebraic methods (cf. [9], [24]), but
here the method of Taniyama [30] is used as follows. In the example T" of type I, a 2-
string bouquet with the Hopf link loop system (which is a non-trivial link) is obtained
from A by the contractions along essential disks spanning the loops appearing in the
diagram, which is non-split. In the example 7" of type II, a plane graph without any
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cutting vertex is obtained from A;+ by the contractions along essential disks bounded
by the SS-loops appearing in the diagrams, which is non-split. In the example 7" of
type III, a 2-string bouquet with the Whitehead link loop system, which is a non-
trivial link, is obtained from Ag» by the contraction along an essential disk spanning
the loop appearing as a loop without self-crossing in the diagram, which is non-split.
In conclusion, by the method of [30], it is shown that the 2-string prion-bouquets Ar,
Arr, Apn and hence the 2-string prion-tangles 7', T', T" are non-split.

Type I Type I Type 11

Figure 18: Non-split 2-string prion-tangles

4. Minimal non-split prion-tangles

The other one of our main theorems is the following theorem which determines
the minimal crossing number of n-string non-split prion-tangle diagrams in two cases
of that the loop system is assumed to be a trivial link and that the loop system may
have a non-trivial link, for every n = 2.

Theorem 4.1. The following statements (1) and (2) hold for every n = 2.

(1) The minimal crossing number of the diagrams of non-split n-string prion-tangles
with the trivial loop system is 2n. Further, there is a non-split n-string prion-tangle
T with ¢(T') a trivial link which has a diagram D with the crossing number ¢(D) =
¢(T) = 2n and the unknotting number u(D) = u(T) = 1.

(2) The minimal crossing number of the diagrams of non-split n-string prion-tangles
granting non-trivial loop systems is 2n — 2. Further, there is a non-split n-string
prion-tangle 7" with ¢(7") a non-trivial link which has a diagram D with the crossing
number ¢(D) = ¢(T') = 2n — 2 and the unknotting number u(D) = u(T") = 1.

Proof of Theorem 4.1(1). Suppose that a non-split n-string prion-tangle 7" with
((T') a trivial link has a diagram D with crossing number ¢(D) < 2n — 1. Let Ay

14



be the n-string prion-bouquet of the n-string prion-tangle 7'. The n-string prion-
bouquet As is non-split and has a diagram D’ with ¢(D') = ¢(D) £ 2n — 1. Let
l;(i=1,2,...,n) be the loops in Ay. The following lemma will be used.

Lemma 4.2. The n-string prion-bouquet Ay is split if there is a disk A bounding ¢;
such that the interior of A does not intersect the (n — 1)-string prion-bouquet Ar\/4;,
for some 1.

To see this lemma, the loop ¢; is regarded as one point by shrinking the disk A. Then
the string K; is served like an edge with degree one vertex in the graph A,. Let ¢,
(j = 1,2,...,p) be the collection of the diagrams of the loops ¢; (i = 1,2,...,n) in
D' such that e; has a zero or one self-crossing, and f; (k=1,2,...,s) the collection
of the diagrams of the loops ¢; (i = 1,2,...,n) in D" such that f; has more than one
self-crossings. By regarding the loop system ¢ = U} ,¥¢; of the n-string prion-bouquet
Ar as the diagram in D', let

{ = (Ug‘):lej) U (Upe 1 fr)-

For two diagrams D¢, (i = 1,2) of spatial graphs G; (i = 1,2), let ¢(Dg, N Dg,)
denote the crossing numbers between D¢, and D¢,. The following lemma proved
later is used.

Lemma 4.3. If the n-string prion-bouquet A is non-split, then the following in-
equality holds.
c(Ui_ye5) + c((Ujie5) N (D'\D)) 2 2p.

Assuming Lemmas 4.2 and 4.3, the proof of Theorem 4.1 will be completed as follows:
Since Ay is non-split and ¢(U3_, f;) 2 2s, the following inequalities are obtained from
Lemma 4.3.

c(D') 2 c(U_1ej) + c(((Ui_ie5) N (D'\0)) + c(Uj_, fj) 2 2p + 25 = 2n

which contradicts that ¢(D’) £ 2n — 1. This completes the proof of Theorem 4.1
except the proof of Lemma 4.3.

The following two lemmas are key steps to the proof of Lemma 4.3.

Lemma 4.4. The n-string prion-bouquet Ag is split if c¢(e; N (\e;)) = 2 and c(e; N
(D'\¢)) = 0 for some j.

Lemma 4.5. The n-string prion-bouquet Ay is split if ¢(e; N (£\e;)) = 0 and c(e; N
(D'\¢)) < 1 for some j.
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These lemmas are shown as follows.
Proof of Lemma 4.4. The proof is divided into the following two cases (i) and (ii).

Case (i). The case that e; has no self-crossings. In this case, the gray part in the left-
hand side of Figure 19 can be deformed into that in the right-hand side of Figure 19.
Then there is a 2-disk bounded by the loop e;. By Lemma 4.2, Ay is split.

Case (ii). The case that e; has one self-crossing,. In this case, the arising situations
are given in Figure 20. In every case, the self-crossing is canceled. By the case (i),
A7 is split. This completes the proof of Lemma 4.4.

Moz e

Figure 19: A deformation in the case (i)

\

:
bt

~—C D
@

4

—O
Figure 20: The situations arising in the case (ii)

Proof of the Lemma 4.5. Assume that c(e; N (D'\¢)) = 1. Then the proof is
divided into the following two cases (iii) and (iv).

Case (iii). The case that e; has no self-crossing. In this case, the gray string in
the left-hand side of Figure 21 can be deformed into that in the right-hand side of
Figure 21. Then there is a 2-disk bounded by the loop e;. By Lemma 4.2, Ay is split.
Case (iv). The case that e; has one self-crossing. In this case, the arising situations
are given in Figure 22. In every case, the self-crossing is canceled. By the case (i),
A7 is split. By the same way, it can be shown that Az is split in the case

c(e; N (D\E(D'))) =

This completes the proof of Lemma 4.5.



Figure 21: A deformation in the case (iii)
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Figure 22: The situations arising in the case (iv)

By using Lemmas 4.4 and 4.5, Lemma 4.3 can be shown as follows:

Proof of Lemma 4.3. A non-negative integer m is defined to be the minimum of
1
5¢(e; N (E\ej) +cle; N (D))
for all 5. Suppose that m = 0. Since
c(e; N (A\ej)) = c(e; N (D\)) =0

for some j, it is seen from Lemma 4.5 that Ar is split. Suppose that m = 1. If
c(e; N (0\e;)) =2 and c(e; N (D'\¢)) = 0 for some j, then Ay is split by Lemma 4.4.
If c(ejN(l\e;)) = 0 and c(e; N (D'\¢)) = 1 for some j, then Ay is split by Lemma 4.5.
Hence we have m = 2. Then

c(Uj=1€5) + c((Ujzie5) N (D))

> 37 (5eles 1 () +eles 0 (D'\D)

completing the proof of Lemma 4.3. This completes the proof of the first half of
Theorem 4.1(1).
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Figure 23: A minimal non-split prion-tangle with the trivial loop system

To show the second half of the proof of Theorem 4.1(1), the n-string prion-tangle
T in Figure 23% is taken, which has a diagram D with ¢(D) = 2n. The inequality
u(D) £ 1 holds by a one-crossing change of Type II. It suffices to show that the n-
string prion-bouquet Az is non-split. From the diagram Dp of Ay, mutually disjoint
essential n disks A; (i = 1,2,...,n) can be found so that the boundary of A; is
the loop ¢; of Ay and the interior of A; intersects A transversely only at one point.
Then the plane graph G obtained from Ay by the contractions along the essential disks
A; (i=1,2,...,n) does not have any cut vertex. Hence Ay and hence T" are non-split
by the result of Taniyama [30]. Hence ¢(D) = ¢(T') = 2n and u(D) = u(T) = 1.
The n-string prion-tangle 7" illustrated in Figure 24 is another example of a non-split
n-string prion-tangle 7" with ¢(D) = ¢(T') = 2n and u(D) = u(T) = 1 shown by the
same method, which has has the additional property that it is almost identical to a
trivial n-string prion-tangle. This completes the proof of Theorem 4.1(1).

Figure 24: Another minimal non-split prion-tangle with the trivial loop system

Theorem 4.1 (2) is shown as follows.

Proof of Theorem 4.1(2). Suppose that a non-split n-string prion-tangle 7" with
¢(T) a non-trivial link has a diagram D with crossing number ¢(D) < 2n — 3. Then
the n-string prion-bouquet Ay is non-split and has a diagram D’ with ¢(D') = ¢(D) £

3The example with n = 2 is equivalent to the example of type II in Figure 18.
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2n — 3. Let ¢ = U, ¢; be the loop system of Ay. Introduce the equivalence relation
~ in the loops ¢; (i =1,2,...,n) generated by the elementary relation ¢; ~. ¢; if and
only if ¢(¢; N ¢;) = 1 (meaning necessarily c¢(¢; N ¢;) = 2). Let e, (kK =1,2,...,7)
be the equivalence classes of the loops ¢; (i = 1,2,...,n), and a; (k = 1,2,...,7)
the corresponding classes of the tails «; attaching to ¢; of Ap. If r = 1, then the
inequality ¢(D') = 2n — 2 holds, a contradiction. Assume that r 2 2. Then, since
A is non-split, for each k there is an index h with A # k such that c(a, N ;) = 2
for some loop ¢; in e;. This observation is used to make a graph I' with the vertices
er (k=1,2,...,r) and the edges consisting of the pairs eiey, for all such pairs (h, k)
with h # k. Since Ay is non-split, this graph I" is connected. Since the maximal tree
of I has » — 1 edges, the following inequality holds:

D) = 3 2(len] — 1)+ 2(r 1) 220 -2,

which contradicts ¢(D') = ¢(D) = 2n— 3, completing the first half of Theorem 4.2(2).
To show the second half, the n-string prion-tangle 7" in Figure 25 is taken, which has
a diagram D with ¢(D) = 2n — 2. The inequality «(D) < 1 holds by a one-crossing
change of Type III. The SS-loop system ¢(7') is non-trivial since the Hopf link is
contained in it. It suffices to show that the n-string prion-bouquet A, is non-split.
By the contractions along a series of essential disks bounding the loop system, a plane
graph G' which does not have any cut vertex is obtained from Ay. Therefore, Ar and
hence T are non-split by [30]. Hence ¢(D) = ¢(T) = 2n — 2 and u(D) = u(T) = 1,
completing the proof of Theorem 4.1 (2).

Figure 25: A minimal non-split prion-tangle with a non-trivial loop system

5. Conclusion and a further question
Our question was to ask whether the prion proteins are easily entangled. A prion-

string is a spatial graph K = ¢(K) U o(K) in the upper half space H? consisting of
the SS-loop ¢(K) and the GPI-tail a(K) joining the SS-vertex with the GPI-anchor
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in the cell surface. In the present topological model, the following identifications are
made:

A set of cellular prion proteins PrP®’s = a trivial prion-tangle,
A set of scrapie prion proteins PrP%%’s = a non-split prion-tangle.

The addition property of prion-tangles may explain a conformal difference of PrP¢
and PrP%¢ relating to the fact:

sPrP5¢ +tPrP° — (s + t)PrpPs°¢.

S. B. Prusiner et al. report that the PrP*’s form Amyloid fibrils in [6]. The following
properties (1) and (2) of Amyloid fibrils are known (see [5]):

(1) Amyloid fibrils are related to more than 20 serious human diseases such as
Alzheimer’s disease.

(2) Amyloid formation is a generic property of polypeptides.

Thus, it would be interesting to ask how a knotting model of Amyloid fibrils is
constructed.
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