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On transforming a spatial graph into a plane graph

Akio KAWAUCHI∗)

Department of Mathematics, Osaka City University, Osaka, 558-8585, Japan

This article is a revised detailed version of the research announcement Ref. 9) introducing
a complexity of a spatial graph, which is useful to transform a spatial graph (without degree
one vertices) into a plane graph. We also introduce related topological invariants for every
spatial graph, called the warping degree, and γ-warping degree and (γ, Γ )-warping degree. We
also generalize the usual unknotting number of a knot to every spatial graph and introduce
related topological invariants for every spatial graph, called the γ-unknotting number, Γ -
unknotting number and (γ, Γ )-unknotting number. These invariants are used to define “semi-
topological”invariants for a spatial graph with degree one vertices, meaningful even for a
knotted arc.

Fig. 1. Generalized Reidemeister moves

§1. Introduction

In a research of proteins, molecules, or polymers, it is important to understand
geometrically and topologically spatial graphs possibly with degree one vertices in-
cluding knotted arcs. In this article, we introduce some numerical invariants gen-
eralizing the warping degree and the unknotting number of knots and links to a
spatial graph (without degree 0 vertices) by defining first the invariants to a spa-
tial graph without degree one vertices and then modifying the invariants into some
semi-topological invariants of a spatial graph with degree one vertices.
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We begin with some basic terminologies on spatial graphs. Let Γ be a finite
graph which does not have any vertices of degrees 0 and 1. A spatial graph of Γ is
the image G of a topological embedding Γ → R3 such that there is an orientation-
preserving homeomorphism h : R3 → R3 sending G to a polygonal graph in R3. We
consider a spatial graph G by ignoring the degree two vertices which are useless in
our topological argument. Let Γi(i = 1, 2, . . . , r) be an ordered set of the connected
components of Γ , and Gi = G(Γi) the corresponding spatial subgraph of G = G(Γ ).
The spatial graph G is called a link if Γ is the disjoint union of finitely many loops,
and it is trivial if it is the boundary of mutually disjoint disks. A knot is a link with
one component. For a general reference of knots, links and spatial graphs, we refer
Ref. 7). Let Ti be a maximal tree of Gi. By definition, Ti = ∅ if Gi is a knot, and
Ti is one vertex if Gi has just one vertex of degree ≧ 3. The union T = ∪r

i=1Ti is
called a basis of G, and the pair (G,T ) a based spatial graph. A spatial graph G is
equivalent to a spatial graph G′ if there is an orientation-preserving homeomorphism
h : R3 → R3 such that h(G) = G′. Let [G] be the class of spatial graphs G′ which are
equivalent to G. It is well-known that two spatial graphs G and G′ are equivalent if
and only if any diagram DG of G is deformed into any diagram DG′ of G′ by a finite
sequence of the generalized Reidemeister moves (see Fig. 1), where only the moves
I-III are needed for links which we call the Reidemeister moves. Let [DG] be the
class of diagrams obtained from a diagram DG of G by the generalized Reidemeister
moves, which is identified with the class [G]. In §2, we explain the concepts of

Fig. 2. Deforming a diagram into a based diagram

a monotone diagram, the warping degree and the complexity for a spatial graph
without degree one vertices. In §3, some concepts of the unknotting number for a
spatial graph without degree one vertices are explained. A relationship between the
warping degree and the unknotting number together with related invariants is also
investigated there. In §4, we explain how these invariants are applied to a spatial
graph with degree one vertices.
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Fig. 3. Monotone edge diagrams

§2. Monotone diagram, warping degree and complexity

Our spatial graph G is obtained from a basis T by adding edges (consisting of
arcs or loops) αk (k = 1, 2, · · · ,m). Let D be a diagram of G. Let DT and Dαk be
the subdiagrams of D corresponding to the basis T and the edge αk, respectively.
The diagram D is a based diagram (on a basis T ) and denoted by (D;T ) if there
are no crossing points of D belonging to DT . We can deform every diagram into
a based diagram by a finite sequence of the generalized Reidemeister moves (see
Figure 2). An edge diagram Dαk is monotone if there is an orientation on αk such
that a point going along the oriented diagram Dαk from the origin vertex meets
first the upper crossing point at every crossing point (see Figure 3), where we take
a suitable non-crossing point as a starting point if αk is a loop. A sequence of the
edges αk (k = 1, 2, · · · ,m) for a based spatial graph (G,T ) is regularly ordered if any
edge belonging to the connected based graph (Gi, Ti) is ordered to be smaller than
any edge belonging to the connected based graph (Gj , Tj) for every i < j. A based
diagram (D;T ) of a based spatial graph (G,T ) is monotone if there is a regularly
ordered edge sequence αk (k = 1, 2, · · · ,m) of (G,T ) such that the edge diagram
Dαk is monotone for all k and the edge diagram Dαk is upper than the edge diagram
Dαk′ for every k < k′. The warping degree d(D;T ) of a based diagram (D;T ) is
the least number of crossing changes on the edge diagrams Dαi(i = 1, 2, · · · ,m)
needed to obtain a monotone diagram from (D;T ) (see Figure 4). For T = ∅,
we denote d(D;T ) by d(D). When the edges αi (i = 1, 2, · · · ,m) are previously

oriented, we can also define the oriented warping degree d⃗(D;T ) (or d⃗(D) for T = ∅)
of D by considering only the crossing changes on the edge or loop diagrams Dαi

(i = 1, 2, · · · ,m) along the specified orientations. Similar notions on links have been
discussed by W. B. R. Lickorish and K. C. Millett,10) S. Fujimura,4) T. S. Fung,5)

M. Okuda13) and M. Ozawa14) considering the ascending number of an oriented
link. A. Shimizu16), 17) also established an equality between the warping degrees and
the crossing number of a link diagram. In particular, A. Shimizu characterized the
alternating knot diagrams by establishing the inequality d⃗(D) + d⃗(−D) ≦ c(D)− 1
for every knot diagram D with crossing number c(D) > 0 where the equality holds
if and only if D is an alternating diagram. The warping degree d(G) of G is the
minimum of the warping degrees d(D;T ) for all based diagrams (D;T ) ∈ [DG].
The complexity of a based diagram (D,T ) is the pair cd(D;T ) = (c(D;T ), d(D;T ))
together with the dictionary order. This notion was introduced in Ref. 8) for an



4 Akio Kawauchi

oriented ordered link diagram. A. Shimizu also observed that the dictionary order
on cd(D;T ) is equivalent to the numerical order on c(D;T )2 + d(D;T ) by using
the inequality d(D;T ) ≦ c(D;T ). The complexity γ(G) = (cγ(G), dγ(G)) of G is the
minimum (in the dictionary order) of the complexities cd(D;T ) for all based diagrams
(D;T ) ∈ [DG], where the topological invariants cγ(G) and dγ(G) are called the γ-
crossing number and the γ-warping degree of G, respectively. The crossing number
of G is given by c(G) = minD∈[DG] c(D) which has the inequality c(G) ≦ cγ(G). The
following properties (1) and (2) on G give a reason why we call γ(G) the complexity
of G:

(1) If dγ(G) > 0, then there is a crossing change on any based diagram (D,T ) of
G with cd(D;T ) = γ(G) to obtain a spatial graph G′ with γ(G′) < γ(G) (see Fig.
4). We have dγ(G) = 0 if and only if the spatial graph G is equivalent to G′ with a
monotone diagram (D′;T ′) with c(D′;T ′) = cγ(G).

(2) If cγ(G) > 0, then there is a spatial graph G′ with cγ(G
′) < cγ(G), so that

γ(G′) < γ(G), by any splice on any based diagram (D,T ) of G with cd(D;T ) = γ(G)
(see Fig. 4). The crossing number cγ(G) = 0 if and only if c(G) = 0, i.e., G is
equivalent to a graph in a plane.

Fig. 4. A crossing change in the left-hand side and a splice in the right-hand side

§3. Unknotting number

A spatial graph G is unknotted if d(G) = 0 (see Figure 5). This notion is related
to some notions by T. Endo and T. Otsuki,3) R. Shinjo18) and M. Ozawa and Y.
Tsutsumi,14) which the referee of this article suggested kindly. A spatial graph G is
γ-unknotted if dγ(G) = 0. Let γ(Γ ) = (cγ(Γ ), dγ(Γ )) be the minimum of γ(G) for all
spatial graphs G of a graph Γ . Then we have dγ(Γ )) = 0. We called γ(Γ ) and cγ(Γ )
the complexity and crossing number of the graph Γ , respectively. A spatial graph G
is Γ -unknotted if G is a spatial graph of Γ with γ(G) = γ(Γ ). By definitions, we
have the following relations:

“Γ -unknotted” ⇒ “γ-unknotted” ⇒ “unknotted”.

A link L is unknotted if and only if L is a trivial link, and a spatial graph G
of a plane graph Γ is Γ -unknotted if and only if G is equivalent to a graph in a
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Fig. 5. Unknotted spatial graphs

plane. A constituent link of a spatial graph G is a link contained in G. Every loop
component in an unknotted graph G is seen to be a trivial knot which can be splitted
from the other connected components of G. The spatial graph in Figure 6 is an
unknotted but non-Γ -unknotted graph since it is a plane graph with a constituent
Hopf link. In spite of the Conway-Gordon Theorem in Ref. 2) stating that every
spatial 6-complete graph K6 contains a non-trivial constituent link and every spatial
7-complete graph K7 contains a non-trivial constituent knot, we have the following
lemma for unknotted graphs:

Fig. 6. An unknotted plane graph with a Hopf constituent link

Lemma 3.1. Let Γ be a graph without loop components.
(1) For every graph Γ , there are only finitely many unknotted graphs G of Γ up to
equivalences.

(2) Every unknotted graph G = G(Γ ) is a split union of unknotted connected graph
components Gi(i = 1, 2, . . . , r) of G with Gi equivalent to a trivial bouquet of circles
after a basis of Gi is shrunk to a vertex for every i.

(3) By a sequence of edge reductions, illustrated in Figure 7, every unknotted graph
G is deformed into a basis of G.

Proof of Lemma 3.1. We note that there are only finitely many choices of bases T
of Γ . For every basis T of Γ , there are finitely many choices of regularly ordered
edge sequences of (Γ, T ). For every basis T put on the xy-plane R2 in R3, there is
an embedding of every regularly ordered edge sequence of (Γ, T ) into the upper half
3-space R3

+ such that the induced based spatial graph (G,T ) meets R2 only with T
and has a monotone diagram with the basis T . Every unknotted based graph (G,T )
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Fig. 7. An edge reduction

is realized in this way up to equivalences, and unique up to equivalences for a given
regularly ordered edge sequence of (Γ, T ). By this explanation, we have (1), (2) and
(3), where for (3) we can delete the edges in the order of the regularly ordered edge
sequence by using edge reductions, completing the proof.

As a corollary of (2), we see that every edge of an unknotted based graph (G,T )
is contained in a trivial constituent knot. Let O be the set of unknotted graphs of
Γ , and DO the set of diagrams of the spatial graphs in O. Let OΓ be the set of
Γ -unknotted spatial graphs, and DOΓ

the set of diagrams of the spatial graphs in
OΓ . For a spatial graph G, let OG

γ be the set of unknotted graphs with monotone
diagrams obtained by dγ(G) times crossing changes from all the based diagrams
(D;T ) ∈ [DG] with cd(D;T ) = γ(G). The sets OG

γ and OΓ may be disjoint in

general. For example, for the spatial graph G in Figure 6, the set OG
γ consists of

only G with γ(G) = (2, 0) by noting that G has a Hopf link as a constituent link.
Since the abstract graph Γ of G is a planar graph, the set OΓ consists of only a graph
G0 in a plane with γ(G0) = (0, 0). Thus, OG

γ ∩OΓ = ∅. This example motivates us
to define the number

dΓγ (G) = dγ(G) + ρ(OG
γ , OΓ ),

called the (γ, Γ )-warping degree ofG, where ρ(, ) denotes the x-distance (i.e., Gordian
distance) function on the spatial graphs of Γ . The unknotting number u(G) and the
Γ -unknotting number uΓ (G) of G are respectively defined by the identities:

u(G) = ρ(G,O) and uΓ (G) = ρ(G,OΓ ).

Let [DG]γ = {(D;T ) ∈ [DG] | c(D;T ) = cγ(G)}. By regarding ρ as the diagrammati-
cal Gordian distance function, the γ-unknotting number uγ(G) and (γ, Γ )-unknotting
number uΓγ (G) are defined as follows:

uγ(G) = ρ([DG]γ ,DO) and uΓγ (G) = ρ([DG]γ ,DOΓ
).

We have the following theorem:
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Theorem 3.2. The topological invariants u(G), uΓ (G), uΓγ (G), d(G), uγ(G), dγ(G)

and dΓγ (G) satisfy the following inequalities and are distinct topological invariants:

u(G) ≦ uΓ (G) ≦ uΓγ (G) ≦ dΓγ (G)
∨∥ ∨∥

uγ(G) ≦ dγ(G)
∨∥ ∨∥
u(G) ≦ d(G)

Further, for every graph Γ and any integer n ≧ 0, there is a spatial graph G of Γ
such that

u(G) = uΓ (G) = uΓγ (G) = d(G) = uγ(G) = dγ(G) = dΓγ (G) = n.

Fig. 8. Kinoshita’s θ-curve

Proof. The inequalities are easily obtained by the definitions. We show that these
invariants are mutually distinct. The spatial graph G in Figure 6 is directly seen
to have u(G) = d(G) = uγ(G) = dγ(G) = 0 and uΓ (G) = uΓγ (G) = dΓγ (G) = 1.

We take Γ = S1 to consider a knot K. For the knot K = 52 which is a twist
knot, we have u(K) = uΓγ (K) = d(K) = 1 because T. S. Fung5) and M. Ozawa14)

showed that a knot K with d(K) = 1 is characterized by a twist knot. We also see
dγ(K) = dΓγ (K) = 2 by A. Shimizu16) since ρ(OK

γ , OΓ ) = 0. For the knot K = 62,

we have u(K) = uΓγ (K) = 1, but d(K) = dΓγ (K) = 2 since K is not any twist knot.

For K = 108, we have u(K) = uΓ (K) = 2 < uγ(K) = uΓγ (K) = 3 by a result

of S. A. Bleiler1) and Y. Nakanishi.12) The Kinoshita θ-curve G in Figure 8 has
cγ(G) = 7 because every tangle diagram obtained from G by removing an open ball
neighborhood of every edge has at least 7 crossings by the classification of algebraic
tangles with crossing numbers ≦ 6 given by H. Moriuchi Ref. 11). Then we see that
u(G) = uΓγ (G) = 1. If G is a θ-curve with d(G) = 1, then we can show that the
three constituent knots of G consist of two trivial knots and one non-trivial twist
knot. Thus, we have d(G) = dΓγ (G) = 2. Taking a Γ -unknotted graph G0, we have

dΓγ (G0) = 0 (implying all the invariants vanish). These results are sufficient to know

that the invariants u, uΓ , uΓγ , d, uγ , dγ , d
Γ
γ are mutually distinct. To obtain the

latter half, we use an argument of an infinite cyclic covering of a spatial graph G.
By a basic choice of G, we mean a choice ξ of a maximal tree T and orientations of
the remaining edges αi (i = 1, 2, . . . , s) in G. The number s is called the rank of G.
By the choice of ξ, we have a unique epimorphism from the group π = π1(R

3\G)
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onto Z sending the meridian of every αi to 1, whose abelianized kernel π′/[π′, π′]
denoted by M(G, ξ) forms a finitely generated Λ-module for the Laurent polynomial
ring Λ = Z[t, t−1]. Let m(G, ξ) be the minimal number of Λ-generators of M(G, ξ).
Let K be an oriented knot with unkonotting number u(K) = 1 and a non-trivial
Alexander polynomial A(t). Let Gn be a connected sum G0#nK of a Γ -unknotted
graph G0 with a basic choice ξ0 and n copies of K along an edge of G0. Using that
the fundamental group π = π1(R

3\G0) is a free group with a basis consisting of the
meridiansmi (i = 1, 2, . . . , s) by Lemma 3.1 (2), we see that the Λ-moduleM(Gn, ξn)
with the basic choice ξn inherited from ξ0 is the direct sum Λs−1 ⊕ (Λ/(A(t))n, so
that we have m(Gn, ξn) = s − 1 + n for the rank s of G0. The following lemma is
proved by the method given in Ref. 6) where a stronger result has been shown for
links.

Lemma 3.3. Let G be a spatial graph of a graph Γ with a basic choice ξ, and G′

a spatial graph obtained from G by k crossing changes on the oriented edges. Let ξ′

be the basic choice in G′ inherited from ξ. Then we have k ≧ |m(G, ξ)−m(G′, ξ′)|.

Assume that an unknotted graph G′ is obtained from Gn by k crossing changes
on the oriented edges. Let ξ′ be the basic choice in G′ inherited from ξn. Although a
basic choice ξ′′ for the unknotted graph G′ does not always coincide with ξ′, we see
from Lemma 3.1 (2) that the fundamental group π = π1(R

3\G′) is a free group of
rank s, so that we can show m(G′, ξ′) = s− 1. Thus, we have k ≧ n and u(Gn) ≧ n
by Lemma 3.3. Since G0 is obtained from Gn by n crossing changes on the oriented
edges, we have dΓγ (G) ≦ n, so that u(Gn) = dΓγ (G) = n. By the inequalities already
established, the proof of Theorem 3.2 is completed.

§4. A spatial graph with degree one vertices

In this section, we consider a spatial graph G of a finite graph Γ with the set
V of the degree one vertices v1, v2, . . . , vm(m ≧ 1). We study the knottedness of
a spatial graph G with degree one vertices by considering the knotting problem on
spatial graphs without degree one verticies associated with G. For this purpose, we
need a concept of a normal graph. A spatial graph G with degree one vertices is
normal if we have the following properties (1) and (2):

(1) There is a set X = {x1, x2, . . . , xm} of mutually distinct m points in G\V such
that the line segments |vixi|(i = 1, 2, . . . ,m) are mutually disjoint and intersect G
only in the set V ∪X. (We call the set X a coupling with V .)

(2) There are only finitely many equivalence classes of the spatial graphs

GX = G ∪m
i=1 |vixi|

for all couplings X with V .
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We note that every polygonal spatial graph G with degree one vertices which
is not in a plane is normal and that if G is a normal graph in a plane ⊂ R3, then
the spatial graph GX is always a Γ -unknotted graph for every coupling X with V .
For every normal graph G, the unknotting number u(GX) of the spatial graph GX is
defined as it is done in §3. An analysis on the dynamics of the invariant u(GX) for
every coupling X with V will be useful in studying a knotted structure of the normal
spatial graph G. The unknotting number u(G) of a normal graph G is defined to be

u(G) = max{u(GX)|X is a coupling withV }.

Let N(G) be the number of distinct equivalence classes on the spatial graphs GX

for all couplings X with V , and n(G) the number of distinct equivalence classes
of spatial graphs GX with u(GX) > 0 for all couplings X with V . The knotting
probability of a normal graph G is defined by the fraction

p(G) =
n(G)

N(G)
.

Fig. 9. Normal arcs

The graph G is also called a (p(G)× 100)%-knotted graph. For example, we consider
the polygonal arcs Gε (ε = 0, 1) consisting of the ordered vertices v01, p

0
1, p

ε
2, p

ε
3, p

1
4,

v02 where

v01 = (0, 0, 0), p01 = (3, 1, 0), pε2 = (3, 2, ε), pε3 = (2, 3, ε), p14 = (1, 2, 1), v02 = (1, 0, 0),

which are illustrated in Figure 9. It turns out that whereas the spatial graph G0
X

is always unknotted, the spatial graph G1
X is classified into three equivalence classes

consisting of an unknotted handcuff graph, an unknotted θ-curve, and a knotted
handcuff graph of unknotting number one caused from the observation that the line
segment |v01x1| taking x1 in an open line segment (p12, p

1
3) or (p

1
2, q) with the midpoint

q of the line segment |p01p12| meets at an interior point of the triangle ∆v02x2p
1
4 taking

x2 = p13. This check will be relatively easily made because for every normal arc G,
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the spatial graph GX for every coupling X with V is a spatial θ-curve or a spatial
handcuff graph, so that GX is unknotted if and only if GX is equivalent to a graph
in a plane. Thus, we have the unknotting numbers u(G0) = 0 and u(G1) = 1 and
the knotting probabilities p(G0) = 0 and p(G1) = 1

3 . In other words, the arc G0 is
a 0%-knotted arc and the arc G1 is a 100

3 %-knotted arc with u(G1) = 1. Detailed
studies on the knotting probability of a spatial arc will be made elsewhere.

In similar ways, the warping degree d(GX), the γ-warping degree dγ(GX), the
(γ, Γ )-warping degree dΓγ (GX), the γ-unknotting number uγ(GX), the Γ -unknotting

number uΓ (GX), and the (γ, Γ )-unknotting number uΓγ (GX) and their related notions
are defined for every normal spatial graph G.
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