Topology of a 4D universe for every 3-manifold

Akio Kawauchi

Osaka City University Advanced Mathematical Institute, Sugimoto, Sumiyoshi-ku, Osaka
558-8585, Japan

Abstract

A 4D universe is a 4-dimensional boundary-less connected oriented manifold
with every closed 3-manifold (i.e., a 3-dimensional closed connected oriented
manifold) embedded. A 4D punctured universe is a 4-dimensional boundary-
less connected oriented manifold with the punctured manifold of every closed
3-manifold embedded. Every 4D universe and every 4D punctured universe
are open 4-dimensional manifolds. If a closed 3-manifold is considered as
a 3D universe, then every 4D spacetime is embedded in every 4D universe
and hence every 4D universe is a classifying space for every spacetime. In
this paper, it is observed that a full 4D universe is produced by collision
modifications between 3-sphere fibers in the 4D spherical shell (i.e., the 3-
sphere bundle over the real line) embedded properly in any 5-dimensional
open manifold. As a previous result, it was shown that any 4D universe and
4D punctured universe must have infinity on some homological indexes. It
is shown in this paper that the second rational homology groups of every 4D
universe and every 4D punctured universe are always infinitely generated.

Keywords: 4D universe, 4D punctured universe, Topological index,
Collision modification, 3-manifold, Punctured 3-manifold, Signature
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1. Introduction

Throughout this paper, by a closed 3-manifold we mean a closed con-
nected oriented 3-manifold M, and by a punctured 3-manifold the punctured
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manifold M? of a closed 3-manifold M obtained from M by removing the in-
terior of a 3-ball. Let M be the set of closed 3-manifolds M, and M° the set of
punctured 3-manifolds M°. By a 4D universe or simply a universe, we mean
a boundary-less connected oriented 4-manifold with every closed 3-manifold
M embedded, and by a 4D punctured universe or simply a punctured uni-
verse a boundary-less connected oriented 4-manifold with every punctured
3-manifold M° embedded. Every universe and every punctured universe are
open 4-manifolds (see [6, 10]). If a closed 3-manifold M is 3D universe! and a
smooth map ¢ : M — R for the the real line R is a time function, then there
is a smooth embedding M — M x R sending every point z € M to the point
(x,t(x)) € M x R. The product M x R, regarded as the M-bundle over R, is
called the spacetime of M. Since every closed 3-manifold M embedded in U
admits a trivial normal line bundle M x R in U, every universe is considered
as a “classifying space”for the spacetime of every 3D universe M.

A standard physical spacetime model called the hyersphere world-universe
model (see for example [13]) is topologically the product S® x R, called the
4D spherical shell or simply the spherical shell. In Section 2, the spheri-
cal shell S x R is assumed to be properly and smoothly embedded in an
open H-manifold W. Then we define a collision modification on two dis-
tinct 3-sphere fibers S?,S3 (t,t' € R,t # t') of the spherical shell S x R
and show in Theorem 2.1 that a universe U is constructed in W from the
spherical shell S* x R by infinitely many collision modifications on 3-sphere
fibers of M x R. It may be something useful to mention that there are 5-
dimensional physical universe models such as Kaluza-Klein model (see [2, 12])
and Randall-Sundrum model [14, 15] and an argument on the physical colli-
sion of a brane in the bulk space such as [11].

For a boundary-less connected oriented 4-manifold X, we note that there
are two types of embeddings k£ : M — X. An embedding k£ : M — X is
of type 1 if the complement X\k(M) is connected, and of type 2 if the
complement X \k(M) is disconnected. For example, the smooth embedding
M — M x R given by a time function ¢t : M — R is of type 2 (see [6]). If there
is a type 1 embedding k : M — X, then there is an element x € Hy(X; Z)
with the intersection number Inty(z, k(M)) = +1, so that the intersection
form Intx : Hi(X; Z) x H3(X; Z) — Z induces an epimorphism

IdIHd(X;Z) — 7

LA model of our living 3-space.



for d = 1,3 such that the composite I3k, : H3(M;Z) — H3(X;Z) — Z is
an isomorphism and the composite I 1k, : H1(M;Z) — H(X; Z) — Z is the
O-map (see [6, 10]). By using of embeddings of types 1 and 2, the special
universes are considered in [10]: Namely, a universe U is a type 1 universe
if every M € M is type 1 embeddable in U, and a type 2 universe if every
M € M is type 2 embedded in U. A universe U is a full universe if U is a
type 1 universe and a type 2 universe. In Theorem 2.1, a full universe U will
be constructed in every open 5-manifold W from the spherical shell S x R
by infinitely many collision modifications on 3-sphere fibers of S3 x R.
Actually, there exist quite many 4D universes and 4D punctured uni-

verses. The following comparison theorem between them is established in
[10, Theorem 2.1]:

Comparison Theorem.

Type 1 universe

a ¢
* Full universe Universe — Punctured universe.
¢ a

Type 2 universe

* Type 1 universe 4 Full universe.
* Type 2 universe -4 Full universe.
* Universe 4 Type 1 universe.
* Universe 4 Type 2 universe.

* Punctured universe 4 Universe.

For a universe or punctured universe U, the following topological invari-
ants called the topological indezes

Bd(U)(d = 17 2)? 5(U)7 51(U) (Z = 07 17 2)7 p<U)> pz<U) (Z = 07 17 2)

taking values in the set {0,1,2,..., 400} are defined in [10] to investigate
the topological shape of U. The definitions are explained as follows:
For a non-compact oriented 4-manifold X and the intersection form

Int : Hy(X;Z) x Hy_4(X;72) — Z,
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we define the dth null homology of X to be the subgroup
04 X;Z)={x € Hy(X; Z)| Int(x, Hy_4(X; Z)) =0}

of the dth homology group Hy(X; Z) and the dth non-degenerate homology
of X to be the quotient group

~

Hy(X;Z) = Ha(X; Z2)/04(X; Z),

which is a free abelian group by [10, Lemma 3.1]. Let Bd(X) be the Z-rank
of Hy(X; Z).

For M° € M, let 6(M° C X) be the minimal Z-rank of the image of the
homomorphism

KO : HQ(MO;Z) — Hy(X; Z)

for all embeddings k° : M° — X.

For an abelian group G, let G = {z € G|2z = 0}, which is a direct
sum of some copies of Zy. Let p(M° C X) be the minimal Z,-rank of the
homomorphism image group

Im[k° : Hy(M°; Z) — Hy(X; Z)]®

for all embeddings k° : M® — X with Z-rank 6(M° C X). By taking
the value 0 for the non-embeddable case, we define the following topological
invariants of X:

So(X) = sup{o(M° C X)| M° € M°},
po(X) = sup{p(M° C X)| M" € M°}.
For M € M, let (M C X) be the minimal Z-rank of the image of the

homomorphism

ko : Ho(M;Z) — Ho(X; Z)

for all embeddings k : M — X. Let p(M C X) be the minimal Zy-rank of
the homomorphism image group

Imlk, : Hy(M:; Z) — Hy(X; Z)|@

for all embeddings k : M — X with Z-rank §(M C X).
Note that in [10], the Z-rank condition in the definitions of p(M° C X)
and p(M C X) was erroneously omitted.
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By taking the value 0 for the non-embeddable case, we define the following
invariants of X:

3(X) = sup{o(M C X)| M € M},
p(X) = sup{p(M C X)| M € M},

Restricting all embeddings k : M — X to all embeddings k£ : M — X of type
i for i = 1,2, we obtain the topological indexes §;(X) and p;(X) (i = 1,2) of
X in place of §(X) and p(X).

The results given in [10] are explained as follows:

e For a punctures universe U, one of the topological indexes 32(U), 8o(U),
po(U) is +oo. Further, in every case, there is a punctured spin universe U
with the other topological indexes taken 0.

e For a type 1 universe U, one of the topological indexes BQ(U ), 01(U),
p1(U) is +o0o. The condition 3;(U) > 1 always holds, but in the case of
p1(U) = 400, the condition 3,(U) = +oo holds. Further, in every case,
there is a type 1 spin universe U with the other topological indexes on BQ(U )
01 (U), p1(U) taken 0.

e For a type 2 universe U, one of the topological indexes BQ(U ), 02(U) is
+o00o. Further, in every case, there is a type 2 spin universe U with the other
topological index taken 0.

e For any universe U, one of the topological indexes 35(U), 8(U), p(U) is +oc.
In the case of p(U) = 400, the condition 3, (U) = +oo is added. Further, in
every case, there is a spin universe U with the other topological indexes on
B2(U), 6(U) and p(U) taken 0.

e For a full universe U, one of the topological indexes Ba(U), 6(U) is +oc.
The condition 1 (U) > 1 always holds. Further, in every case, there is a full
spin universe U with the other topological index on 55(U) and §(U) taken 0.

In Section 3, we explain the signature theorem of an infinite cyclic cov-
ering space over a non-compact 4-manifold with closed 3-manifolds as the
boundary, which is given in [10]. We also introduce a new class of closed
3-manifolds called connected sums of homology 3-tori and study some ho-
mological properties of them. By using the results in Section 3, we show in
Section 4 the following main result:



Theorem 4.1. Let X be a non-compact oriented 4-manifold with the second
Betti number 85(X) < 4+o00. Then there is a punctured 3-manifold M° € M°
which is not embeddable in X.

Thus, we can add the following crucial property to the properties stated
above on the universes and punctured universes:

Corollary 4.2. The second rational homology group Hs(U; @) of every uni-
verse or punctured universe U is always infinitely generated over ). Namely,

This result could not be shown by the techniques in [10] because there
are a punctures universe U with the topological indexes po(U) = 400 and
Bo(U) = 60(U) = 0 and a type 1 universe U with the topological indexes
p1(U) = 400 and B5(U) = 6,(U) = 0, which use Samsara 4-manifolds on
3-manifolds constructed in [9]. By noting that the Samsara 4-manifolds on
most 3-manifolds have 3-torus boundary components, there was a pretty
discovery that every oriented 4-manifold X whose boundary 0X has a 3-
torus component must have Hy(X; Q) # 0 (see Corollary 3.5). For this proof
of the main result, we use a generalization of this fact besides the arguments
of [10].

As the final note in the introduction, it would be interesting to observe
that the infinity in every case of a 4D universe comes from the existence
of the connected sums of copies of the trefoil knot, which occurs frequently
next to the trivial knot (see [1, 16, 17] ). In fact, the closed 3-manifolds
contributing to the infinities in [10] are called c-efficient 3-manifolds which are
the connected sums of the homology handles obtained from the 3-sphere S® by
the 0-surgery along the connected sums of certain copies of the trefoil knot.
The closed 3-manifolds contributing to the present infinity [y(U) = +oo
are the connected sums of homology 3-tori constructed from the 3-torus 7°
by replacing the standard solid torus generators with the exteriors of the
connected sums of certain copies of the trefoil knot (see Section 3, especially
Example 3.2).

2. A collision modification of the spherical shell

Let W be an open connected oriented 5-manifold. Let X and X’ be two
disjoint compact oriented connected 4-manifolds smoothly embedded in W.



By isotopic deformations i : X — W and ¢/ : X’ — W of the inclusion maps
i: X CcWandi : X' C W, we consider that the images iX and 7 X’ meet
tangently and opposite-orientedly in W with a compact 4-submanifold V,
where V' is assumed to be in the interiors of the 4-manifolds X and X'. We
call such a V' a collision field of the 4-manifolds X and X’ in the 5-manifold
W. A collision modification of X and X' in W with a collision field V is the
4-manifold
X" =d(iX \ V) Je(@X"\ V).

This collision modification gives a standard procedure to construct a new
4-manifold X” from X and X’ through a regular neighborhood of V' in W.
In the spherical shell S? x R embedded properly and smoothly in an open 5-
manifold W, we understand that a collision modification on distinct 3-sphere
fibers S? and S3) of S* X R in W is a collision modification of the disjoint
compact spherical shells S® x I and S® x I’ in W with a collision field V for
any disjoint closed interval neighborhoods I and I’ of the points ¢ and ¢’ in
R, respectively. In the following theorem, it is explained how a full universe
is constructed from the spherical shell M x R by infinitely many collision
modifications on distinct 3-sphere fibers of S® x R.

Theorem 2.1. Assume that the spherical shell M x R is embedded properly
in a 5-dimensional open manifold W. Then a full universe U is produced in
W by infinitely many collision modifications on distinct 3-sphere fibers of the
sphere shell S® x R.

Proof. Let S% x I and S® x I’ be any disjoint compact spherical shells in
S3 x R. Let £ be an arc in W joining an interior point p of S® x I with
an interior point p’ of S* x I’ such that £ N S® x R = d¢ = {p,p'}. Let
h(¢) = £ x D* be a 1-handle with core £ on S® x I and S x I’ in W joining a
4-ball neighborhood p x D* of p in S3 x I and a 4-ball neighborhood p’ x D4
of pin S® x I'. By taking a 4D solid torus  x S* x D? in the interior of
the 4-disk z x D* for an interior point = of ¢, a collision modification X"
of 3 x I and S3 x I' in W with a collision field V = z x S' x D? in the
4-disk x x D* is produced so that X" is homeomorphic to the connected sum
S3 x I#S3 x I'#S% x S%2. This can be seen by a topological argument as
follows: Namely, X” is homeomorphic to the union

cl(S3><[\p><Sl><D3)U€><Sl x8D3U01(53xI'\p’x51 x D?)



and the complement cl(D*\ S* x D?) is homeomorphic to the product 52 x D?
with an open 4-ball removed and the double of S? x D? is S? x S2. By this
collision modification, the spherical shell S? x R changes into an open 4-
manifold S3 x R#S? x 8?45 x S3. Continuing this collision modification,
we have an open 4-manifold U which is the connected sum of S® x R and
infinitely many copies of S% x S? and S! x S3. This open 4-manifold U is a
full universe. In fact, U is a type 2 universe because U contains the stable
4-space SR*, that is, the connected sum of R* and infinitely many copies of
5% x S2, which is known as a type 2 universe (see [7, 10]). Further, U is a
type 1 universe because U contains the connected sum of SR* and S* x S®
which is known as type 1 universe (see [10, Figure 2]). O

3. Homological algebra on an infinite cyclic covering of a non-
compact 4-manifold

Let X be a non-compact oriented 4-manifold. A homomorphism -~ :
H\(X;Z) — Z is end-trivial if the restriction 7|C1(X\X,) = 0 for a compact
4-submanifold X’ of X. Assume that a closed 3-manifold B is the boundary
0X of X. Let (X, B) be the infinite cyclic covering of the pair (X, B) on
an end-trivial homomorphism ~, where note that B is the infinite cyclic
covering space of B associated with the restriction 4 = ~|g : H1(B;Z) — Z.
Let I' = Q[t,t7!] be the Laurent polynomial ring over ). Consider the
[-intersection form

Intp : Hy(X; Q) x Hy(X;Q) — T

Let
02(X: Q) = {z € Hy(X; Q)| Intp(z, Hy(X;Q)) = 0}.

Then the quotient I'-module fIQ(X; Q)r = Hy(X;Q)/05(X;Q)r is a free T
-module of finite rank for an end-trivial homomorphism ~ : Hy(X;Z) — Z
(see [10]).

Let A(t) be a I'-Hermitian matrix representing the I'-intersection form
Intr on Hy(X;Q)p. For # € (—1,1) let u(x) = x + /1 — 224, which is
a complex number of norm one. For a € (—1,1) we define the signature
invariant of Y by

Taro(X) = xgﬁo signA(u(x)).



The signature invariants o,(B) (a € [~1,1]) of B are also defined in [3, 4] by
using the quadratic form

b: Torle(B; Q) % TOFFH1(B§ Q) — Q

on the T-torsion part TorpHy(B; Q) of Hi(B;Q). For a € [—1, 1], let

O‘[a,l](é)z Z O'I(B),

oi(B) = > 0:(B).

Let M = M (k) be the homology handle obtained from the 3-sphere S3
by the O-surgery along an oriented knot k, and M the infinite cyclic con-
nected covering of M associated with a generator Yy € H YM:;Z). Let
0] (k) = 00,11 (M) and 04,1)(k) = 0(a11(M) for every a € (—1,1) (see [8]).
The signature invariant oy, 1)(k) of a knot k is critical if o(, (k) # 0 and
0e,1)(k) = 0 for every z € (a, 1).

The following identities are given as the non-compact version signature
theorem in [10] (although the compact version signature theorem is given in
[5, 6]).

Ta,o(X’) —signX = o[m](é),

Taro(X) — signX = o(,1(B).

For every a € (—1, 1), the following inequality is obtained from these identi-
ties in [10].

(3.1) |01 (B)| — k1(B) < [signX| + B2(X) < 2B2(X),

where k1(B) denote the @-dimension of the kernel of the homomorphism

t—1:H(B;Q) — Hi(B;Q).

This inequality is used to prove the infiniteness of the second rational
homologies Hy(U; @) of a universe and a punctured universe U in Section 4.
As suggested in the introduction, we cannot detect the infiniteness of 52(U)
only by this argument. We use a property of a homology 3-torus generalizing
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a property of the 3-torus 7% introduced from now. For the 3-torus 7% = St x
S x St we take 3 disjoint circles C; (i = 1,2, 3) embedded in T representing
a Z-basis for H,(T%; Z) such that C}, Cy, Cs are isotopic to S'x1x1, 1x St x1,
1 x 1 x S"in T3, respectively. Let N(C;) be a tubular neighborhood of C;
in T3 with a fixed meridian-longitude system for i = 1,2,3. A homological
3-torus is a closed 3-manifold M = M (ky, ko, k3) € M obtained from T3
and any 3 knots ki, ko, k3 in S® by replacing N(C}), N(Cs), N(C3) with the
compact knot exteriors E(ki), F(ks), E(ks) so that the meridian-longitude
system of ON(C;) is identified with the longitude-meridian system of k; in
E(k;) for i = 1,2,3. The cup product aUbUc € H3(M; Z) of a Z-basis a, b, c
of H'(M; Z) representing the dual elements of the meridians of k; (i = 1,2, 3)
is a generator of H3(M;Z) = Z, which is a property inherited from a well-
known property of the 3-torus 7. It is convenient to note that the cup
product ' UV U € H3(M;Q) of any Q-base change o’,,c of a,b,c in
H'(M:; Q) is a generator of H3(M;Q) = @Q and hence the elements o’ UV, b’ U
d,dUd € H*(M;Q) form a Q-basis of H?(M; Q) orthogonally dual to the Q-
basis ¢, a’, i of H'(M; @), respectively [To see this, note that uUv = —vUu
and , in particular, uUu = 0 for all u,v € H'(M;Q)]. For an integer m > 0,
let T,, be the collection consisting of the connected sum M = #",M; € M
of m homological 3-tori M; = M (k; 1, kio, ki) (1 =1,2,3,...,m).
For an application of the signature invariants 0[a71](£~3 ), let

B=Mx1UM x (-1)

for a closed 3-manifold M € T,,, where M x 1 is regarded as the copy of
M, but M x (—1) is the copy of M with the opposite orientation of M.
A homomorphism + : Hy(B;Z) — Z is asymmetric if there is no system
of elements x1, 2, ..., 2, € Hi(M;Z)(n = 3m) representing a @-basis for
H,(M; Q) such that ¥(x;) = £a.(z;) for all i, where a denotes the standard
orientation-reversing involution on B switching M x 1 to M x (—1).

The following calculation is used in our argument.
Lemma 3.1. For positive integers d and m, let (k; 1, ki, ki3) (1 =1,2,...,m)
be a sequence of triplets of knots used for the closed 3-manifold M € T,,

such that

(1) the signature invariants o 1(ki,1), 0a,1](ki2), 0la,1)(kiy3) are critical for all
i(1=1,2,...,m), and
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(2) |o(k11)| > 2d + 4m, and for all 4,4, 7,7 (4,9 = 2,3,...,3m;j,j' =
1,2,3),
|0(a,11 (Kij)| > Z |01 (Kir jo )| + 2d + 4m,

(4,9)>(#.5")

where (i,7) > (¢, j') denotes the dictionary order.

Then for any asymmetric homomorphism v : Hi(B;Z) — Z, there is a
number b € (—1,1) such that

ki1(B) <4m and |op(B)| > 2d + 4m.

Example 3.2 Let k be a trefoil knot. Then the connected sum k;; of
d 4+ 2m + 1 copies of k has the critical signature invariant 0[%’1](/§1,1)| =
+(2d + 4m + 2). Further continuing connected sums of copies of k, we
obtain a sequence of triplets of knots (k; 1, ki, ki3) (1 = 1,2,...,m) used
for the closed 3-manifold M € T,, satisfying the assumptions (1) and (2) of
Lemma 3.1 with a = %
Proof of Lemma 3.1. Note that the infinite cyclic covering space M of a
homological 3-torus M associated with a non-trivial element 4 € H'(M; Z)

has k1 (M) = 2 by a property inherited from the 3-torus. Hence we have

k1(B) < 4m. For a positive integer n, let J[((Z)l}(k) denote the signature in-

variant oy 1] (M ™) for the infinite cyclic covering space M ™ of the homology
handle M = M (k) associated with n multiple element ny,; of a generator
Yv € f]l(M; Z). Since v € HY(B;Z) is a asymmetric homomorphism,
olb, 1](B) is the sum of the signature invariants

(ni, (n} 1) (n4,2) (nf 2) (ni,3) (nf 3)
U[b,l]l)(k’m) - 0[671]1 (ki) U[b,1]2 (Kiz) — U[b,1]2 (Kiz2), U[b,1]3 (ki) — 0[b,1]3 (Kiz3)
for positive integers n; 1, 1} |, M2, 15 5, Ni 3, M5 3 Such that some of n; 1 —n; 1, 12—
Mg, Mi3 — T 3 are NOt zero.

Let a = cos(0,) for 6, € (0, 7). By [6, Lemma 1.3 (1)], we have

(n) _
O leos(60),1] () = Olcos(noa),1) (k).

Assume that the signature invariant op,j(k) is critical. Then for a, =
0 (n)

Va
n lan,1

cos(7¢), we have oy, (k) = 0fe,1)(k) and for any positive integer n’ < n,

11



(n)
T lan,1]
that

(k) = 0. By these properties, we can find a number b € (—1,1) such

ki(B) <4m and |op(B)| > 2d + 4m.
0

The following ()-dimensional estimate on a ()-subspace of the first coho-
mology H'(M; Q) of a closed 3-manifold M € T,, is technically useful:

Lemma 3.4. Let A be a Q-subspace of H'(M;Q) of codimension ¢(=
3m — dimg A), and A® the Q-subspace of H?(M; Q) consisting of the cup
product uUv € H*(M; Q) for all u,v € A. Then dimg A® > 2m —c.

We call the Q-space A®) the cup product space of the Q-space A.

Proof. Note that the cohomology ring H*(M; Q) splits into the cohomol-
ogy rings H'(M;; Q) of the homology torus connected summands M; (i =
1,2,...,m). Let {a;,b;,c;} be a Q-basis for H'(M;;Q), whose cup prod-
uct a; U b; U ¢; is a Q-generator of H*(M;;Q) = Q. By a base change
argument, if necessary, changing the roles of a, b, ¢ and changing the index
i(i=1,2,3,...,m), the Q-subspace A of H'(M:;(Q) has a Q-basis

ai, bi, ¢ (0 < i < s), &j,l_)j (s<j<s),an(s <k<s"),
where

a; = a;+ Z zf + Z Yg

s<j<s’ s'<k<s"
7 E b E b
s<j<s’ s'<k<s"
= c c
G = ¢+ x;+ g Ykos
s<j<s’ s'<k<s"
_ o ‘ a
a; = a;j+ § Zks
s'<k<s"
_ B ' b
b, = b+ g 2y
s<j<s’

for some elements x?,xé’,x? € H'(M;; Q) (s < j < &) and y,yb, ys, 28, 20 €
H'(My; Q) (s' < k < §"). Then the identity s+s'+s” = 3m—c is obtained by
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counting the Q-dimension of A. Since s” < m, we have s+s = 3m—c—s" >
2m — c¢. The cup product space A® has Q-linearly independent elements

a; Ub;, bjUe, ¢;Ua; (0<i<s), ajUb;j(s<j<s).
Hence we have
dimg A® >3s+ (s —s) =25+ >s+5 >2m—c,

completing the proof. O

The following corollary is used to confirm the non-vanishing of the second
rational homology of a bounded Samsara 4-manifold.

Corollary 3.5. For m > 0, assume that a closed 3-manifold M € T,,
is a boundary component of a (possibly non-compact) oriented 4-manifold
X. Let d be the @)-dimension of the kernel of the natural homomorphism
iw: Hi(M;Q) — H1(X;Q). Then we have 55(X) > max{2m — d,d} > m.

Proof. Let D be the kernel of the natural homomorphism i, : H,(M;Q) —
Hi(X;Q),and z; (i = 1,2,3,...,d) a Q-basis for D with y; (i = 1,2,3,...,d)
the Poincaré-dual elements in Hy(M; Q) such that Inty (x;,y;) = 0;; for
all 4,7. Since Hy(M;Q) is a direct summand of H;(0X;Q), regard D as
a @-subspace of H{(0X;(@). Then there are d homology classes z; (i =
1,2,3,...,d) in Hy(X,0X;Q) sent to x; (i =1,2,3,...,d) under the bound-
ary homomorphism 0, : Ho(X,0X;Q) — H1(0X;Q), so that we have

IIltX (Zfi, y]) = 51',]'

for all 4,5 by regarding the elements y; (i = 1,2,3,...,d) as elements of
H,y(X; Q). Thus, f(X) > d.

Next, since the quotient Q-space Hi(M; Q)/D injects to Hi(X; Q) by the
induced map of 7., there is an exact sequence

HY(X;Q) -5 HY(M; Q) — D' — 0,

where D’ is the ()-dual space of D. This implies that the image Im(i*) of the
natural map * : HY(X;Q) — H'(M; Q) is a Q-subspace of codimension d.
Since i*(ux) U *(vx) = i*(ux Uvyx) € H*(X;Q) for ux,vx € H'(X;Q), we
see from Lemma 3.4 that B5(X) > dimg Im(i*)® > 2m — d. Thus,

Ba(X) > max{d,2m —d} >m. O
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4. Infiniteness of the second rational homology

In this section, we show the following theorem.

Theorem 4.1. Let X be a non-compact oriented 4-manifold with the second
Betti number B5(X) < 4+o00. Then there is a punctured 3-manifold M° € M°
which is not embeddable in X.

The following corollary is directly obtained from Theorem 4.1.

Corollary 4.2. For every 4D punctured universe or 4D universe U, we have

Proof of Theorem 4.1. Let 53(X) = d < +o0o. We show that there is
M € M such that MY is not embeddable in X. Suppose M? is embedded
in X for an M € M with 8;(M) = n. The 2-sphere K = 9M?" is a null-
homologous 2-knot in X. Let Xj; be the 4-manifold obtained from X by
replacing a tubular neighborhood N(K) = S? x D? of K in X by the product
D3 x S1. Then we have

Bo(Xnr) = Pa(X) = d

and the closed 3-manifold M is embedded in X,; by a type 1 embedding.
We show that there is an M € T,, non-embeddable in X,; by a type 1
embedding.

Let X’ be the 4-manifold obtained from X,; by splitting along M, and
B=0X"=Mx1UM x (—1).

For the homomorphisms @/, i, : Ho(M; Q) — Hs(X'; Q) induced from the
natural maps i/ : M - M x (=1) > X', i: M — M x 1 — X', let

C = imd, Nimi, C Hy(X";Q), C. = (i,)"1(C), C, = (i,) 1 (C).
We show the following lemma:

Lemma 4.3. Every closed 3-manifold M € T,, with m > d satisfies one of
the following (1)-(3).

(1) The homomorphism ¢, or i, is not injective,

(2) The homomorphisms 7, and i, are injective and C, = C, = 0 or C # C..
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(3) The homomorphisms i, and i, are injective and C, = C* # 0 which has
no Q-basis x1, za, ..., xs with i (x;) = +i.(z;) for all 7.

By assuming Lemma 4.3, the proof of Theorem 4.1 is completed as follows.
If ¢/ and i, are injective and C, = C = 0, then the natural homomorphism
Hy(M;Q) — Ho(Xp; Q) is injective. Since

BI(M) =n=3m > /BQ(XM) :BQ<X) :d,

we have a contradiction. Hence (2) implies C', # C.. Then in either case
of (1)-(3), there is an end-trivial homomorphism v : H(X'; Z) — Z such
that the restriction % : Hy(B;Z) — Z of v is asymmetric. To see this, we
use an analogous argument of [10, Section 5]. The inclusion k : B — X' is
called a loose embedding if the homomorphism k, : Hy(B;Z) — Hy(X';Q)
is not injective. In either case of (1)-(3) of Lemma 4.3, the inclusion & is a
loose embedding and there is a closed oriented 2-manifold F' in B, called a
null-surface, such that F' bounds a compact connected oriented 3-manifold
V in X’ and the Poincaré dual element ¥ € H!(B;Z) of the homology
class [F] € Hy(B;Z) is asymmetric. Then the 3-manifold V' defines an
end-trivial homomorphism ~ : Hy(X'; Z) — Z by the intersection number
Intx:(z,[V]) € Z for every x € H{(X';Z). The element ¥ € H*(B; Z) is
taken as the restriction of . Since

Ba(X') < Bo(X) < Bo(X) = 4,
the inequality (3.1) of the signature theorem implies
|0'[a71](.é>| — l'il(B) S 2d

for all @ € (—1,1), where recall that (B) is the Q-dimension of the kernel
of the homomorphism ¢ — 1 : Hy(B; Q) — Hi(B; Q). By a choice of a closed
3-manifold M € T,, in Lemma 3.1, there is a number b € (—1,1) such that
|O'[b,1](B)| — k1(B) > 2d, which is a contradiction. This completes the proof
of Theorem 4.1 except for the proof of Lemma 4.3.

Proof of Lemma 4.3. Let X be the infinite cyclic cover of X associated
with the fundamental region (X’; M x (—1), M x 1). Let n = 3m. Suppose
that the following assertion is true:

(*) The homomorphisms 7, and ¢, are injective and C, = C* # 0, which has
a Q-basis x1, To, . .., xs with 7, (x;) = +i,(x;) for all 4.
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Then by the Mayer-Vietoris exact sequence, we have
Hy(X:Q) = T & (L (t + 1)) & (1)t — 1)),
for some non-negative integers d’ and ¢(=4) such that
dimgC =c(+)+ce(=) <n,n—(c(+)+c(-)) <d,d +c(—) <d,

so that n—c(+) < d. Let Y be a compact 4-manifold such that M C Y C X
and the T'-torsion part TorpHy(Y; Q) of the homology I'-module Hy(Y; Q)
has

Torp Hy(Y; Q) = Torp Ho(X; Q) 22 (I'/(t + 1)) @ (I'/(t — 1)),
By the duality in [3], we have
Torp Hy (Y, 0Y;Q) = (T/(t + 1)) @ (I'/(t — 1)),

Let
H.(Y,0Y:Q) = TorrH.(Y,0Y:Q)® FH,(Y,0Y: Q)

be any splitting of a finitely generated I'-module into the I'-torsion part and
[-free part, and

H*(Y,0Y;Q) =T*(Y,0Y;Q) & F*(Y,0Y;Q)
the Q-dual splitting with

T (}7, oY Q) = homQ(TorpH*(f/, oY; Q),Q),
F*(Y,0Y;Q) = homg(FH,.(Y,0Y;Q),Q).

Let TH(Y,0Y;Q)isq be the (t + 1)-component of T1(Y,dY;Q). For the
natural homomorphism

ko TH(Y,0Y;Q) — H*(M;Q),
consider the following commutative square on cup products:

TUY,0V;Q)is x TYY,0V; Q)i % H2(Y,9Y:Q)
@kt ] k]
HY(M; Q) x H'(M; Q) Y Q).
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Let Q be the Q-subspace of H?(M; Q) generated by the elements
E*(uUv) € H*(M;Q)
for all u,v € THY ,0Y;Q)es1.
Let B
() T*(Y;Q) — H*(M; Q)
be the natural homomorphism for the )-dual splitting
H'(Y;Q) =T*(Y;Q) © F*(Y;Q)

of any splitting H,(Y; Q) = TorrH,(Y;Q) ® FH,.(Y; Q).
By a transfer argument of [4, Lemma 1.4], the homomorphism

(k) : T*(Y;Q) — H*(M; Q)

is injective. For the natural homomorphism j* : H2(Y,0Y;Q) — H*(Y;Q),
we have (k')*j* = k* and

tji*(uUv) =5 (tuUtu) = j*(—uU —v) = j" (v U v)
for all u,v € Tl(f/7 oY; Q)¢+1. Hence
B (uUo) = (K)'5*(uUv) € (K) TV Qs
for all u,v € Tl(f/, oY; Q)¢+1, so that
QN (K)T*(Y; Q)1 = 0.
Hence the quotient map
O — H(M; Q) (W) T2(V: Qi
is injective. Since T2(Y;Q)yy1 = (I/(t 4 1))H), we have
dimg Q < dimg H*(M; Q)/(K) T*(Y; Q)41 = 3m — e(+) < d.
On the other hand, by a transfer argument of [4, Lemma 1.4], the homomor-

phism L
K TYY,0Y;Q) i — HY(M; Q)
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is injective. Since dimg T'(Y,0Y;Q)i1 = ¢(+), the image
A=kTHY,0Y; Q)

of the homomorphism £* is a Q-subspace of H'(M; Q) of codimension d’' =
3m — c(+) < d. Since the cup product space A® of A is equal to 2, we have

dimg Q > 2m —d > 2m — d.

Hence 2m — d < d, that is m < d. This contradicts the inequality m > d.

Thus, the assertion (*) is false. This shows Lemma 4.3. O
This completes the proof of Theorem 4.1. 0
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