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Abstract

A boundary-less connected oriented 4-manifold is called a universe for every 3-manifold if every
closed connected oriented 3-manifold is embedded in it, and a punctured universe if every punctured
3-manifold is embedded in it, which is known to be an open 4-manifold. We introduce types 1, 2 and
full universes as refined notions of a universe and a punctured universe and investigate some relation-
ships among them. After introducing some topological invariants for every (possibly non-compact)
oriented 4-manifold which we call the topological indexes, we show infinity and independence on
some topological indexes of every universe.
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1. Introduction

Throughout this paper, by a closed 3-manifold we mean a closed connected ori-
ented 3-manifold and by a punctured 3-manifold a punctured manifold of a closed
connected oriented 3-manifold. Then we know that for every compact oriented 4-
manifold, there is a closed 3-manifold whose punctured 3-manifold is not embeddable
in it (see [4]') and hence any oriented 4-manifold with every punctured 3-manifold
embedded must be non-compact. This motivates us to put the following definition:

*This work was supported by JSPS KAKENHI Grant Number 24244005.
!The non-orientable version is also known in [11], but we do not discuss it here. Also, by an
embedding we will mean a smooth or piecewise-linear embedding.



Definition. A wuniverse is an open connected oriented 4-manifold U with every
closed 3-manifold M embedded. A punctured universe is an open connected oriented
4-manifold U with every punctured 3-manifold M° embedded.

Then we ask a question: What topological shapes a universe and a punctured
universe have ?

In this question, we introduce the following topological indexes
Ba(Y)(d=1,2), 6(Y), 6:(Y) (i = 0,1,2), p(Y), ps(Y) (i =0,1,2)

of every (possibly, non-compact) oriented 4-manifold Y, which are obtained from
homological arguments and are topological invariants of Y with values taken in
{0,1,2,...,400}. We apply these invariants to a punctured universe, a universe
and their refined universes, namely types 1, 2 and full universes to obtain our main
result (Theorem 3.3) which is stated as follows:

For a punctures universe U, we show that one of the topological indexes BQ(U ),
do(U), po(U) is +00. Further, in every case, there is a punctured spin universe U
with the other topological indexes taken 0.

For a type 1 universe U, we show that one of the topological indexes BQ(U ), 01(U),
p1(U) is +00. We have always (,(U) = 1, but in the case of p1(U) = +o0, we can
add the condition that (;(U) = +oo. Further, in every case, there is a type 1 spin
universe U with the other topological indexes on f5(U), 6,(U), p1(U) taken 0.

For a type 2 universe U, we show that one of the topological indexes BQ(U ), 02(U)
is +00. Further, in every case, there is a type 2 spin universe U with the other
topological index taken 0.

For a universe U, we show that one of the topological indexes BQ(U), (U), p(U)

is +00. In the case of p(U) = 400, we can add the condition that 8;(U) = +o0.
Further, in every case, there is a spin universe U with the other topological indexes
on fa(U), 6(U) and p(U) taken 0.

For a full universe U, we show that one of the topological indexes B,(U), 8(U) is
+00. We have always §1(U) = 1. Further, in every case, there is a full spin universe
U with the other topological index on [2(U) and §(U) taken O.

In Section 2, we introduce types 1, 2 and full universes as refined notions of a
universe and a punctured universe. We explain some relationships among them in
Theorem 1.1. In Section 3, the topological indexes of every oriented 4-manifold are
defined and our main result (Theorem 3.3) is stated. The existence part of universes
in our main result (Theorem 3.3) is shown in this section with some examples. In
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Section 4, we establish a non-compact 4-manifold version of the signature theorem
for an infinite cyclic covering of a compact oriented manifold given in [3], which is
needed to prove the infinity of some topological indexes stated in Theorem 3.3. In
Section 5, we introduce a notion of a loose embedding needed as a tool connecting
an embedding argument with an argument of an infinite cyclic covering. In Section
6, we complete the proof of Theorem 3.3.
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Figure 1: Universes of types 1 and 2

2. Types 1, 2 and full universes as refined notions of a universe and a
punctured universe

Let M be the set of closed 3-manifolds M, and MY the set of punctured 3-manifolds
MP°. Tt is useful to denote the members of M and M° by M; (i = 1,2,3,...) and
M (i = 1,2,3,...), respectively. For a connected open oriented 4-manifold U, we
note that there are two types of embeddings k : M — U. An embedding k : M — U is
of type 1 if U\k(M ) is connected, and of type 2 if U\k(M) is disconnected (see Fig. 1).
If there is a type 1 embedding k : M — U, then there is an element z € H,(U; Z)
with the intersection number Inty(z,k(M)) = +1, so that the intersection form
Inty : H1(U; Z) x H3(U; Z) — Z induces an epimorphism

IdZHd(U;Z)—)Z

for d = 1,3 such that the composite Isk, : H3(M;Z) — H3(U;Z) — Z is an iso-
morphism and the composite I 1k, : Hy(M;Z) — H(U;Z) — Z is the 0-map. This
suggests that we must consider more refined universes as follows:

Definition. The universe U is a type 1 universe if every closed 3-manifold is type 1
embeddable in U, a type 2 universe if every M is type 2 embedded in U, and a full
universe if U is a type 1 universe and a type 2 universe.
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Figure 2: Creating a full universe from a type 2 universe

Our central problem is to characterize the topological shapes of punctured, types
1, 2 and full universes. We note that a full universe is obtained from a type 2 universe
by taking a connected sum with S* x S? (see Fig. 2). We first establish the following
theorem.

Theorem 2.1. The following assertions hold.

Type 1 universe

/ pN
(1) Full universe Universe — Punctured universe.
N\ S

Type 2 universe

(2) Type 1 universe - Full universe.
(3) Type 2 universe 4 Full universe.
(4) Universe 4 Type 1 universe.
(5) Universe 4 Type 2 universe.
(6) Punctured universe -4 Universe.

Proof. (1) is obvious by definition. To see (3) and (4), we note that the stable
4-space SR = RY#.%°5? x 5? considered in [5] is a type 2 spin universe because
every closed 3-manifold M bounds a simply connected spin 4-manifold whose double
is the connected sum of some copies of S? x S2. Since H;(SR*; Z) = 0, we see that
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any closed 3-manifold cannot be type 1 embedded in SR*, showing (3) and (4). To
see (2) and (5), we consider a type 1 spin universe

Usp = R4#Z+:olo ]\4Z X Sl

which we call the S-product universe. We use a notion of a linking form, namely
a non-singular symmetric bilinear form ¢ : G x G — @/Z on a finite abelian group
G. The linking form ¢ is split if ¢ is hyperbolic, i.e., G is a direct sum H' @ H"” with
((H',H") = ¢(H",H") = 0 or { is the orthogonal sum of a linking form ¢y : H x H —
Q/Z and its inverse —{y : H x H — @Q/Z. Then we have the following lemma:

Lemma 2.2. If a closed 3-manifold M with H;(M; Z) a finite abelian group is type
2 embeddable in the product universe Ugp, then the linking form

C:H(M;Z)x H(M;Z) - Q/Z
is split.

Before proving Lemma 2.2, the proof of Theorem 2.1 will be completed by using
Lemma 2.2. In fact, the lens space L(p, q) with p # 0,+£1 is not type 2 embeddable
in Ugp by Lemma 2.2, showing (2) and (5). To see (6), for I = [0, 1] we consider a
punctured spin universe

Urp = R0 int (M) x I),

which we call the I-product punctured universe. Suppose that there is an embedding
k : M — Urp for a closed 3-manifold M € M. We note that every element of
H\(Urp; Z) is represented by the sum of 1-cycles in int(M? x I) for a finite number
of ¢ which can be moved to be disjoint from k(M ). This means that the intersection
number Int(M, H,(Urp; Z)) = 0, showing that the embedding k is not of type 1 and
hence k must be of type 2. Regarding I C S', we can consider Urp C Ugp. Then

the composite embedding M LA Urp C Ugp is still of type 2, because the boundary
O(M? x I) is connected. Thus, if H;(M;Z) is a finite abelian group, then the linking
form ¢ : Hy(M;Z) x H(M;Z) — Q/Z splits by Lemma 2.2. Thus, the lens space
L(p,q) with p # 0,£1 is not embeddable in U;p, implying that U;p is not any
universe, showing (6). This completes the proof of Theorem 2.1 except the proof of
Lemma 2.2. [

The proof of Lemma 2.2 is given as follows:
Proof of Lemma 2.2. By an S'-semi-product 4-manifold, we mean a 4-manifold
which is the connected sum of S'-products M; x S* (i = 1,2,...,m) for some m.

Assume that M is type 2 embedded in Ugp. Then M is type 2 embedded in an
Sl-semi-product 4-manifold. We show the following assertion:
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(2.2.1) If H(M;Z) is a finite abelian group, then M is type 2 embedded in an
S'-semi-product 4-manifold X consisting of the connected summands M; x S* (i =
1,2,...,m) such that there is a point p; € S with M; x p; N M = () for every i.

Proof of (2.2.1). We see that M is embedded in an S'-semi-product 4-manifold
Xu = #5_1M; % S, The n-fold cyclic covering M; x St — M; x St associated with the
n-fold cyclic covering S* — S* induces an n-fold cyclic covering X — X, such that
X is an S'-semi-product 4-manifold consisting of the connected summand M; x S*
and the trivial lifts of the other connected summands M; x S' (j = 2,...,s). Since
H,(M:; 7) is finite, the manifold M is also trivially lifted to X*. We note that M is
type 2 embedded in Xy if and only if Inty, (M, H,(Xy; Z)) = 0. Since Hy(XV; Z)
is generated by loops which are lifts of loops in X7, we see that any trivial lift M’ of
M to XU has Int ) (M’, Hi(XW; Z)) = 0 and hence is type 2 embedded. Taking
n sufficiently large, we have M; x p1 N M = () for a point p; € S'. Applying the
same arguments inductively to M; x S (i =2,3,...,s), we obtain the conclusion of
(2.2.1). O

By (2.2.1), for I = [0,1] we may consider that M is type 2 embedded in the
connected sum

Y =My x I#My x I#...#M,, x I,

so that M splits Y into two compact 4-manifolds A and B whose boundaries A and
0B have the form
0A=MUO,Y, 0B=(—M)UO3gY,

where

04Y = My x0IUMyx0IU---UM, x0I,
15):04 Mg x0T UMg o x0IU---UM, x0I.

We show the following assertion:
(2.2.2) The following natural sequence
(#) 0= torHy(A, MUY ; Z) S torH, (M U 04Y; Z) 5 torH, (A; Z) — 0
on the homology torsion parts is a split exact sequence.
By (2.2.2), the linking form
0 i torHy (M UDAY; Z) x torHy (M UDAY; Z) — Q) Z
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is split. This is because imd, is a direct summand of torH;(M U 04Y;Z) and
(im0, )t = im0, with respect to £*. Since the linking form

lo : torH(04Y; Z) X torH,(04Y; Z) — Q/Z
is split and the linking form ¢* is an orthogonal sum of the linking forms ¢ and /¢,

we see from [9] that the linking form ¢ : H{(M; Z) x H{(M;Z) — Q/Z is split. This
completes the proof of Lemma 2.2 except the proof of (2.2.2).

Proof of (2.2.2). Let

Y = My xO0UMy;x0U---UDM, x0,
%Y = My x0U M,y x0U---UM,, x0.

Further, let 9°Y = 99Y U d%Y. Since Hy(M;Z) = Hy(Y,0°Y;Z) = 0, the Mayer-
Vietoris exact sequence

Hy(M; Z) — Hy(A,0%Y; Z) @ Hy(B,0%Y; Z) — Ho(Y,0Y; Z)

implies that
Hy(A,00Y; Z) = Hy(B,0%Y; Z) = 0.

Since H; (M U3YY,0%Y; Z) = H,(M; Z) is finite and Ho(A, %Y Z) = 0, we see from
the exact sequence

Hy(A,0%Y;Z) — Hy(A, MUY Z) — Hi (M UJY,0%Y; Z)
that Ho(A, MUY Z) is finite. Because j, passes through the finite abelian group

Hy(A, M U 3YY; Z), we see that the image of the homomorphism j, : Hy(A4;Z) —
Hy(A,M U04Y; Z) is finite. Thus, the semi-exact sequence

torHy(A, M U84Y; Z) 5 torHy (M U 04Y; Z) 25 torHy(A; 2)
is exact. We construct a monomorphism
mtorH (A; Z) — torH (M U0AY; Z)
with the identity
i, =1:torH (A; Z) 5 torH (M Ud,Y; Z) SN torH,(A; 7).
Then we see that the sequence (#) is a split exact sequence, because i, is onto and

0, is injective, for 0, : torHy(A, M U0AY; Z) — torH (M U0,Y; Z) is Poincaré dual
to the epimorphism i, : torH1(M U 04Y; Z) — torH (A; Z).



To construct a monomorphism 7, we note that the Mayer-Vietoris exact sequence

0= Hy(Y,0°Y;Z) = Hi(M;Z) — H (A, Y;Z)® Hi(B,0%Y; Z)
— H(Y,0°Y;Z) = Zzm*

induces a natural isomorphism
G2+ 4B H\(M; Z) = torH (A, 8%Y; Z) & torHy (B, d%Y; Z).
Then we can construct a monomorphism
s torHy (A, 0%Y; Z) — H(M; Z)
so that
JATA =1 torHy (A, 00 2) ™ Hy(M; 2) % torHy (A, 8% 7).

Since jA passes through the natural homomorphisms ;M : H,(M; Z) — torH,(A; Z)
and 50 : torH,(A; Z) — torH (A, 9%Y; Z), we have

3T =gt =1,
Using that Hy(A,9%Y;Z) =0 and ;0 is onto, we see that the sequence
iO -0
0 — torHy(8%Y; Z) = torH,(A; Z) 5 torH, (A, 8%Y; Z) — 0

obtained from the homology sequence of the pair (A,9%Y") is a split exact sequence,
by which we can define a homomorphism

7 torHy(A; Z) — torH, (04Y; Z)
with the identity i07° = 1 — jM 7459 We define the homomorphism
7' =140 + 70 torH,(A; Z) — Hy(M; Z) @ torH,(3%Y; Z).

This homomorphism

M 40 Hy(M; Z) @ torH,(0Y; Z) — torH,(A; Z)
has the identity

(M 407" =1 :torH (A; Z) — torH (A; 7).

In fact, we have

GM + i (z) = jMati(z) + 07 (x)

= M) +a— Mt (e) =2
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for all x € torH;(A; Z). The direct sum Hy(M; Z) @ torH,(0%Y; Z) is identified with
the homology torH;(M Ud%Y; Z). Then we can extend the homomorphisms jM + i°
and 7’ to the natural homomorphism i, : torHy (M U 04Y; Z) — torH;(A; Z) and a
homomorphism 7 : torH,(A; Z) — Hy(M U 04Y; Z) with i,m = 1 where the value
of  on the direct summand torH;(04Y\0YY; Z) of torH;(M U 04Y; Z) is taken 0.
Thus, we have a desired monomorphism 7, showing (2.2.2). ]

This completes the proof of Lemma 2.2.
3. Homology of a universe and a punctured universe

Let Y be an orientable possibly non-compact 4-manifold. For the intersection
form

Int: Hy(Y;Z) x Hy 4(Y;Z) — Z,
we define the dth null homology of Y to be the subgroup

0uY;Z) = {z € Hy(Y; Z)|Int(z, Hy_a(Y; Z)) = 0}

of the dth homology group Hy(Y; Z) and the dth non-degenerate homology of Y to
be the quotient group

Hy(Y;2) = Hy(Y; 2))0a(Y; Z).
We have the following lemma:

Lemma 3.1. Hy(Y;Z) is a free abelian group.

Proof. We first note that the induced intersection form
Int: Hy(Y:Z)x Hi_o(Y:2) > Z

is non-degenerate and ]:I*(Y; Z) is a torsion-free abelian group. Thus, if Y is compact,
then H.(Y; Z) is a free abelian group. Assume that Y is non-compact. Let

YicY,Cc---CY,C...

be an ascending sequence of compact 4-submanifolds Y, of ¥ with U!XY, = Y.
We find elements 22 € Hy(Y1;Q) (i = 1,2,...,m;) representing a Q-basis for
fId(Yl; Z)®Q and elements yiQ € Hy 4(Y1; Q) representing a (Q-basis for fI4_d(Yn; Z)®
Q (i =1,2,...,my) with the Q-intersection numbers IntQ(x?,y]Q) = ¢, for all i, .
Then the elements x? (1 =1,2,...,mp) and yZQ (1 = 1,2,...,mq) are regarded as
linearly independent elements of Hy(Ys; Q) and Hy 4(Y2;Q), respectively. Taking

the orthogonal complements of the ()-subspaces generated by these elements with
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respect to the Q-intersection form Intg : Hy(Y2; Q) X Hy_q(Y2; Q) — @, we can add
new members xZQ € Hy(Y2;Q) (i = mq+ 1,my +2,...,ms) and yz-Q € Hy 4(Y2;Q)
(t=m1+1,m; +2,...,my) with IntQ(foQ, y]Q) = ¢;; for all 7, j to form @Q-bases for
Hd(YQ; Z)® @ and FI4_d(Y2; Z). By continuing this process, we have elements x; €
HyY:Z) (i =1,2,3,...) forming a Q-basis for Hy(Y;Z) ® Q and y; € Hy_4(Y; Z)
(1 = 1,2,3,...) forming a @-basis for ]:]4_d(Y;Z) ® @ with Int(z;,y;) # 0 and
Int(z;,y;) = 0 for all 4,j with ¢ # j. Let Z* be the free abelian subgroup of
H4_d(Y; Z) such that y; (i = 1,2,3,...) form a basis, and hom’(Z*, Z) the free
subgroup of hom(Z*, Z) consisting of homomorphisms f : Z* — Z taking the value
0 except a finite number of y; (i = 1,2,3,...). Then, since the intersection form Int :
Hy(Y; Z) x Hy_q(Y; Z) — Z induces a monomorphism Hy(Y; Z) — hom/ (Z*, Z), we
see that Hy(Y; Z) is a free abelian group. O

The Z-rank Bd(Y) of f[d(Y; Z) is our first topological index of Y. The proof of
Lemma 3.1 also implies the following corollary.

Corollary 3.2. For an ascending sequence Y; C Yo C --- C Y, C ... of compact
4-submanifolds Y, for a non-compact oriented 4-manifold Y with U, =Y, we
have

A A

Ba(Y,) € BaYi) (n=1,2,3,...) and lim By(Y,) = Ba(Y).

n—-+oo

For an abelian group G, let G® = {z € G|2x = 0}, which is a direct sum of
some copies of Zy. For M € M°) let §(M° C Y) be the minimal Z-rank of the
image im[k? : Ho(M°; Z) — Hy(Y;Z)], and p(M° C Y) the minimal Zy-rank of
im[k? : Hy(M°; Z) — Hy(Y; Z)]®), for all embeddings k° : M° — Y. By taking the
value 0 for the non-embeddable case, we define the following topological invariants of
Y:

§5(Y) = sup{d(M° c Y)| M° € M°},

po(Y) = sup{p(M° CY)|M° € M’}.
Let (M C Y) be the minimal Z-rank of the image im[k, : Ho(M; Z) — Hy(Y; Z)],
and p(M C Y) the minimal Zy-rank of im[k, : Ho(M;Z) — Hy(Y; Z)|®), for all

embeddings k : M — Y. By taking the value 0 for the non-embeddable case, we
define the following invariants of Y:

oY) = sup{d(M CY)|M € M},
p(Y) = sup{p(M CY)[M € Mj}.
Restricting all embeddings k£ : M — Y to all embeddings & : M — Y of type ¢ for

i = 1,2, we obtain the topological indexes 6;(Y") and p;(Y) (i = 1,2) of Y in place of
d(Y) and p(Y).
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Our main result concerns a behavior on the topological indexes for a punctured
universe and a universe, and their refined universes, namely types 1, 2 and full uni-
verses, which are stated as follows:

Theorem 3.3.
(1) If U is a punctured universe, then one of the following cases (1.1)-(1.3) holds.

(1.1) Bo(U) = +o0.
(1.2) 6o(U) = +00.
(1.3) po(U) = +o0.

Further, in every case, there is a punctured spin universe U with the other topological
indexes taken 0.

(2) If U is a type 1 universe, then one of the following cases (3.1)-(3.3) holds.

(3.1) Bo(U) = +00 and B (U) = 1.
(3.2) 61(U) = +o00 and 4, (U) = 1.
(3.3) p1(U) = +o0 and B1(U) = +o0.

Further, in every case, there is a type 1 spin universe U with the other topological
indexes on [5(U), 61(U) and p(U) taken 0.

(3) If U is a type 2 universe, then one of the following cases (3.1) and (3.2) holds.

(3.1) Bo(U) = +o0.
(3.2) 85(U) = +oc.

Further, in every case, there is a type 2 spin universe U with the other topological
index taken 0.

(4) If U is a universe, then one of the following cases (4.1)-(4.3) holds.

(4.1) Bo(U) = +o0.
(4.2) 6(U) = +o0. )
(4.3) p(U) = +o0 and p;(U) = +o0.

Further, in every case, there is a spin universe U with the other topological indexes
on fB2(U), §(U) and p(U) taken 0.

(5) If U is a full universe, then one of the following cases (5.1) and (5.2) holds.

(5.1) Bo(U) = +o00 and S, (U) = 1.
(5.2) 8(U) = 400 and f1(U) = 1.

Further, in every case, there is a full spin universe U with the other topological index

on fo(U) and 6(U) taken 0.
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In the following Examples 3.4-3.6, we give some examples on a punctured universe,
a universe, and their refined universes, namely types 1, 2 and full universes, which
are sufficient to see the existence assertions on (1)-(5) of Theorem 3.3.

Example 3.4. The stable 4-space SR* = R*#;%5? x 57 has the following property:

(3.4.1) For every M € M, there is a type 2 embedding k : M — SR* inducing the
trivial homomorphism k, = 0 : Ho(M; Z) — Hy(SR*; 7).

Thus, U = SR* is a punctured and type 2 spin universe with f5(U) = 400,
Br(U) =0, 6o(U) = 6o(U) = 0 and po(U) = po(U) = 0. Further, Ug = S* x S3#SR*
is a punctured, type 1, type 2, full spin universe with

Ba(Us) = +00, i (Us) = 1,
do(Us) = 61(Us) = 62(Us) = 0(Us) = 0,
po(Us) = p1(Us) = p2(Us) = p(Us) = 0.

Proof of (3.4.1). Let W be a simply connected spin 4-manifold with OW = M
whose double DW is homeomorphic to the connected sum X of some copies of S% x S2.
Since the natural homomorphism i, : Ho(M;Z) — Ho(W;Z) is injective, we can
represent a basis of the image of i, by mutually disjoint 2-spheres S; (i = 1,2,...,m)
in W which we can find in the factors S? x p’s of the connected summands S? x S?’s
of an S? x S%-decomposition of DW, if necessary, by taking connected sums with
some copies of S? x S2. By the surgeries of DW on S; (i = 1,2, ...,m), we obtain the
connected sum X’ of some copies of S? x S? such that the inclusion M — X’ induces
the zero map Ho(M; Z) — Hy(X'; Z). Since the stable 4-space SR? is constructed
from a punctured manifold of X', we have (3.4.1). O

Example 3.5. For I = [0,1], let W; be a spin 4-manifold obtained from M; x
I by attaching 2-handles on M; x 1 along a basis for H;(M; x 1; Z)/(torsions) to
obtain that Hy(W;; Z) is a torsion abelian group. Then the natural homomorphism
Hy(M; x I; Z) — Hy(W;; Z) is an isomorphism, so that Ho(W;; Z) is a free abelian
group. Let W;(i = 1,2,...) be the 4-manifolds corresponding to the 3-manifolds
M; e M (i =1,2,...). We construct the open 4-manifolds

= R0 intW; and Usp = S' x S*#Ur.
The open 4-manifold Uy is a punctured and type 2 spin universe with

Bo(Ur) = B1(Ur) = 0,
do(Ur) = 62(Ur) = +o0,
po(Ur) = p2(Ur) = 0.
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The open 4-manifold Ugr is a punctured, type 1, type 2 and full spin universe with

Ba(Usr) = 0, B1(Usr) = 1,
do(Usr) = 61(Usr) = 02(Usr) = 0(Usr) = 400,
po(Ust) = pr1(Usr) = p2(Ust) = p(Ust) = 0.

Example 3.6. Let Z,, = Z[%] be a subring of Q). The 4-dimensional solid torus with
three meridian disks is a spin 4-manifold D(T?) with boundary the 3-dimensional torus
T3 which is obtained from the 4-disk D* by attaching the three 0-framed 2-handles
along the Borromean rings Lp (see [8, 10]). For s = 2, let D(sT®) be the disk sum
of s copies of D(T®). Then the boundary dD(sT?) is the connected sum #sT?of s
copies of T%. For s = 0, we understand D(sT3) = S* and #sT° = (). Let

Y =S x S*#D(sT?) and X = S*#D(sT?) = D(sT?).

A Samsara 4-manifold on M € M is a compact oriented spin 4-manifold X with
0X = #sT3 and with Z/,-homology of 3 for some s = 0 such that there is a type 1
embedding k : M — X inducing the trivial homomorphism

We also call X the standard Samsara 4-manifold on S. In [8], we showed that there is
a Samsara 4-manifold X; on every M; € M (1 =1,2,3,...). Let Ri be the upper-half
4-space with boundary the 3-space R3. Let

SR - RIS,

be the 4-manifold obtained from R} by making the connected sums with the closed
J);’s and the disk sums with the bounded X;’s. We call the open 4-manifold Ugy; =
int(X Ri) a Samsara universe, which is a punctured and type 1 spin universe with

BQ(USM) =0, Bl(USM) = 400,
00(Usm) = 01(Usnr) = 0,
po(Usn) = p1(Usnr) = +oo.

Let ¥R} be the 4-manifold obtained from R} by making the connected sums with
countably many copies of S* x S3 and the disk sums with countably many copies of
D(T?), and

YR'=int(ERY).

Every Samsara universe Ugys has the same Z,-homology as Y R*. By Theorem 3.3, we
can see that any Samsara universe Usgyy is not any type 2 universe. A reduced Samsara
4-manifold on M° € M is a compact oriented spin 4-manifold X with 0% = #5713
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and with Z,-homology of 3 for some s = 0 such that there is a punctured embedding
KO MO — X inducing the trivial homomorphism

K =0: Hy(M® Z)py) — Ho(5; Z)5).

We also call 3 the standard reduced Samsara 4-manifold on the punctured 3-sphere
(53)°. We obtain a reduced Samsara 4-manifold X; on M? from a Samsara 4-manifold
Y; on M; by a surgery of X killing a generator of Hy(%;; Z) = Z, and conversely we
obtain a Samsara 4-manifold X; on M; from a reduced Samsara 4-manifold 3; on MY
by the surgery of ; along the 2-knot S2 = dM? (see [8]).

Let A .

X Ri - Rih;lolo i

be the 4-manifold obtained from R} by making the connected sums with the closed
J;’s and the disk sums with the bounded X;’s. We call the open 4-manifold

Ugrs = int(JRY)

a reduced Samsara universe, which is a punctured spin universe with the following
topological indexes

~ A~

B2(Urs) = B1(Urs) = 0,
00(Urs) = 0,
pO(URS> = +00.

Let f)Ri be the 4-manifold obtained from R% by making the disk sums with countably
many copies of D(T?), and
YR'=int(XRY).

Every reduced Samsara universe Ugrs has the same Z/,-homology as SR By [8,
(3.1.4.1)], we can show that if a closed 3-manifold M with H,(M; Z) a finite abelian
group is embedded in Ugg, then the linking form ¢, : H(M; Z), x H1(M; Z), — Q/Z
restricted to the p-primary component Hy(M; Z), of Hy(M; Z) for every odd prime
p is hyperbolic. Thus, Ugg is not any universe. Further, from [8, 3.1(4)], we can see
that X R* and 3 R* are not any punctured universe.

4. A non-compact version of the signature theorem for an infinite cyclic
covering

We need a non-compact 4-manifold version of the signature theorem in [3] to prove
Theorem 3.3 which is explained in this section.

Let Y be a non-compact oriented 4-manifold with boundary a closed 3-manifold
B. Assume that 55(Y) < 4+00. We say that a homomorphism v : H(Y;Z) — Z
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is end-trivial if there is a compact submanifold Y’ of Y such that the restriction
Yawyyy : Hi(Y\Y"; Z) — Z is the zero map. For any end-trivial homomorphism
v H\(Y;Z) — Z, we take the infinite cyclic covering (Y, B) of (Y, B) associated
with 7. Then Hy(Y; Q) is a (possibly, infinitely generated) [-module for the principal
ideal domain I' = Q[t, t~!] of Laurent polynomials with rational coefficients. Consider
the I'-intersection form

Intr : Hy(Y:Q) x Hy(Y:Q) = T

defined by Intp(z,y) = S5 Int(z,t "y)t™ for z,y € Hy(Y;Q). Then we have
the identities:

Intp <mx, y) = Intr(z, f(t)y) = f(t)Intr(x,y), Intr(y,x) = Intp(x,y),
where ~ denotes the involution of I" sending ¢ to ¢t~!. Let

O5(Y;Q)r = {x € Ho(Y;Q)|Intr (2, Ho(Y;Q)) = 0}

and o B B
Hy(Y;Q)r = Ha(Y;Q)/Oo(Y; Q)r,

which is a torsion-free ['-module. We show the following lemma:
Lemma 4.1. If 35(Y) < 400, then Hy(Y; Q)r is a free T-module of finite rank.

Proof. We split Y by a compact 4-submanifold Y D Bof Y and Y” = cl(Y'\Y’) such
thatBy(Y") = By(Y) and Y is trivially lifted to Y. Then we note that Hy(Y";Q)r = 0.
For By =Y’ ' NY”, since Hy(Y'; Q) and Hi(By; Q) are finitely generated I'-modules,
the Mayer-Vietoris sequence

IL(Y';Q) & H(Y",Q) — Hy(Y;Q) — Hi(Bo; Q)

shows that ﬁg(?; Q)r is a finitely generated, torsion-free I'-module, so that it is a
free [-module of finite rank. ]

Let A(t) be a I-Hermitian matrix representing the I'-intersection form Intr on
Hy(Y;Q)p. For x € (—=1,1) let w, = o + v/1 — 224, which is a complex number of
norm one. For a € (—1,1) we define the signature invariant of Y by

Taio(f/) = lim signA(w,).

r—a=£0

The signature invariants o,(B) (a € [—1,1]) of B are also defined in [1, 2] by the
quadratic form . .
b:torrHy(B; Q) x torr H1(B; Q) — Q
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on the I-torsion part torp Hy(B; Q) of Hy(B;Q). For a € [—1,1], let

ouy(B) = Y 0x(B),
0@i(B) = Y _ o.(B).

We show the following theorem which is a non-compact version of the signature
theorem given in [3].

Theorem 4.2 (A non-compact version of the signature theorem).

Ta_o(f/) —signY = a[a,l}(é),

Taro(Y) — signY = o(,.1(B).

Proof of Theorem 4.2. Asit is discussed in Lemma 4.1, we split Y by a compact 4-
submanifold Y’ D B and Y = cl(Y'\Y”) such that 85(Y") = B2(Y) (see Corollary 3.2)
and Y is trivially lifted to Y. We use a variant argument of the proof of the Novikov
addition theorem for infinite cyclic coverings (see [3]). We consider the homology over
the quotient field Q(I') of I'. For By = Y'NY”, let K;(By; Q(I")) be the kernel of the

natural homomorphism
Hy(Bo; Q1)) — Hy(Y';Q(I) ® Hi(Y"; Q(I))

in the Mayer-Vietoris sequence of (Y;Y")Y"”; By). Let x; (i =1,2,...,m) be a Q(T)-
basis of the Q(I')-vector space K;(By; Q(I')). This basis is extended to a Q(I')-basis
v (i=1,2,....mm+1,...,n) for Hy(By; Q(I). A Q(I')-basis y; (i = 1,2,...,n)
for Hy(By; Q(T")) is taken so that the Q(I')-intersection number Intgry(z;, y;) = d;; in
By (see [1]). Let 2z (¢ = 1,2,...,m) be “suspension elements”of z; (i = 1,2,...,m)
in Hy(Y;Q(I')) (which are constructed from the Q(I')-basis x; (i = 1,2,...,m) of
K1(Bp; Q(I")) by using 2-chains in Y’ and Y” whose boundary cycles representing
z;). We regard y; (i = 1,2,...,m) as elements of Hy(Y;Q(T)) under the natural
homomorphism Hy(By; Q(T)) — Hy(Y;Q(T')). Then we have Intory (2, ;) = d;; and
Intor (yi,y;) = 0in Y. Let y), (' = 1,2,...,n') be elements of Hy(Y"; Q(T")) such
that y; (1 =1,2,...,m)and y,, (' =1,2,...,n') form a Q(I')-basis for Hy (Y Q)
and y), (i" = 1,2,...,n') are orthogonal to the elements v;,z; (i = 1,2,...,m) with
respect to the Q(I'")-intersection form Intgry in Y. Similarly, let ¢, (i" = 1,2,...,n")
be elements of Hy(Y”; Q(T")) such that »; (i =1,2,...,m) and % (i =1,2,...,n")
form a Q(I')-basis for Hy(Y”; Q(I')) and 5% (i” = 1,2,...,n") are orthogonal to the
elements y;, 2 (1 = 1,2,...,m) with respect to the Q(I')-intersection form Intgry in
Y. Since }AIQ(SN/”; Q)r = 0, we see that

Ta+0 (Y/) = Ta+0 (Y/I) .
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By the version with ¢ = 1 of this argument, we also have signY = signY’. Thus, by
the compact version of the signature theorem in [3], we have

Ta—o(Y) — signY = 7,_(Y") — signY” = 01,.11(B U By) = 01.1(B),
Y

Taro(Y) —signY = Ta_o(f/') —signY”’ = 0(,,1)(B U By) = a(aJ}(B),

because o,(By) = 0 for all z € [—1,1]. O

Let x1(B) denote the ()-dimension of the kernel of the homomorphism ¢ — 1 :
H{(B;Q) — Hy(B;Q). Then we have the following corollary:

Corollary 4.3. For every a € (—1,1),

|0y (B)| — #1(B) < [signY| + B2(Y) £ 265(Y).

Proof. In the proof of Theorem 4.2, we have
0(a,1)(B) + singY = 740(Y) = 7a0(Y").
On the other hand, in [4, Theorem 1.6], it is shown that
Taro(Y)| = m1(0Y") < Bo(Y").

Since BQ(Y’) = BQ(Y) and 9Y’ = B U B, with U(ayl](é()) = ﬁl(E’o) = 0, we have the
desired inequalities. O

5. Loose embedding

Let M’ be a compact connected oriented 3-manifold M’, and U a possibly non-
compact connected oriented 4-manifold. We say that an embedding &' : M’ — U
is loose if the kernel K(M') = ker(k] : Hy(M'; Z) — Ho(U;Q)) # 0. It is known
that if the boundary OM’ of M’ is () or connected, then every indivisible x € K(M’)
is represented by a closed connected oriented surface F' in M’ which we call a null-
surface of the loose embedding £’ (see [6]). Then we have sk,[F| =0 in Hy(U; Z) for
a positive integer s, which is assumed to be taken to be the smallest positive integer.
We consider a loose embedding k° : MY — U for M® € M° which is regarded as the
inclusion map k° : M° C U, and F as a null-surface of £°. We use the following
lemma:

Lemma 5.1. Assume that for a tubular neighborhood Ng of F' in U, there is a
compact connected oriented 3-manifold V in cl(U\Ng) such that [0V] = s[F] in
Hy(Ny: 2).
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Proof. Choose a compact connected 4-submanifold U’ of U with Ny C M9 x
[-1,1] c U’ € U and M° x 0 = M° such that K(M°) = ker(k? : Hy(M° Z) —
Ho(U';Q)) and sk°[F] = 0 in Ho(U'; Z). Let E' = cl(U'\Np). Then there is an in-
divisible element z € H3(E',ONp; Z) = H3(U', Np; Z) with 0,z = s[F| € Hy(Np; Z)
under 9, : H3(U',NF;Z) — Hy(Ng;Z). Since H3(E',ONp;Z) = H'(E',0U"; Z),
we have a compact oriented 3-manifold V' in E’ C cl(U\Ng) such that z = [V'] €
H3(E',ONp; Z), and 0V’ = §"F" C ONp for a closed connected surface F” and a
factor s” > 0 of s such that [0V'] = §"[F"] = s[F| € Ho(Np;Z). Replace V' by a
connected non-closed component V' of V’. Then we still have [0V] = §"[F"] = s[F] €

Let Ey = cl(U\M° x [-1,1]) C E = cl(U\Ng). For a null-surface F of a loose
embedding k° : M° C U, we define a homomorphism

v Hy(Ey; 2) S Hy(B; 2) ™ Z,

where 4, is a natural homomorphism and Inty is defined by the identity Inty (z) =
Int(z, V) for x € Hy(FE; Z). We have the following lemma:

Lemma 5.2. i, and Inty are onto, so that ~ is onto.

We call v a null-epimorphism (associated with an null-surface F') of a loose em-

bedding £°.

Proof. Since M°\F is connected, every simple loop [ in U\F meeting M trans-
versely is deformed in U\F into a simple loop I’ in U\M°. Hence, i, is onto. Then
we have the @-linking number Linkg(F,m) = +1 for a meridian m of F' in ONg
and hence we see that m meets V with the intersection number s in F. Since V is
connected, m is used to construct a simple loop m’ in E' meeting V' transversely at
just one point. Hence, Inty is onto. ]

We also need the following lemma:

Lemma 5.3. Every null-epimorphism v : Hy(Ey; Z) — Z of a loose embedding
KO M° — U is end-trivial.

Proof. The infinite cyclic covering E induced from the epimorphism Inty is con-
structed from the infinite copies of cl(E\V x [0,1]) by attaching them along the
infinite copies of a bi-collar V' x [0,1] of V in E. Thus, the restriction of Inty to
the non-compact part cIl(E\V x [0, 1]) is the O-map. Since the infinite cyclic covering
Ey — E)y induced from 7 is a restriction of the infinite cyclic covering £ — E, we
see that v is end-trivial. O
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Let a be the reflection on the double DM°(= 0FE,;) of M° exchanging the two
copies of M? orientation-reversely. A meridian m of F'in M° x [—1,1] is deformed in
M° x [—1,1] into a loop m’ in DM® = F); with a(m’) = —m/. Since Inty ([m]) = s,
the following lemma is directly obtained:

Lemma 5.4. We have §(zp) = s and a.(zr) = —aF for the element xp = [m/] €
H1(0Eyr; Z) and the restriction % : Hi (DM Z) — Z of ~.

Corollary 5.5. If s is odd, then the Zs-reduction 4, : H(DM%; Z) — Z, of 7 is
not a-invariant.

A homomorphism 4 : H;(DMY; Z) — Z satisfying the conclusion of Corollary 5.5
is called a Zs-asymmetric homomorphism in [4, §].

Proof. We can write zp as 2/ — ., (2') for the element 2’ € H,(DM?°; Z) represented
by a loop in M. Then

ier) = A(e') = Jau(a’) =s =1 (mod 2),

which shows that v is not a-invariant. O]
6. Completion of the proof of Theorem 3.3
Throughout this section, we make the proof of the remaining part of Theorem 3.3.

Completion of the proof of (1). For any positive integers n, ¢, we take n knots
K; (1 £ i < n) whose signatures o(K;) (1 =i < n) have the condition that

i—1
lo(K1)| > 2¢ and |o(K;)| > Z lo(K;)|+2¢ (i=2,3,...,n).
j=1

Let M; = x(K;,0) and M = Mi#Ms# ... #M,. We call M a c-efficient 3-manifold
of rank n. The following calculation is made in [4, Lemma 1.3]:

(6.1.1) Every c-efficient 3-manifold M of any rank n has
|O'(_171] (DMO>>| > 2c¢
for every Z;-asymmetric homomorphism 4 : H;(DM%; Z) — Z.
Suppose that a punctured universe U has

Bo(U) = ¢ < +00, 8o(U) = b < +00, po(U) =V < +00.
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Let M be a c-efficient 3-manifold of any rank n > b+b". Suppose that M is embedded
in U. For the inclusion £° : M° C U, the kernel

K(M°) = ker[k? : Hy(M° Z) — Hy(U; Q)]

is a free abelian group of rank d > . Then there is a basis z; (i = 1,2,...,n) of
Hy(MY; Z) such that z; (i = 1,2,...,d) is a basis of K(M?"). Since po(U) =V < d,
we can find an indivisible element x in the basis z; (i = 1,2,...,d) such that the

multiplied element rz for an odd integer r is represented by the boundary cycle of a
3-chain in U. Taking a closed connected oriented surface £ in M representing z, we
have a null-epimorphism v : Hy(F)y, : Z) — Z (associated with an null-surface F') of
the loose embedding &Y whose restriction 4 : Hy (DM : Z) — Z is a Zy-asymmetric
homomorphism. Then we obtain from (6.1.1) a contradiction that

2c < ’0(71’1}(DM0)‘ § 2c

because B2(Ey) < fo(U) = ¢ and /il(l/ﬁ\—/l/o) = 0. Thus, at least one of Bo(U), 6o(U),
po(U) must be +o0. O

Completion of the proof of (2). Let U be a type 1 universe. We always have

B1(U) = 1. Since U is also a punctured universe, at least one of Bo(U), 8,(U), p1(U)
must be 400 by (1). Suppose that a type 1 universe U has

b= B?(U) < +OO7 c= 51<U) < +OO7 § = Bl(U) < +o0.

Then we show that there is a 3-manifold M which is not type 1 embeddable in U.
Let Hy(U;Z) = Z°. Let U, (u=1,2,...,2° — 1) be the connected double coverings
of U induced from the epimorphisms Z® — Z5. Let M, be the subset of M consisting
of M such that a type 1 embedding k : M — U is trivially lifted to k, : M — U,.
Since every type 1 embedding M — U lifts to U, trivially for some u, we see that

25—-1
U M, = M.
u=1

Let U’ be a compact 4-submanifold of U such that U” = cl(U\U’) is trivially lifted
to U, for all u. Let U], and U, be the lifts of U’ and U” to U,. Let

V = max{B(U)|u=1,2,...,2° "}

(6.2.1) rank(im(ky,).) < b+ b for any u.

Proof of (6.2.1). Let K(M) = ker(k. : Hy(M;Z) — Hy(U;Q)). Let F; (j =
1,2,...,m) be a system of closed connected surfaces representing a basis for K (M).
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Let V; be a compact oriented 3-manifold in U such that 0V, = r;k(F}) for a positive
integer 7;. Let V' = V; N U" be a compact orientable 3-manifold. Then 9V}’ =
Vj’ U F} where FY' = k(F;) NU" and Vj/ = V;NoU’. Since V" is trivially lifted to
Uy, we see that the 2-cycle k,(Fj) is Q-homologous to the rational 2-cycle

1 .

_'[Tij(d(Fj\F]{/)) + ku(vg/)]

j
in U} for all j. This means that (k,).(K(M)) is in the image of the natural homo-
morphism Hy(U; Q) — H2(U,; Q). Hence we have rank((k,).(K(M))) < V. Since
rank(im(k,)) < b, we have rank(im(k,).) < b+ 0. O

For any positive integers n, ¢, we take n knots K; (1 < ¢ < n) whose local
signatures o, 1)(f;) (1 < i < n) have the condition that there are numbers a; €
(—=1,1) (i=1,2,...,n) such that

i—1

0@ (KD)| > 26, [0y (K)| > Y |o@y(K;)|+2¢ (i=2,3,...,n)

Jj=1

for every a € (—1,1) (see [7]). Let M; = x(K;,0) be the O-surgery manifold along
K;, and M = My#Ms# ... #M,. We call M a strongly c-efficient 3-manifold of rank
n. For this 3-manifold M, we say that a homomorphism 5 : H; (DM Z) — Z is
symmetric if |y MOy = +7 mo for all i, where av is the reflection on the double DM 0,
Otherwise, + is said to be an asymmetric homomorphism. The following calculation
is also seen from [4, Lemma 1.3]:

(6.2.2) For every strongly c-efficient 3-manifold M of any rank n and every asym-
metric homomorphism 4 : H;(DM°; Z) — Z, we have a number a € (—1,1) such
that

0 (a0 (DMO))] > 2.

For example, if M is constructed from the knots K; (i = 1,2,...,n) with K; the
ict-fold connected sum of the trefoil knot for any fixed integer ¢t > ¢, then M is
a strongly c-efficient 3-manifold of rank n. We show that every strongly c-efficient
3-manifold M of rank > b+ b is not type 1 embedded in U. Suppose that M is type
1 embedded in U and lifts trivially in U,. Let U(M) and U, (M) = U(M) UtU(M)
be the 4-manifolds obtained respectively from U and U, by splitting along M, where
t denotes the double covering involution. Let OU(M) = My U —M; and 0U,(M) =
MyU —DM,, where My, My, My are the copies of M. Since the natural homomorphism
Hy(M;Z) — Ho(U; Q) is not injective, there is a non-zero element [C] € Hy(M; Z)
such that C' = 9C for a 3-chain D in U, and C' = 9D, for a 3-chain D, in U which is
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the image of D under the covering projection U, — U. The 3-chains Dand D, define
3-chains D', D" and D" in U(M) such that

oD = C] — (Co + Cy),
oD" = | - CY,
oD" = (C] + CY) — (Co + Cy + CF)
for some 2-cycles C,,,C",,C" in M, (u = 0,1) (see Fig. 3). Since fo(U(M)) < ¢, the

non-zero end-trivial homomorphism + : H;(DM°; Z) — Z defined by any 3-chain
in U(M) must be symmetric by Corollary 4.3 and (6.2.2) because every strongly

c-efficient 3-manifold M has k;(DM?) = 0. Let

m m

€)=Y a, [ =3 dai, [€] =Y al

in H(M;Z) with z; a generator of Hy(M;; Z) = Z. By the symmetry conditions on
D', D" and D" we have the following relations:

" ! ! !N / /i " / /i
a; = ¢eila; + a;), a;, =ca;, a,+a; =} (a; +a; + a)),

7 [t ]
where ¢;,¢}, e = %1 for all i. Then we have

(1+¢e))al =el(e; + 1)al.

If g,¢; = —1, then we have a] = a} = a; = 0 for all i. If ¢;¢; = 1, then we have a; =0
for all <. Hence we have [C] = 0, contradicting that [C] # 0. Hence M is not type 1
embeddable in U. O

Figure 3: A situation of 3-chains
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Completion of the proof of (3). Let U be a type 2 universe. Suppose that
B2(U) =c< 400, 0(U)=0b< +oc.

Let M € M be a c-efficient 3-manifold of any rank n > b. Let kK : M C U be a type
2 embedding which is a loose embedding. let U’ and U” be the 4-manifolds obtained
from U by splitting along M. For U" or U”, say U’, we have a null-surface F' in M
and a positive (not necessarily odd) integer r such that the natural homomorphism
Hy(M; Z) — Hy(U'; Z) sends r[F] to 0. Taking the minimal positive integer r, we
have a compact connected oriented 3-manifold V' in U’ with 9V = rF. This 3-
manifold V' defines an end-trivial epimorphism ~ : Hy(U’; Z) — Z whose restriction
¥ Hy(M; Z) — Z is equal to r¥yp for the epimorphism §p : H;(M; Z) — Z defined
by F. Let M and Mg denote the infinite cyclic coverings of M induced from ¥ and
Ar, respectively. Let (1 )iy < iy < -+ < i5(£ n) be the enumeration of ¢ such that
the Zs-reduction of 4 restricted to the connected summand M; of M is non-trivial.
By a calculation made in [4, Lemma 1.3], we have

on(Mp) = o(Ky),

j=1

so that |o(_11)(Mp)| > 2c. By [4, Lemma 1.3], we also have

011 (Mp) = 031 (M)

for some a € (—1,1). Then, since Fo(U’") < Bo(U) = ¢ and k1 (M) = 0, we obtain
from Corollary 4.3 a contradiction that

2¢ < |0 (M)| £ 2.
Hence 35(U) or 6,(U) must be +oc. O
Completion of the proof of (4). Let U be a universe. Assume that
Bo(U) = ¢ < 400 and 6(U) < +oo.
By the proof of (3), for every infinite family of strongly c-efficient 3-manifolds of
infinitely many ranks n any member must be type 1 embeddable to U. By the proof

of (2), we have p(U) = +oo and f1(U) = +o0. O

Completion of the proof of (5). Since a full universe U is a type 1 and type 2
universe, the desired result follows from (2) and (3). O
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