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Abstract

A boundary-less connected oriented 4-manifold is called a universe for every 3-manifold if every

closed connected oriented 3-manifold is embedded in it, and a punctured universe if every punctured

3-manifold is embedded in it, which is known to be an open 4-manifold. We introduce types 1, 2 and

full universes as refined notions of a universe and a punctured universe and investigate some relation-

ships among them. After introducing some topological invariants for every (possibly non-compact)

oriented 4-manifold which we call the topological indexes, we show infinity and independence on

some topological indexes of every universe.
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1. Introduction

Throughout this paper, by a closed 3-manifold we mean a closed connected ori-
ented 3-manifold and by a punctured 3-manifold a punctured manifold of a closed
connected oriented 3-manifold. Then we know that for every compact oriented 4-
manifold, there is a closed 3-manifold whose punctured 3-manifold is not embeddable
in it (see [4]1) and hence any oriented 4-manifold with every punctured 3-manifold
embedded must be non-compact. This motivates us to put the following definition:

∗This work was supported by JSPS KAKENHI Grant Number 24244005.
1The non-orientable version is also known in [11], but we do not discuss it here. Also, by an

embedding we will mean a smooth or piecewise-linear embedding.



Definition. A universe is an open connected oriented 4-manifold U with every
closed 3-manifold M embedded. A punctured universe is an open connected oriented
4-manifold U with every punctured 3-manifold M0 embedded.

Then we ask a question: What topological shapes a universe and a punctured
universe have ?

In this question, we introduce the following topological indexes

β̂d(Y )(d = 1, 2), δ(Y ), δi(Y ) (i = 0, 1, 2), ρ(Y ), ρi(Y ) (i = 0, 1, 2)

of every (possibly, non-compact) oriented 4-manifold Y , which are obtained from
homological arguments and are topological invariants of Y with values taken in
{0, 1, 2, . . . ,+∞}. We apply these invariants to a punctured universe, a universe
and their refined universes, namely types 1, 2 and full universes to obtain our main
result (Theorem 3.3) which is stated as follows:

For a punctures universe U , we show that one of the topological indexes β̂2(U),
δ0(U), ρ0(U) is +∞. Further, in every case, there is a punctured spin universe U
with the other topological indexes taken 0.

For a type 1 universe U , we show that one of the topological indexes β̂2(U), δ1(U),

ρ1(U) is +∞. We have always β̂1(U) ≧ 1, but in the case of ρ1(U) = +∞, we can

add the condition that β̂1(U) = +∞. Further, in every case, there is a type 1 spin

universe U with the other topological indexes on β̂2(U), δ1(U), ρ1(U) taken 0.

For a type 2 universe U , we show that one of the topological indexes β̂2(U), δ2(U)
is +∞. Further, in every case, there is a type 2 spin universe U with the other
topological index taken 0.

For a universe U , we show that one of the topological indexes β̂2(U), δ(U), ρ(U)

is +∞. In the case of ρ(U) = +∞, we can add the condition that β̂1(U) = +∞.
Further, in every case, there is a spin universe U with the other topological indexes
on β̂2(U), δ(U) and ρ(U) taken 0.

For a full universe U , we show that one of the topological indexes β̂2(U), δ(U) is

+∞. We have always β̂1(U) ≧ 1. Further, in every case, there is a full spin universe

U with the other topological index on β̂2(U) and δ(U) taken 0.

In Section 2, we introduce types 1, 2 and full universes as refined notions of a
universe and a punctured universe. We explain some relationships among them in
Theorem 1.1. In Section 3, the topological indexes of every oriented 4-manifold are
defined and our main result (Theorem 3.3) is stated. The existence part of universes
in our main result (Theorem 3.3) is shown in this section with some examples. In
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Section 4, we establish a non-compact 4-manifold version of the signature theorem
for an infinite cyclic covering of a compact oriented manifold given in [3], which is
needed to prove the infinity of some topological indexes stated in Theorem 3.3. In
Section 5, we introduce a notion of a loose embedding needed as a tool connecting
an embedding argument with an argument of an infinite cyclic covering. In Section
6, we complete the proof of Theorem 3.3.

Figure 1: Universes of types 1 and 2

2. Types 1, 2 and full universes as refined notions of a universe and a
punctured universe

LetM be the set of closed 3-manifoldsM , andM0 the set of punctured 3-manifolds
M0. It is useful to denote the members of M and M0 by Mi (i = 1, 2, 3, . . . ) and
M0

i (i = 1, 2, 3, . . . ), respectively. For a connected open oriented 4-manifold U , we
note that there are two types of embeddings k : M → U . An embedding k : M → U is
of type 1 if U\k(M) is connected, and of type 2 if U\k(M) is disconnected (see Fig. 1).
If there is a type 1 embedding k : M → U , then there is an element x ∈ H1(U ;Z)
with the intersection number IntU(x, k(M)) = +1, so that the intersection form
IntU : H1(U ;Z)×H3(U ;Z) → Z induces an epimorphism

Id : Hd(U ;Z) → Z

for d = 1, 3 such that the composite I3k∗ : H3(M ;Z) → H3(U ;Z) → Z is an iso-
morphism and the composite I1k∗ : H1(M ;Z) → H1(U ;Z) → Z is the 0-map. This
suggests that we must consider more refined universes as follows:
Definition. The universe U is a type 1 universe if every closed 3-manifold is type 1
embeddable in U , a type 2 universe if every M is type 2 embedded in U , and a full
universe if U is a type 1 universe and a type 2 universe.
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Figure 2: Creating a full universe from a type 2 universe

Our central problem is to characterize the topological shapes of punctured, types
1, 2 and full universes. We note that a full universe is obtained from a type 2 universe
by taking a connected sum with S1 ×S3 (see Fig. 2). We first establish the following
theorem.

Theorem 2.1. The following assertions hold.

Type 1 universe
↗ ↘

(1) Full universe Universe → Punctured universe.
↘ ↗

Type 2 universe

(2) Type 1 universe ̸→ Full universe.

(3) Type 2 universe ̸→ Full universe.

(4) Universe ̸→ Type 1 universe.

(5) Universe ̸→ Type 2 universe.

(6) Punctured universe ̸→ Universe.

Proof. (1) is obvious by definition. To see (3) and (4), we note that the stable
4-space SR4 = R4#+∞

i=1S
2 × S2

i considered in [5] is a type 2 spin universe because
every closed 3-manifold M bounds a simply connected spin 4-manifold whose double
is the connected sum of some copies of S2 × S2. Since H1(SR

4;Z) = 0, we see that
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any closed 3-manifold cannot be type 1 embedded in SR4, showing (3) and (4). To
see (2) and (5), we consider a type 1 spin universe

USP = R4#+∞
i=1 Mi × S1

which we call the S1-product universe. We use a notion of a linking form, namely
a non-singular symmetric bilinear form ℓ : G × G → Q/Z on a finite abelian group
G. The linking form ℓ is split if ℓ is hyperbolic, i.e., G is a direct sum H ′ ⊕H ′′ with
ℓ(H ′, H ′) = ℓ(H ′′, H ′′) = 0 or ℓ is the orthogonal sum of a linking form ℓH : H×H →
Q/Z and its inverse −ℓH : H ×H → Q/Z. Then we have the following lemma:

Lemma 2.2. If a closed 3-manifold M with H1(M ;Z) a finite abelian group is type
2 embeddable in the product universe USP , then the linking form

ℓ : H1(M ;Z)×H1(M ;Z) → Q/Z

is split.

Before proving Lemma 2.2, the proof of Theorem 2.1 will be completed by using
Lemma 2.2. In fact, the lens space L(p, q) with p ̸= 0,±1 is not type 2 embeddable
in USP by Lemma 2.2, showing (2) and (5). To see (6), for I = [0, 1] we consider a
punctured spin universe

UIP = R4#+∞
i=1 int(M

0
i × I),

which we call the I-product punctured universe. Suppose that there is an embedding
k : M → UIP for a closed 3-manifold M ∈ M. We note that every element of
H1(UIP ;Z) is represented by the sum of 1-cycles in int(M0

i × I) for a finite number
of i which can be moved to be disjoint from k(M). This means that the intersection
number Int(M,H1(UIP ;Z)) = 0, showing that the embedding k is not of type 1 and
hence k must be of type 2. Regarding I ⊂ S1, we can consider UIP ⊂ USP . Then

the composite embedding M
k→ UIP ⊂ USP is still of type 2, because the boundary

∂(M0
i × I) is connected. Thus, if H1(M ;Z) is a finite abelian group, then the linking

form ℓ : H1(M ;Z) × H1(M ;Z) → Q/Z splits by Lemma 2.2. Thus, the lens space
L(p, q) with p ̸= 0,±1 is not embeddable in UIP , implying that UIP is not any
universe, showing (6). This completes the proof of Theorem 2.1 except the proof of
Lemma 2.2.

The proof of Lemma 2.2 is given as follows:

Proof of Lemma 2.2. By an S1-semi-product 4-manifold, we mean a 4-manifold
which is the connected sum of S1-products Mi × S1 (i = 1, 2, . . . ,m) for some m.
Assume that M is type 2 embedded in USP . Then M is type 2 embedded in an
S1-semi-product 4-manifold. We show the following assertion:

5



(2.2.1) If H1(M ;Z) is a finite abelian group, then M is type 2 embedded in an
S1-semi-product 4-manifold X consisting of the connected summands Mi × S1 (i =
1, 2, . . . ,m) such that there is a point pi ∈ S1 with Mi × pi ∩M = ∅ for every i.

Proof of (2.2.1). We see that M is embedded in an S1-semi-product 4-manifold
XU = #s

j=1Mj×S1. The n-fold cyclic coveringM1×S1 → M1×S1 associated with the

n-fold cyclic covering S1 → S1 induces an n-fold cyclic covering X(1) → XU such that
X(1) is an S1-semi-product 4-manifold consisting of the connected summand M1×S1

and the trivial lifts of the other connected summands Mi × S1 (j = 2, . . . , s). Since
H1(M ;Z) is finite, the manifold M is also trivially lifted to X(1). We note that M is
type 2 embedded in XU if and only if IntXU

(M,H1(XU ;Z)) = 0. Since H1(X
(1);Z)

is generated by loops which are lifts of loops in XU , we see that any trivial lift M ′ of
M to X(1) has IntX(1)(M ′, H1(X

(1);Z)) = 0 and hence is type 2 embedded. Taking
n sufficiently large, we have M1 × p1 ∩ M = ∅ for a point p1 ∈ S1. Applying the
same arguments inductively to Mi × S1 (i = 2, 3, . . . , s), we obtain the conclusion of
(2.2.1).

By (2.2.1), for I = [0, 1] we may consider that M is type 2 embedded in the
connected sum

Y = M1 × I#M2 × I# . . .#Mm × I,

so that M splits Y into two compact 4-manifolds A and B whose boundaries ∂A and
∂B have the form

∂A = M ∪ ∂AY, ∂B = (−M) ∪ ∂BY,

where

∂AY = M1 × ∂I ∪M2 × ∂I ∪ · · · ∪Ms × ∂I,

∂BY = Ms+1 × ∂I ∪Ms+2 × ∂I ∪ · · · ∪Mm × ∂I.

We show the following assertion:

(2.2.2) The following natural sequence

(#) 0 → torH2(A,M ∪ ∂AY ;Z)
∂∗→ torH1(M ∪ ∂AY ;Z)

i∗→ torH1(A;Z) → 0

on the homology torsion parts is a split exact sequence.

By (2.2.2), the linking form

ℓ+ : torH1(M ∪ ∂AY ;Z)× torH1(M ∪ ∂AY ;Z) → Q/Z
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is split. This is because im∂∗ is a direct summand of torH1(M ∪ ∂AY ;Z) and
(im∂∗)

⊥ = im∂∗ with respect to ℓ+. Since the linking form

ℓ0 : torH1(∂AY ;Z)× torH1(∂AY ;Z) → Q/Z

is split and the linking form ℓ+ is an orthogonal sum of the linking forms ℓ and ℓ0,
we see from [9] that the linking form ℓ : H1(M ;Z)×H1(M ;Z) → Q/Z is split. This
completes the proof of Lemma 2.2 except the proof of (2.2.2).

Proof of (2.2.2). Let

∂0
AY = M1 × 0 ∪M2 × 0 ∪ · · · ∪Ms × 0,

∂0
BY = Ms+1 × 0 ∪Ms+2 × 0 ∪ · · · ∪Mm × 0.

Further, let ∂0Y = ∂0
AY ∪ ∂0

BY . Since H2(M ;Z) = H2(Y, ∂
0Y ;Z) = 0, the Mayer-

Vietoris exact sequence

H2(M ;Z) → H2(A, ∂
0
AY ;Z)⊕H2(B, ∂0

BY ;Z) → H2(Y, ∂
0Y ;Z)

implies that
H2(A, ∂

0
AY ;Z) = H2(B, ∂0

BY ;Z) = 0.

Since H1(M ∪∂0
AY, ∂

0
AY ;Z) = H1(M ;Z) is finite and H2(A, ∂

0
AY ;Z) = 0, we see from

the exact sequence

H2(A, ∂
0
AY ;Z) → H2(A,M ∪ ∂0

AY ;Z) → H1(M ∪ ∂0
AY, ∂

0
AY ;Z)

that H2(A,M ∪ ∂0
AY ;Z) is finite. Because j∗ passes through the finite abelian group

H2(A,M ∪ ∂0
AY ;Z), we see that the image of the homomorphism j∗ : H2(A;Z) →

H2(A,M ∪ ∂AY ;Z) is finite. Thus, the semi-exact sequence

torH2(A,M ∪ ∂AY ;Z)
∂∗→ torH1(M ∪ ∂AY ;Z)

i∗→ torH1(A;Z)

is exact. We construct a monomorphism

π : torH1(A;Z) → torH1(M ∪ ∂AY ;Z)

with the identity

i∗π = 1 : torH1(A;Z)
π→ torH1(M ∪ ∂AY ;Z)

i∗→ torH1(A;Z).

Then we see that the sequence (#) is a split exact sequence, because i∗ is onto and
∂∗ is injective, for ∂∗ : torH2(A,M ∪ ∂AY ;Z) → torH1(M ∪ ∂AY ;Z) is Poincaré dual
to the epimorphism i∗ : torH1(M ∪ ∂AY ;Z) → torH1(A;Z).
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To construct a monomorphism π, we note that the Mayer-Vietoris exact sequence

0 = H2(Y, ∂
0Y ;Z) → H1(M ;Z) → H1(A, ∂

0
AY ;Z)⊕H1(B, ∂0

BY ;Z)

→ H1(Y, ∂
0Y ;Z) = Zm−1

induces a natural isomorphism

jA∗ + jB∗ : H1(M ;Z) ∼= torH1(A, ∂
0
AY ;Z)⊕ torH1(B, ∂0

BY ;Z).

Then we can construct a monomorphism

πA : torH1(A, ∂
0
AY ;Z) → H1(M ;Z)

so that

jA∗ π
A = 1 : torH1(A, ∂

0
AY ;Z)

πA

→ H1(M ;Z)
jA∗→ torH1(A, ∂

0
AY ;Z).

Since jA∗ passes through the natural homomorphisms jM∗ : H1(M ;Z) → torH1(A;Z)
and j0∗ : torH1(A;Z) → torH1(A, ∂

0
AY ;Z), we have

j0∗(j
M
∗ πA) = jA∗ π

A = 1.

Using that H2(A, ∂
0
AY ;Z) = 0 and j0∗ is onto, we see that the sequence

0 → torH1(∂
0
AY ;Z)

i0∗→ torH1(A;Z)
j0∗→ torH1(A, ∂

0
AY ;Z) → 0

obtained from the homology sequence of the pair (A, ∂0
AY ) is a split exact sequence,

by which we can define a homomorphism

π0 : torH1(A;Z) → torH1(∂
0
AY ;Z)

with the identity i0∗π
0 = 1− jM∗ πAj0∗ . We define the homomorphism

π′ = πAj0∗ + π0 : torH1(A;Z) → H1(M ;Z)⊕ torH1(∂
0
AY ;Z).

This homomorphism

jM∗ + i0∗ : H1(M ;Z)⊕ torH1(∂
0
AY ;Z) → torH1(A;Z)

has the identity

(jM∗ + i0∗)π
′ = 1 : torH1(A;Z) → torH1(A;Z).

In fact, we have

(jM∗ + i0∗)π
′(x) = jM∗ πAj0∗(x) + i0∗π

0(x)

= jM∗ πAj0∗(x) + x− jM∗ πAj0∗(x) = x

8



for all x ∈ torH1(A;Z). The direct sum H1(M ;Z)⊕ torH1(∂
0
AY ;Z) is identified with

the homology torH1(M ∪ ∂0
AY ;Z). Then we can extend the homomorphisms jM∗ + i0∗

and π′ to the natural homomorphism i∗ : torH1(M ∪ ∂AY ;Z) → torH1(A;Z) and a
homomorphism π : torH1(A;Z) → H1(M ∪ ∂AY ;Z) with i∗π = 1 where the value
of π on the direct summand torH1(∂AY \∂0

AY ;Z) of torH1(M ∪ ∂AY ;Z) is taken 0.
Thus, we have a desired monomorphism π, showing (2.2.2).

This completes the proof of Lemma 2.2.

3. Homology of a universe and a punctured universe

Let Y be an orientable possibly non-compact 4-manifold. For the intersection
form

Int : Hd(Y ;Z)×H4−d(Y ;Z) → Z,

we define the dth null homology of Y to be the subgroup

Od(Y ;Z) = {x ∈ Hd(Y ;Z)| Int(x,H4−d(Y ;Z)) = 0}

of the dth homology group Hd(Y ;Z) and the dth non-degenerate homology of Y to
be the quotient group

Ĥd(Y ;Z) = Hd(Y ;Z)/Od(Y ;Z).

We have the following lemma:

Lemma 3.1. Ĥd(Y ;Z) is a free abelian group.

Proof. We first note that the induced intersection form

Int : Ĥd(Y ;Z)× Ĥ4−d(Y ;Z) → Z

is non-degenerate and Ĥ∗(Y ;Z) is a torsion-free abelian group. Thus, if Y is compact,

then Ĥ∗(Y ;Z) is a free abelian group. Assume that Y is non-compact. Let

Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ . . .

be an ascending sequence of compact 4-submanifolds Yn of Y with ∪+∞
n=1Yn = Y .

We find elements xQ
i ∈ Hd(Y1;Q) (i = 1, 2, . . . ,m1) representing a Q-basis for

Ĥd(Y1;Z)⊗Q and elements yQi ∈ H4−d(Y1;Q) representing aQ-basis for Ĥ4−d(Yn;Z)⊗
Q (i = 1, 2, . . . ,m1) with the Q-intersection numbers IntQ(x

Q
i , y

Q
j ) = δi,j for all i, j.

Then the elements xQ
i (i = 1, 2, . . . ,m1) and yQi (i = 1, 2, . . . ,m1) are regarded as

linearly independent elements of Hd(Y2;Q) and H4−d(Y2;Q), respectively. Taking
the orthogonal complements of the Q-subspaces generated by these elements with
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respect to the Q-intersection form IntQ : Hd(Y2;Q) ×H4−d(Y2;Q) → Q, we can add

new members xQ
i ∈ Hd(Y2;Q) (i = m1 + 1,m1 + 2, . . . ,m2) and yQi ∈ H4−d(Y2;Q)

(i = m1 + 1,m1 + 2, . . . ,m2) with IntQ(x
Q
i , y

Q
j ) = δi,j for all i, j to form Q-bases for

Ĥd(Y2;Z) ⊗ Q and Ĥ4−d(Y2;Z). By continuing this process, we have elements xi ∈
Hd(Y ;Z) (i = 1, 2, 3, . . . ) forming a Q-basis for Ĥd(Y ;Z) ⊗ Q and yi ∈ H4−d(Y ;Z)

(i = 1, 2, 3, . . . ) forming a Q-basis for Ĥ4−d(Y ;Z) ⊗ Q with Int(xi, yi) ̸= 0 and
Int(xi, yj) = 0 for all i, j with i ̸= j. Let Z∗ be the free abelian subgroup of

Ĥ4−d(Y ;Z) such that yi (i = 1, 2, 3, . . . ) form a basis, and homf (Z∗, Z) the free
subgroup of hom(Z∗, Z) consisting of homomorphisms f : Z∗ → Z taking the value
0 except a finite number of yi (i = 1, 2, 3, . . . ). Then, since the intersection form Int :

Ĥd(Y ;Z)× Ĥ4−d(Y ;Z) → Z induces a monomorphism Ĥd(Y ;Z) → homf (Z∗, Z), we

see that Ĥd(Y ;Z) is a free abelian group.

The Z-rank β̂d(Y ) of Ĥd(Y ;Z) is our first topological index of Y . The proof of
Lemma 3.1 also implies the following corollary.

Corollary 3.2. For an ascending sequence Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ . . . of compact
4-submanifolds Yn for a non-compact oriented 4-manifold Y with ∪+∞

n=1Yn = Y , we
have

β̂d(Yn) ≦ β̂d(Yn+1) (n = 1, 2, 3, . . . ) and lim
n→+∞

β̂d(Yn) = β̂d(Y ).

For an abelian group G, let G(2) = {x ∈ G| 2x = 0}, which is a direct sum of
some copies of Z2. For M0 ∈ M0, let δ(M0 ⊂ Y ) be the minimal Z-rank of the
image im[k0

∗ : H2(M
0;Z) → H2(Y ;Z)], and ρ(M0 ⊂ Y ) the minimal Z2-rank of

im[k0
∗ : H2(M

0;Z) → H2(Y ;Z)](2), for all embeddings k0 : M0 → Y . By taking the
value 0 for the non-embeddable case, we define the following topological invariants of
Y :

δ0(Y ) = sup{δ(M0 ⊂ Y )|M0 ∈ M0},
ρ0(Y ) = sup{ρ(M0 ⊂ Y )|M0 ∈ M0}.

Let δ(M ⊂ Y ) be the minimal Z-rank of the image im[k∗ : H2(M ;Z) → H2(Y ;Z)],
and ρ(M ⊂ Y ) the minimal Z2-rank of im[k∗ : H2(M ;Z) → H2(Y ;Z)](2), for all
embeddings k : M → Y . By taking the value 0 for the non-embeddable case, we
define the following invariants of Y :

δ(Y ) = sup{δ(M ⊂ Y )|M ∈ M},
ρ(Y ) = sup{ρ(M ⊂ Y )|M ∈ M}.

Restricting all embeddings k : M → Y to all embeddings k : M → Y of type i for
i = 1, 2, we obtain the topological indexes δi(Y ) and ρi(Y ) (i = 1, 2) of Y in place of
δ(Y ) and ρ(Y ).
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Our main result concerns a behavior on the topological indexes for a punctured
universe and a universe, and their refined universes, namely types 1, 2 and full uni-
verses, which are stated as follows:

Theorem 3.3.
(1) If U is a punctured universe, then one of the following cases (1.1)-(1.3) holds.

(1.1) β̂2(U) = +∞.
(1.2) δ0(U) = +∞.
(1.3) ρ0(U) = +∞.

Further, in every case, there is a punctured spin universe U with the other topological
indexes taken 0.

(2) If U is a type 1 universe, then one of the following cases (3.1)-(3.3) holds.

(3.1) β̂2(U) = +∞ and β̂1(U) ≧ 1.

(3.2) δ1(U) = +∞ and β̂1(U) ≧ 1.

(3.3) ρ1(U) = +∞ and β̂1(U) = +∞.

Further, in every case, there is a type 1 spin universe U with the other topological
indexes on β̂2(U), δ1(U) and ρ1(U) taken 0.

(3) If U is a type 2 universe, then one of the following cases (3.1) and (3.2) holds.

(3.1) β̂2(U) = +∞.
(3.2) δ2(U) = +∞.

Further, in every case, there is a type 2 spin universe U with the other topological
index taken 0.

(4) If U is a universe, then one of the following cases (4.1)-(4.3) holds.

(4.1) β̂2(U) = +∞.
(4.2) δ(U) = +∞.

(4.3) ρ(U) = +∞ and β̂1(U) = +∞.

Further, in every case, there is a spin universe U with the other topological indexes
on β̂2(U), δ(U) and ρ(U) taken 0.

(5) If U is a full universe, then one of the following cases (5.1) and (5.2) holds.

(5.1) β̂2(U) = +∞ and β̂1(U) ≧ 1.

(5.2) δ(U) = +∞ and β̂1(U) ≧ 1.

Further, in every case, there is a full spin universe U with the other topological index
on β̂2(U) and δ(U) taken 0.
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In the following Examples 3.4-3.6, we give some examples on a punctured universe,
a universe, and their refined universes, namely types 1, 2 and full universes, which
are sufficient to see the existence assertions on (1)-(5) of Theorem 3.3.

Example 3.4. The stable 4-space SR4 = R4#+∞
i=1S

2×S2
i has the following property:

(3.4.1) For every M ∈ M, there is a type 2 embedding k : M → SR4 inducing the
trivial homomorphism k∗ = 0 : H2(M ;Z) → H2(SR

4;Z).

Thus, U = SR4 is a punctured and type 2 spin universe with β̂2(U) = +∞,

β̂1(U) = 0, δ0(U) = δ2(U) = 0 and ρ0(U) = ρ2(U) = 0. Further, US = S1 × S3#SR4

is a punctured, type 1, type 2, full spin universe with

β̂2(US) = +∞, β̂1(US) = 1,

δ0(US) = δ1(US) = δ2(US) = δ(US) = 0,

ρ0(US) = ρ1(US) = ρ2(US) = ρ(US) = 0.

Proof of (3.4.1). Let W be a simply connected spin 4-manifold with ∂W = M
whose doubleDW is homeomorphic to the connected sumX of some copies of S2×S2.
Since the natural homomorphism i∗ : H2(M ;Z) → H2(W ;Z) is injective, we can
represent a basis of the image of i∗ by mutually disjoint 2-spheres Si (i = 1, 2, . . . ,m)
in W which we can find in the factors S2 × p’s of the connected summands S2 × S2’s
of an S2 × S2-decomposition of DW , if necessary, by taking connected sums with
some copies of S2×S2. By the surgeries of DW on Si (i = 1, 2, . . . ,m), we obtain the
connected sum X ′ of some copies of S2×S2 such that the inclusion M → X ′ induces
the zero map H2(M ;Z) → H2(X

′;Z). Since the stable 4-space SR4 is constructed
from a punctured manifold of X ′, we have (3.4.1).

Example 3.5. For I = [0, 1], let Wi be a spin 4-manifold obtained from Mi ×
I by attaching 2-handles on Mi × 1 along a basis for H1(Mi × 1;Z)/(torsions) to
obtain that H1(Wi;Z) is a torsion abelian group. Then the natural homomorphism
H2(Mi × I;Z) → H2(Wi;Z) is an isomorphism, so that H2(Wi;Z) is a free abelian
group. Let Wi(i = 1, 2, . . . ) be the 4-manifolds corresponding to the 3-manifolds
Mi ∈ M (i = 1, 2, . . . ). We construct the open 4-manifolds

UT = R4#+∞
i=1 intWi and UST = S1 × S3#UT .

The open 4-manifold UT is a punctured and type 2 spin universe with

β̂2(UT ) = β̂1(UT ) = 0,

δ0(UT ) = δ2(UT ) = +∞,

ρ0(UT ) = ρ2(UT ) = 0.
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The open 4-manifold UST is a punctured, type 1, type 2 and full spin universe with

β̂2(UST ) = 0, β̂1(UST ) = 1,

δ0(UST ) = δ1(UST ) = δ2(UST ) = δ(UST ) = +∞,

ρ0(UST ) = ρ1(UST ) = ρ2(UST ) = ρ(UST ) = 0.

Example 3.6. Let Z/2 = Z[1
2
] be a subring of Q. The 4-dimensional solid torus with

three meridian disks is a spin 4-manifoldD(T 3) with boundary the 3-dimensional torus
T 3 which is obtained from the 4-disk D4 by attaching the three 0-framed 2-handles
along the Borromean rings LB (see [8, 10]). For s ≧ 2, let D(sT 3) be the disk sum
of s copies of D(T 3). Then the boundary ∂D(sT 3) is the connected sum #sT 3of s
copies of T 3. For s = 0, we understand D(sT 3) = S4 and #sT 3 = ∅. Let

Σ = S1 × S3#D(sT 3) and Σ̂ = S4#D(sT 3) = D(sT 3).

A Samsara 4-manifold on M ∈ M is a compact oriented spin 4-manifold Σ with
∂Σ = #sT 3 and with Z/2-homology of Σ for some s ≧ 0 such that there is a type 1
embedding k : M → Σ inducing the trivial homomorphism

k∗ = 0 : H2(M ;Z/2) → H2(Σ;Z/2).

We also call Σ the standard Samsara 4-manifold on S3. In [8], we showed that there is
a Samsara 4-manifold Σi on every Mi ∈ M (i = 1, 2, 3, . . . ). Let R4

+ be the upper-half
4-space with boundary the 3-space R3. Let

ΣR4
+ = R4

+♮
+∞
i=1 Σi

be the 4-manifold obtained from R4
+ by making the connected sums with the closed

Σi’s and the disk sums with the bounded Σi’s. We call the open 4-manifold USM =
int(ΣR4

+) a Samsara universe, which is a punctured and type 1 spin universe with

β̂2(USM) = 0, β̂1(USM) = +∞,

δ0(USM) = δ1(USM) = 0,

ρ0(USM) = ρ1(USM) = +∞.

Let ΣR4
+ be the 4-manifold obtained from R4

+ by making the connected sums with
countably many copies of S1 × S3 and the disk sums with countably many copies of
D(T 3), and

ΣR4 = int(ΣR4
+).

Every Samsara universe USM has the same Z/2-homology asΣR4. By Theorem 3.3, we
can see that any Samsara universe USM is not any type 2 universe. A reduced Samsara
4-manifold on M0 ∈ M0 is a compact oriented spin 4-manifold Σ̂ with ∂Σ̂ = #sT 3
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and with Z/2-homology of Σ̂ for some s ≧ 0 such that there is a punctured embedding

k0 : M0 → Σ̂ inducing the trivial homomorphism

k0
∗ = 0 : H2(M

0;Z/2) → H2(Σ̂;Z/2).

We also call Σ̂ the standard reduced Samsara 4-manifold on the punctured 3-sphere
(S3)0. We obtain a reduced Samsara 4-manifold Σ̂i on M0

i from a Samsara 4-manifold

Σi on Mi by a surgery of Σi killing a generator of Ĥ1(Σi;Z) = Z, and conversely we

obtain a Samsara 4-manifold Σi on Mi from a reduced Samsara 4-manifold Σ̂i on M0
i

by the surgery of Σ̂i along the 2-knot S2
i = ∂M0

i (see [8]).
Let

Σ̂R4
+ = R4

+♮
+∞
i=1 Σ̂i

be the 4-manifold obtained from R4
+ by making the connected sums with the closed

Σi’s and the disk sums with the bounded Σi’s. We call the open 4-manifold

URS = int(Σ̂R4
+)

a reduced Samsara universe, which is a punctured spin universe with the following
topological indexes

β̂2(URS) = β̂1(URS) = 0,

δ0(URS) = 0,

ρ0(URS) = +∞.

Let Σ̂R4
+ be the 4-manifold obtained from R4

+ by making the disk sums with countably
many copies of D(T 3), and

Σ̂R4 = int(Σ̂R4
+).

Every reduced Samsara universe URS has the same Z/2-homology as Σ̂R4. By [8,
(3.1.4.1)], we can show that if a closed 3-manifold M with H1(M ;Z) a finite abelian
group is embedded in URS, then the linking form ℓp : H1(M ;Z)p×H1(M ;Z)p → Q/Z
restricted to the p-primary component H1(M ;Z)p of H1(M ;Z) for every odd prime
p is hyperbolic. Thus, URS is not any universe. Further, from [8, 3.1(4)], we can see

that ΣR4 and Σ̂R4 are not any punctured universe.

4. A non-compact version of the signature theorem for an infinite cyclic
covering

We need a non-compact 4-manifold version of the signature theorem in [3] to prove
Theorem 3.3 which is explained in this section.

Let Y be a non-compact oriented 4-manifold with boundary a closed 3-manifold
B. Assume that β̂2(Y ) < +∞. We say that a homomorphism γ : H1(Y ;Z) → Z
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is end-trivial if there is a compact submanifold Y ′ of Y such that the restriction
γ|cl(Y \Y ′) : H1(Y \Y ′;Z) → Z is the zero map. For any end-trivial homomorphism

γ : H1(Y ;Z) → Z, we take the infinite cyclic covering (Ỹ , B̃) of (Y,B) associated
with γ. Then H2(Ỹ ;Q) is a (possibly, infinitely generated) Γ-module for the principal
ideal domain Γ = Q[t, t−1] of Laurent polynomials with rational coefficients. Consider
the Γ-intersection form

IntΓ : H2(Ỹ ;Q)×H2(Ỹ ;Q) → Γ

defined by IntΓ(x, y) =
∑+∞

m=−∞ Int(x, t−my)tm for x, y ∈ H2(Ỹ ;Q). Then we have
the identities:

IntΓ

(
f(t)x, y

)
= IntΓ(x, f(t)y) = f(t)IntΓ(x, y), IntΓ(y, x) = IntΓ(x, y),

where denotes the involution of Γ sending t to t−1. Let

O2(Ỹ ;Q)Γ = {x ∈ H2(Ỹ ;Q)|IntΓ(x,H2(Ỹ ;Q)) = 0}

and
Ĥ2(Ỹ ;Q)Γ = H2(Ỹ ;Q)/O2(Ỹ ;Q)Γ,

which is a torsion-free Γ-module. We show the following lemma:

Lemma 4.1. If β̂2(Y ) < +∞, then Ĥ2(Ỹ ;Q)Γ is a free Γ-module of finite rank.

Proof. We split Y by a compact 4-submanifold Y ′ ⊃ B of Y and Y ′′ = cl(Y \Y ′) such

thatβ̂2(Y
′) = β̂2(Y ) and Y ′′ is trivially lifted to Ỹ . Then we note that Ĥ2(Ỹ

′′;Q)Γ = 0.
For B0 = Y ′ ∩ Y ′′, since H2(Ỹ

′;Q) and H1(B̃0;Q) are finitely generated Γ-modules,
the Mayer-Vietoris sequence

H2(Ỹ
′;Q)⊕H2(Ỹ

′′;Q) → H2(Ỹ ;Q) → H1(B̃0;Q)

shows that Ĥ2(Ỹ ;Q)Γ is a finitely generated, torsion-free Γ-module, so that it is a
free Γ-module of finite rank.

Let A(t) be a Γ-Hermitian matrix representing the Γ-intersection form IntΓ on

Ĥ2(Ỹ ;Q)Γ. For x ∈ (−1, 1) let ωx = x +
√
1− x2i , which is a complex number of

norm one. For a ∈ (−1, 1) we define the signature invariant of Ỹ by

τa±0(Ỹ ) = lim
x→a±0

signA(ωx).

The signature invariants σa(B̃) (a ∈ [−1, 1]) of B̃ are also defined in [1, 2] by the
quadratic form

b : torΓH1(B̃;Q)× torΓH1(B̃;Q) → Q
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on the Γ-torsion part torΓH1(B̃;Q) of H1(B̃;Q). For a ∈ [−1, 1], let

σ[a,1](B̃) =
∑

a≦x≦1

σx(B̃),

σ(a,1](B̃) =
∑

a<x≦1

σx(B̃).

We show the following theorem which is a non-compact version of the signature
theorem given in [3].

Theorem 4.2 (A non-compact version of the signature theorem).

τa−0(Ỹ )− signY = σ[a,1](B̃),

τa+0(Ỹ )− signY = σ(a,1](B̃).

Proof of Theorem 4.2. As it is discussed in Lemma 4.1, we split Y by a compact 4-
submanifold Y ′ ⊃ B and Y ′′ = cl(Y \Y ′) such that β̂2(Y

′) = β̂2(Y ) (see Corollary 3.2)
and Y ′′ is trivially lifted to Ỹ . We use a variant argument of the proof of the Novikov
addition theorem for infinite cyclic coverings (see [3]). We consider the homology over
the quotient field Q(Γ) of Γ. For B0 = Y ′ ∩ Y ′′, let K1(B̃0;Q(Γ)) be the kernel of the
natural homomorphism

H1(B̃0;Q(Γ)) → H1(Ỹ
′;Q(Γ))⊕H1(Ỹ

′′;Q(Γ))

in the Mayer-Vietoris sequence of (Y ;Y ′, Y ′′;B0). Let xi (i = 1, 2, . . . ,m) be a Q(Γ)-
basis of the Q(Γ)-vector space K1(B̃0;Q(Γ)). This basis is extended to a Q(Γ)-basis
xi (i = 1, 2, . . . ,m,m + 1, . . . , n) for H1(B̃0;Q(Γ)). A Q(Γ)-basis yi (i = 1, 2, . . . , n)
for H2(B̃0;Q(Γ)) is taken so that the Q(Γ)-intersection number IntQ(Γ)(xi, yj) = δij in

B̃0 (see [1]). Let zi (i = 1, 2, . . . ,m) be “suspension elements”of xi (i = 1, 2, . . . ,m)
in H2(Ỹ ;Q(Γ)) (which are constructed from the Q(Γ)-basis xi (i = 1, 2, . . . ,m) of
K1(B̃0;Q(Γ)) by using 2-chains in Y ′ and Y ′′ whose boundary cycles representing
xi). We regard yi (i = 1, 2, . . . ,m) as elements of H2(Ỹ ;Q(Γ)) under the natural
homomorphism H2(B̃0;Q(Γ)) → H2(Ỹ ;Q(Γ)). Then we have IntQ(Γ)(zi, yj) = δij and

IntQ(Γ)(yi, yj) = 0 in Ỹ . Let y′i′ (i
′ = 1, 2, . . . , n′) be elements of H2(Ỹ

′;Q(Γ)) such

that yi (i = 1, 2, . . . ,m) and y′i′ (i
′ = 1, 2, . . . , n′) form a Q(Γ)-basis for H2(Ỹ

′;Q(Γ))
and y′i′ (i

′ = 1, 2, . . . , n′) are orthogonal to the elements yi, zi (i = 1, 2, . . . ,m) with

respect to the Q(Γ)-intersection form IntQ(Γ) in Ỹ . Similarly, let y′′i′′ (i
′′ = 1, 2, . . . , n′′)

be elements of H2(Ỹ
′′;Q(Γ)) such that yi (i = 1, 2, . . . ,m) and y′′i′′ (i

′′ = 1, 2, . . . , n′′)

form a Q(Γ)-basis for H2(Ỹ
′′;Q(Γ)) and y′′i′′ (i

′′ = 1, 2, . . . , n′′) are orthogonal to the
elements yi, zi (i = 1, 2, . . . ,m) with respect to the Q(Γ)-intersection form IntQ(Γ) in

Ỹ . Since Ĥ2(Ỹ
′′;Q)Γ = 0, we see that

τa±0(Ỹ ) = τa±0(Ỹ
′).
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By the version with t = 1 of this argument, we also have signY = signY ′. Thus, by
the compact version of the signature theorem in [3], we have

τa−0(Ỹ )− signY = τa−0(Ỹ
′)− signY ′ = σ[a,1](B̃ ∪ B̃0) = σ[a,1](B̃),

τa+0(Ỹ )− signY = τa−0(Ỹ
′)− signY ′ = σ(a,1](B̃ ∪ B̃0) = σ(a,1](B̃),

because σx(B̃0) = 0 for all x ∈ [−1, 1].

Let κ1(B̃) denote the Q-dimension of the kernel of the homomorphism t − 1 :
H1(B̃;Q) → H1(B̃;Q). Then we have the following corollary:

Corollary 4.3. For every a ∈ (−1, 1),

|σ(a,1](B̃)| − κ1(B̃) ≦ |signY |+ β̂2(Y ) ≦ 2β̂2(Y ).

Proof. In the proof of Theorem 4.2, we have

σ(a,1](B̃) + singY = τa+0(Ỹ ) = τa+0(Ỹ
′).

On the other hand, in [4, Theorem 1.6], it is shown that

|τa+0(Ỹ
′))| − κ1(∂Ỹ

′) ≦ β̂2(Y
′).

Since β̂2(Y
′) = β̂2(Y ) and ∂Ỹ ′ = B̃ ∪ B̃0 with σ(a,1](B̃0) = κ1(B̃0) = 0, we have the

desired inequalities.

5. Loose embedding

Let M ′ be a compact connected oriented 3-manifold M ′, and U a possibly non-
compact connected oriented 4-manifold. We say that an embedding k′ : M ′ → U
is loose if the kernel K(M ′) = ker(k′

∗ : H2(M
′;Z) → H2(U ;Q)) ̸= 0. It is known

that if the boundary ∂M ′ of M ′ is ∅ or connected, then every indivisible x ∈ K(M ′)
is represented by a closed connected oriented surface F in M ′ which we call a null-
surface of the loose embedding k′ (see [6]). Then we have sk′

∗[F ] = 0 in H2(U ;Z) for
a positive integer s, which is assumed to be taken to be the smallest positive integer.
We consider a loose embedding k0 : M0 → U for M0 ∈ M0 which is regarded as the
inclusion map k0 : M0 ⊂ U , and F as a null-surface of k0. We use the following
lemma:

Lemma 5.1. Assume that for a tubular neighborhood NF of F in U , there is a
compact connected oriented 3-manifold V in cl(U\NF ) such that [∂V ] = s[F ] in
H2(NF ;Z).
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Proof. Choose a compact connected 4-submanifold U ′ of U with NF ⊂ M0 ×
[−1, 1] ⊂ U ′ ⊂ U and M0 × 0 = M0 such that K(M0) = ker(k0

∗ : H2(M
0;Z) →

H2(U
′;Q)) and sk0

∗[F ] = 0 in H2(U
′;Z). Let E ′ = cl(U ′\NF ). Then there is an in-

divisible element z ∈ H3(E
′, ∂NF ;Z) = H3(U

′, NF ;Z) with ∂∗z = s[F ] ∈ H2(NF ;Z)
under ∂∗ : H3(U

′, NF ;Z) → H2(NF ;Z). Since H3(E
′, ∂NF ;Z) = H1(E ′, ∂U ′;Z),

we have a compact oriented 3-manifold V ′ in E ′ ⊂ cl(U\NF ) such that z = [V ′] ∈
H3(E

′, ∂NF ;Z), and ∂V ′ = s′′F ′′ ⊂ ∂NF for a closed connected surface F ′′ and a
factor s′′ > 0 of s such that [∂V ′] = s′′[F ′′] = s[F ] ∈ H2(NF ;Z). Replace V ′ by a
connected non-closed component V of V ′. Then we still have [∂V ] = s′′[F ′′] = s[F ] ∈
H2(NF ;Z).

Let EM = cl(U\M0 × [−1, 1]) ⊂ E = cl(U\NF ). For a null-surface F of a loose
embedding k0 : M0 ⊂ U , we define a homomorphism

γ : H1(EM ;Z)
i∗→ H1(E;Z)

IntV→ Z,

where i∗ is a natural homomorphism and IntV is defined by the identity IntV (x) =
Int(x, V ) for x ∈ H1(E;Z). We have the following lemma:

Lemma 5.2. i∗ and IntV are onto, so that γ is onto.

We call γ a null-epimorphism (associated with an null-surface F ) of a loose em-
bedding k0.

Proof. Since M0\F is connected, every simple loop l in U\F meeting M0 trans-
versely is deformed in U\F into a simple loop l′ in U\M0. Hence, i∗ is onto. Then
we have the Q-linking number LinkQ(F,m) = +1 for a meridian m of F in ∂NF

and hence we see that m meets V with the intersection number s in E. Since V is
connected, m is used to construct a simple loop m′ in E meeting V transversely at
just one point. Hence, IntV is onto.

We also need the following lemma:

Lemma 5.3. Every null-epimorphism γ : H1(EM ;Z) → Z of a loose embedding
k0 : M0 → U is end-trivial.

Proof. The infinite cyclic covering Ẽ induced from the epimorphism IntV is con-
structed from the infinite copies of cl(E\V × [0, 1]) by attaching them along the
infinite copies of a bi-collar V × [0, 1] of V in E. Thus, the restriction of IntV to
the non-compact part cl(E\V × [0, 1]) is the 0-map. Since the infinite cyclic covering
ẼM → EM induced from γ is a restriction of the infinite cyclic covering Ẽ → E, we
see that γ is end-trivial.
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Let α be the reflection on the double DM0(= ∂EM) of M0 exchanging the two
copies of M0 orientation-reversely. A meridian m of F in M0× [−1, 1] is deformed in
M0 × [−1, 1] into a loop m′ in DM0 = ∂EM with α(m′) = −m′. Since IntV ([m]) = s,
the following lemma is directly obtained:

Lemma 5.4. We have γ̇(xF ) = s and α∗(xF ) = −xF for the element xF = [m′] ∈
H1(∂EM ;Z) and the restriction γ̇ : H1(DM0;Z) → Z of γ.

Corollary 5.5. If s is odd, then the Z2-reduction γ̇2 : H1(DM0;Z) → Z2 of γ̇ is
not α-invariant.

A homomorphism γ̇ : H1(DM0;Z) → Z satisfying the conclusion of Corollary 5.5
is called a Z2-asymmetric homomorphism in [4, 8].

Proof. We can write xF as x′−α∗(x
′) for the element x′ ∈ H1(DM0;Z) represented

by a loop in M0. Then

γ̇(xF ) = γ̇(x′)− γ̇α∗(x
′) = s ≡ 1 (mod 2),

which shows that γ2 is not α-invariant.

6. Completion of the proof of Theorem 3.3

Throughout this section, we make the proof of the remaining part of Theorem 3.3.

Completion of the proof of (1). For any positive integers n, c, we take n knots
Ki (1 ≦ i ≦ n) whose signatures σ(Ki) (1 ≦ i ≦ n) have the condition that

|σ(K1)| > 2c and |σ(Ki)| >
i−1∑
j=1

|σ(Kj)|+ 2c (i = 2, 3, . . . , n).

Let Mi = χ(Ki, 0) and M = M1#M2# . . .#Mn. We call M a c-efficient 3-manifold
of rank n. The following calculation is made in [4, Lemma 1.3]:

(6.1.1) Every c-efficient 3-manifold M of any rank n has

|σ(−1,1](D̃M0))| > 2c

for every Z2-asymmetric homomorphism γ̇ : H1(DM0;Z) → Z.

Suppose that a punctured universe U has

β̂2(U) = c < +∞, δ0(U) = b < +∞, ρ0(U) = b′ < +∞.
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LetM be a c-efficient 3-manifold of any rank n > b+b′. Suppose thatM0 is embedded
in U . For the inclusion k0 : M0 ⊂ U , the kernel

K(M0) = ker[k0
∗ : H2(M

0;Z) → H2(U ;Q)]

is a free abelian group of rank d > b′. Then there is a basis xi (i = 1, 2, . . . , n) of
H2(M

0;Z) such that xi (i = 1, 2, . . . , d) is a basis of K(M0). Since ρ0(U) = b′ < d,
we can find an indivisible element x in the basis xi (i = 1, 2, . . . , d) such that the
multiplied element rx for an odd integer r is represented by the boundary cycle of a
3-chain in U . Taking a closed connected oriented surface F in M0 representing x, we
have a null-epimorphism γ : H1(EM : Z) → Z (associated with an null-surface F ) of
the loose embedding k0 whose restriction γ̇ : H1(DM0 : Z) → Z is a Z2-asymmetric
homomorphism. Then we obtain from (6.1.1) a contradiction that

2c < |σ(−1,1](D̃M0)| ≦ 2c

because β̂2(EM) ≦ β̂2(U) = c and κ1(D̃M0) = 0. Thus, at least one of β̂2(U), δ0(U),
ρ0(U) must be +∞.

Completion of the proof of (2). Let U be a type 1 universe. We always have

β̂1(U) ≧ 1. Since U is also a punctured universe, at least one of β̂2(U), δ1(U), ρ1(U)
must be +∞ by (1). Suppose that a type 1 universe U has

b = β̂2(U) < +∞, c = δ1(U) < +∞, s = β̂1(U) < +∞.

Then we show that there is a 3-manifold M which is not type 1 embeddable in U .
Let Ĥ1(U ;Z) = Zs. Let Uu (u = 1, 2, . . . , 2s − 1) be the connected double coverings
of U induced from the epimorphisms Zs → Z2. Let Mu be the subset of M consisting
of M such that a type 1 embedding k : M → U is trivially lifted to ku : M → Uu.
Since every type 1 embedding M → U lifts to Uu trivially for some u, we see that

2s−1∪
u=1

Mu = M.

Let U ′ be a compact 4-submanifold of U such that U ′′ = cl(U\U ′) is trivially lifted
to Uu for all u. Let U ′

u and U ′′
u be the lifts of U ′ and U ′′ to Uu. Let

b′ = max{β2(U
′
u)| u = 1, 2, . . . , 2s−1}.

(6.2.1) rank(im(ku)∗) ≦ b+ b′ for any u.

Proof of (6.2.1). Let K(M) = ker(k∗ : H2(M ;Z) → H2(U ;Q)). Let Fj (j =
1, 2, . . . ,m) be a system of closed connected surfaces representing a basis for K(M).
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Let Vj be a compact oriented 3-manifold in U such that ∂Vj = rjk(Fj) for a positive
integer rj. Let V ′′

j = Vj ∩ U ′′ be a compact orientable 3-manifold. Then ∂V ′′
j =

V̇ ′
j ∪ rjF

′′
j where F ′′

j = k(Fj) ∩ U ′′ and V̇ ′
j = Vj ∩ ∂U ′. Since V ′′

j is trivially lifted to
Uu, we see that the 2-cycle ku(Fj) is Q-homologous to the rational 2-cycle

1

rj
[rjku(cl(Fj\F ′′

j )) + ku(V̇
′
j )]

in U ′
u for all j. This means that (ku)∗(K(M)) is in the image of the natural homo-

morphism H2(U
′
u;Q) → H2(Uu;Q). Hence we have rank((ku)∗(K(M))) ≦ b′. Since

rank(im(k∗)) ≦ b, we have rank(im(ku)∗) ≦ b+ b′.

For any positive integers n, c, we take n knots Ki (1 ≦ i ≦ n) whose local
signatures σ(a,1)(Ki) (1 ≦ i ≦ n) have the condition that there are numbers ai ∈
(−1, 1) (i = 1, 2, . . . , n) such that

|σ(a1,1](K1)| > 2c, |σ(ai,1](Ki)| >
i−1∑
j=1

∣∣σ(a,1](Kj)
∣∣+ 2c (i = 2, 3, . . . , n)

for every a ∈ (−1, 1) (see [7]). Let Mi = χ(Ki, 0) be the 0-surgery manifold along
Ki, and M = M1#M2# . . .#Mn. We call M a strongly c-efficient 3-manifold of rank
n. For this 3-manifold M , we say that a homomorphism γ̇ : H1(DM0;Z) → Z is
symmetric if γ̇|α(M0

i )
= ±γ̇|M0

i
for all i, where α is the reflection on the double DM0.

Otherwise, γ̇ is said to be an asymmetric homomorphism. The following calculation
is also seen from [4, Lemma 1.3]:

(6.2.2) For every strongly c-efficient 3-manifold M of any rank n and every asym-
metric homomorphism γ̇ : H1(DM0;Z) → Z, we have a number a ∈ (−1, 1) such
that

|σ(a,1](D̃M0))| > 2c.

For example, if M is constructed from the knots Ki (i = 1, 2, . . . , n) with Ki the
ic+-fold connected sum of the trefoil knot for any fixed integer c+ > c, then M is
a strongly c-efficient 3-manifold of rank n. We show that every strongly c-efficient
3-manifold M of rank > b+ b′ is not type 1 embedded in U . Suppose that M is type
1 embedded in U and lifts trivially in Uu. Let U(M) and Uu(M) = U(M) ∪ tU(M)
be the 4-manifolds obtained respectively from U and Uu by splitting along M , where
t denotes the double covering involution. Let ∂U(M) = M0 ∪ −M1 and ∂Uu(M) =
M0 ∪−M2, where M0,M1,M2 are the copies of M . Since the natural homomorphism
H2(M ;Z) → H2(U ;Q) is not injective, there is a non-zero element [C] ∈ H2(M ;Z)
such that C = ∂C for a 3-chain D in Uu and C = ∂D∗ for a 3-chain D∗ in U which is
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the image of D under the covering projection Uu → U . The 3-chains Dand D∗ define
3-chains D′, D′′ and D′′′ in U(M) such that

∂D′ = C ′′
1 − (C0 + C ′

0),

∂D′′ = C ′
1 − C ′′

0 ,

∂D′′′ = (C ′
1 + C ′′

1 )− (C0 + C ′
0 + C ′′

0 )

for some 2-cycles Cu, C
′
u, C

′′
u in Mu (u = 0, 1) (see Fig. 3). Since β̂2(U(M)) ≦ c, the

non-zero end-trivial homomorphism γ̇ : H1(DM0;Z) → Z defined by any 3-chain
in U(M) must be symmetric by Corollary 4.3 and (6.2.2) because every strongly

c-efficient 3-manifold M has κ1(D̃M0) = 0. Let

[C] =
m∑
i=1

aixi, [C ′] =
m∑
i=1

a′ixi, [C ′′] =
m∑
i=1

a′′i xi

in H1(M ;Z) with xi a generator of H1(Mi;Z) ∼= Z. By the symmetry conditions on
D′, D′′ and D′′′, we have the following relations:

a′′i = εi(ai + a′i), a′i = ε′ia
′′
i , a′i + a′′i = ε′′i (ai + a′i + a′′i ),

where εi, ε
′
i, ε

′′
i = ±1 for all i. Then we have

(1 + ε′i)a
′′
i = ε′′i (εi + 1)a′′i .

If εiε
′
i = −1, then we have a′′i = a′i = ai = 0 for all i. If εiε

′
i = 1, then we have ai = 0

for all i. Hence we have [C] = 0, contradicting that [C] ̸= 0. Hence M is not type 1
embeddable in U .

Figure 3: A situation of 3-chains
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Completion of the proof of (3). Let U be a type 2 universe. Suppose that

β̂2(U) = c < +∞, δ2(U) = b < +∞.

Let M ∈ M be a c-efficient 3-manifold of any rank n > b. Let k : M ⊂ U be a type
2 embedding which is a loose embedding. let U ′ and U ′′ be the 4-manifolds obtained
from U by splitting along M . For U ′ or U ′′, say U ′, we have a null-surface F in M
and a positive (not necessarily odd) integer r such that the natural homomorphism
H2(M ;Z) → H2(U

′;Z) sends r[F ] to 0. Taking the minimal positive integer r, we
have a compact connected oriented 3-manifold V in U ′ with ∂V = rF . This 3-
manifold V defines an end-trivial epimorphism γ : H1(U

′;Z) → Z whose restriction
γ̇ : H1(M ;Z) → Z is equal to rγ̇F for the epimorphism γ̇F : H1(M ;Z) → Z defined
by F . Let M̃ and M̃F denote the infinite cyclic coverings of M induced from γ̇ and
γ̇F , respectively. Let (1 ≦)i1 < i2 < · · · < is(≦ n) be the enumeration of i such that
the Z2-reduction of γ̇F restricted to the connected summand Mi of M is non-trivial.
By a calculation made in [4, Lemma 1.3], we have

σ(−1,1](M̃F ) =
s∑

j=1

σ(Kij),

so that |σ(−1,1](M̃F )| > 2c. By [4, Lemma 1.3], we also have

σ(−1,1](M̃F ) = σ(a,1](M̃)

for some a ∈ (−1, 1). Then, since β̂2(U
′) ≦ β̂2(U) = c and κ1(M̃) = 0, we obtain

from Corollary 4.3 a contradiction that

2c < |σ(a,1](M̃)| ≦ 2c.

Hence β̂2(U) or δ2(U) must be +∞.

Completion of the proof of (4). Let U be a universe. Assume that

β̂2(U) = c < +∞ and δ(U) < +∞.

By the proof of (3), for every infinite family of strongly c-efficient 3-manifolds of
infinitely many ranks n any member must be type 1 embeddable to U . By the proof
of (2), we have ρ(U) = +∞ and β̂1(U) = +∞.

Completion of the proof of (5). Since a full universe U is a type 1 and type 2
universe, the desired result follows from (2) and (3).
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