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1.  What Is Knot Theory?   Why Is It In Mathematics? 

 

In this chapter, we briefly explain some elementary foundations of knot theory. In 1.1, 

we explain about knots, links and spatial graphs together with several scientific 

examples. In 1.2, we discuss diagrams of knots, links and spatial graphs and 

equivalences on  knots, links and spatial graphs. Basic problems on knot theory are 

also explained there. In 1.3, a brief history on knot theory is stated. In 1.4, we explain 

how the first non-trivial knot is confirmed. In 1.5, the linking number useful to confirm 

a non-trivial link and the linking degree which is the absolute value of the linking 

number are explained. In particular, we show that the linking degree is defined directly 

from an unoriented link. In 1.6, some concluding remarks on this chapter are given. In 

1.7, some books on knot theory are listed as general references. 

 

1.1  Knots, links, and spatial graphs 
 

A knot is a tangled string in Euclidean 3-space R
3 

which is usually considered as a 

closed tangled string in R
3
, and a link is the union of some mutually disjoint knots (see 

Figure 1). The AYATORI game (= Cat's cradle play) let us know that a given knot can 

be deformed into various forms and we feel that it is a difficult problem to judge 

whether any given two knots are actually the same knot or not. 

 

 

Figure 1: Knots and links 
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A spatial graph is the union Γ of some strings with endpoints in R
3
 which are mutually 

disjoint except the endpoints. A vertex of a spatial graph Γ is a point in Γ gathering more 

than 3 strings and an edge of Γ is a connected component of the strings  obtained from 

Γ by cutting along all the vertices of Γ. For example, Kinoshita’s θ-curve in Figure 2 is a 

spatial graph with two vertices and three edges.  

 

Figure 2: Kinoshita’s θ-curve 

 

To find out a knot or a link phenomenon in natural science, at first a setting of an object 

which one can consider as a string becomes important. Here, we show some examples 

about such objects. 

 

Example 1: It is possible to think a chain (see Figure 3) as one string if roughly seeing, 

but also as a link which are twined round one after another like a string if a little more 

minutely seeing. 

 

 

Figure 3: A chain 

 

Example 2：A 3-braid is a knitting of three strings (see, for example, Figure 4). Since 

this knitting pattern is known to be used in a pottery of the JOMON period (an ancient 

time) in Japan, we see that the people of the JOMON period might understand the fact 

that the 3-braid is a technology of making a long, strong string like a rope from some 

short strings like straws. Then, by joining a and a´, and b and b´ in Figure 4, and then by 

deforming it (without changing near the ends), we can make AWABI MUSUBI (= the 

abalone knot) of "MIZUHIKI" in Figure 5 used for the custom of the present in Japan 

from ancient times.  Also, although it is a little more difficult, we can also make the 

same knot by joining b and b´, and c and c´ in Figure 4, and then by deforming it 

(without changing near the ends). In this way, the knot is also an interested study object 

for cultural anthropology. 
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Figure 4：A 3-braid 

 

Figure 5： AWABI MUSUBI(=abalone knot) of "MIZUHIKI" 

 

Example 3：Assume that there are n particles moving without colliding in the plane 

with a time parameter. Then the track of the motion forms an n-braid in the 

three-dimensional space which is the product space of the plane and the time axis. In the 

the case of 3 particles, we have a 3-braid like the example in Figure 4. Every knot and link 

can cause from an n-braid by taking the closure.  

 

Example 4：When we consider DNA as one string long rope, there is one which 

becomes a closed curve called a DNA knot (see Figure 6). 

 

Figure 6：A  DNA knot (Acknowledgement :Professor N. R. Cozzarelli) 

 

Example 5：A molecular graph on a molecule in chemistry is a spatial graph whose 

vertices correspond to the atoms in the molecule and whose edges express the 

combination data between the atoms by bonds. Topology of molecular graphs has begun 

to attract attention in researches of the synthetic-chemistry. 
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Example 6：A protein molecule is considered to be a string consisting of amino acid 

bases. Some protein molecules such as a prion protein of the Creutzfeldt-Jacob disease 

and an amyloid β protein of the Alzheimer's disease appear to be more or less related to 

knot theory.  

 

Example 7：A large scale structure on the cosmos is recently known to the 

astrophysicists. 

 

Example 8: The seismometer is a machine which draws the track of an 

earthquake-motion of an observation point as a spatial curve, called an earthquake 

curve with the time parameter. The analysis of this earthquake curve can be considered 

as  knot theory in the wide sense.  

 

1.2   Diagrams and equivalence on knots, links, and spatial graphs 

 

 

 Figure 7： A crossing 

 

A knot is in the three-dimensional space and we think that it is made of a very thin 

string. We present it by a plane curve with only double crossings as they are shown in 

Figure 7, which we call a knot diagram or simply a diagram. For a link, it is similarly 

presented and called a link diagram or simply a diagram.  By knots and links, we 

mean their diagrams unless making confusion. A spatial graph is also presented to the 

plane with only double points on the edges which we call a spatial graph diagram (see 

Figure 3). For two knots, we say that they are the same knot or equivalent knots if we 

can deform them into the same shape in the manner of AYATORI game (= Cat's cradle 

play), i.e., by a finite number of Reidemeister moves I-III in Figure 8. For two links, we 

say similarly that they are the same link or equivalent links if we can deform them into 

the same shape in the manner of AYATORI game, namely by a finite number of 

Reidemeister moves I-III. For two spatial graphs, we say that they are the same graph or 

equivalent graphs if we can deform them into the same shape in the manner of 

AYATORI game or in other word by a finite number of Reidemeister moves I-V in 

Figure 8. A knot is called a trivial knot if it is equivalent to a circle in the plane like a 

rubber band. Also, a link is called a trivial link if it is equivalent to an union of 

separated trivial knots. 
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Figure 8: Reidemeister moves 

 

 

Figure 9：  The same arc knot 

 

In daily life, we normally think of an arc knot in Figure 9. At that point, we consider 

that the end points extend virtually long and endless. If we can deform them into the 

same shape in the manner of AYATORI game without moving the parts that are 

extended, then they are considered to be the same knot. A link with two end points can 

be considered similarly to the case of an arc knot (See Figure 10). If a link has more 

than two end points, then such a link no longer has any meaning unless the data 

extending the end points are definitely given. 

 

Figure 10：A link with two end points 

 
The main purpose of knot theory to solve the following two problems (which are related 
to each other): 
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Equivalence Problem：Given two knots (or links,  spatial graphs),  determine 

whether or not they are equivalent. 

 

Classification Problem：Enumerate all the knots (or links, spatial graphs) up to 

equivalences.  

 

To solve these problems,  it is very important to develop topological invariants, 

(namely,  quantities which are invariant under the Reidemeister moves) of knots, links 

and spatial graphs.   

 

1.3  A brief history of knot theory 

 

Knot theory is now believed that a scientific study to be associated with the atomic 

theory of vortex atoms in ether around the end of the nineteenth century. However, it is 

can be traced back to a note by J. B. Listing, a disciple of Gauss in 1849. In the note, it 

has been that the mirror image of the figure-eight knot is the same knot (Figure 11). Up 

until the 1930s, important researches were made by K. Reidemeister and H. Seifert in 

Germany and J. W. Alexander in U.S.A., etc. From 1940 until the 1970's, one may say 

that basic mathematical theory on knot theory was established with R. H. Fox in U.S.A. 

as a center. In Japan, from around 1960, H. Terasaka, T. Homma, S. Kinoshita (later, 

moving to U.S.A.) and K. Murasugi (later, moving to Canada), F. Hosokawa, etc. have 

begun to make contributions to knot theory. From around 1980, knot theory came to 

attention not only in almost all areas of mathematics, but also in the fields of science 

that will be cutting-edge researches, such as gene synthesis, quantum statistical 

mechanics, soft matter physics, biochemistry, polymer network, applied chemistry…. 

The international conference “Knot theory and related topics” received the world's first 

was held at Osaka as a satellite conference of ICM Kyoto in 1990, from whose 

proceedings “Knots 90” (A. Kawauchi, e.d., Walter de Gruyter, 1992) one may feel a 

fever of an expansion of knot theory.  

 

Figure 11 : Equivalence of the figure-eight knot and the mirror image 
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1.4  The first non-trivial knots 
 

Of knots and related concerns that are normally used casually in everyday life, let me 

say here the simplest mathematical proof that there is a non-trivial knot. (This proof 

uses an argument of the 3-colorability of a knot which is well-known to the experts of 

knot theory as, algebraically, the representation theory of the knot group to the 

symmetric group of degree three or as, topologically, the theory of three-fold branched 

coverings of a knot.) Given a knot diagram, we color all the edges connecting the 

crossings by using three colors (e.g., red, blue and yellow) by imposing in the vicinity 

of every crossing the condition that we color the upper arc by the same color and color 

the lower two edges by the same color or different colors so that one color or three 

colors are used in the vicinity of every crossing. By this method, we can always color 

every knot diagram by one color. For some knot diagrams, we can also color them by 3 

colors (see Figure 12). Such a knot is called a 3-colorable knot.  

 

Figure 12：The trefoil knot is 3-colorable 

 

Theorem： Every 3-colorable knot is a non-trivial knot.  

 

The reason why this is true is because we can easily check that any knot diagram D’ 

transformed from a 3-colorable knot diagram D by Reidemeister moves I, II, III (see 

Figure 8) is also 3-colorable. We recommend to confirm this fact for various knots. 

 
 
1.5  Understanding the linking number 

 

The linking number of a link of two oriented knot components is the most fundamental 

topological invariant in knot theory. However, because it takes a value in the integers, 

this invariant cannot de defined without the notion of a negative integer. In this section, 

we first define the linking number. Next, we introduce the absolute value of the linking 

number, called the linking degree and computable directly from a link diagram without 

using the notion of a negative integer. 
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Figure 13：  A link diagram 

 

1.5.1．Linking number   

We shall explain how to define the linking number of an oriented link. We consider 

a link L of two oriented knot components as in Figure 13. Every crossing between the 

distinct knot components coincides with one of the four crossings shown in Figure 14, 

where the signs of two crossings in the left hand side are defined to be +1 and the signs 

of two crossings in the right hand side are defined to be -1. Let m be the sum of signs of 

all the crossings between the distinct knot components. We see that this integer m is 

always even and does not change under Reidemeister moves I，II，III  (see Figure 8), 

namely m is a topological invariant. Then we define the linking number v of the link L 

to be the integer m/2. When we reverse the orientation of one component of L, the sign 

of every crossing between the distinct components is changed so that the linking 

number v of L is changed into –v. For example, the link diagram in Figure 13 has the 

two (+1)-crossings and the four (-1)-crossings and the linking number v is given by  

v = (2 - 4) / 2 = -1. 

 

 

Figure 14： The sign of a crossing 

 

1.5.2．Linking degree 

We consider a diagram of an unoriented link L with knot components J and K as in 

Figure 15. To distinguish between J and K, we denote K by a bold line. We attach an 

orientation to one of the components J and K, say J as shown in Figure 16. Every 

crossing between the oriented component J and the unoriented component K coincides 

with one of the two crossings in Figure 17. We construct a meridian loop, an oriented 

loop surrounding K one time in every crossing between J and K as in Figure 18. For 
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example, we obtain the left-sided diagram in Figure 19 from Figure 16, from which  

we obtain the right-sided diagram in Figure 19 by sliding these meridian loops along K. 

 

Figure 15： An unoriented diagram 

  

Figure 16： A link diagram with the component J oriented 

 

 

Figure 17： The situations of a crossing 

 

We denote by (P,Q) a pair of the subsets of loops with the same orientations in the set of 

meridian loops around K obtained from the oriented knot J. Let p and q be the numbers 

of the elements in P and Q, respectively, where we take p≦q. Then let n=q-p, and the 

linking degree d of a link L consisting of the unoriented knot components J and K is 

defined by  

 

d = n/2 = (q-p)/2.  

 

For example, the linking degree d of the link L in Figure 15 is computed from Figure 19 

to be 

 

d = (4－2)/2 = 1. 

 

If we take the reversed orientation on J, then the orientations of all the meridian loops 

are reversed and the difference n between the numbers of the meridian loops with the 

same orientations is unchanged, so that the linking degree d is independent of a choice 

of any orientation on J.  
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Figure 18: Constructing a meridian loop of K 

  

Figure 19 

 

We show that the same number n is obtained as the difference of the numbers of the 

meridian loops with the same orientations even if we consider the meridian loops 

around J obtained from the component K oriented in any direction (instead of J). In fact, 

if we consider J and K as oriented knots, then we see that the orientation of the meridian 

loop is locally determined as it is shown in Figure 20, so that a pair of the numbers of 

the meridian loops around J with the same orientations obtained from the oriented knot 

K coincides with the pair (up to ordering) of the numbers of the meridian loops around 

K with the same orientations obtained from the oriented knot J. This implies that the 

linking degree d of a link L is a non-negative rational number with denominator 2 which 

is independent of choices of the components and the orientations of J, K.  

 

 

Figure 20: The orientation of a meridian loop is locally determined  

 

We show the following (1) and (2). 
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(1) The linking degree d is unchanged under Reidemeister moves I，II，III and  

hence it is a topological invariant. 

(2) The linking degree d takes a value in the natural numbers or zero. When we orient  

a component J, the linking degree d is computed to be the difference of the numbers of 

the meridian loops with the same orientations around the other component K on the 

crossings of J which are upper than K, or the difference of the numbers of the meridian 

loops around K with the same orientations on the crossings of J which are lower than K. 

 

First, we show (1). The proof is made by considering a pair of the numbers of the 

meridian loops with the same orientations around K obtained from an oriented J. The 

numbers n and d are unchanged under Reidemeister moves except the moves relating to 

both J and K. In particular, they are unchanged by the Reidemeister move I. For the 

Reidemeister move II relating both J and K, we can see from Figure 21 that the numbers 

n, d are unchanged under the Reidemeister move II.  

 

 

 

 

 

 

 

Figure 21: 

Reidemeister move II relating to J and K  

 

For the Reidemeister move III relating both J and K, it is sufficient to consider the cases 

in the left-hand side of Figure 22, if necessary, by changing the roles of J and K. By 

examining the pictures in the right-hand side of Figure 22, we see also that the numbers 

n, d are unchanged under the Reidemeister move III, showing (1). 

  

Figure 22: Reidemeister move III relating to J and K 
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Next, we show (2). We can see from Figure 20 and the definitions of the linking number  

and the linking degree that the linking degree d is the absolute value of the linking 

number v. Therefore, if we assume that the linking number v takes a value in the 

integers, we can see that the linking degree d takes a value in the natural numbers or 

zero. Here, we give a direct proof about it. Let (P,Q) be a pair of the subsets of loops 

with the same orientations in the set of meridian loops around K obtained from an 

oriented knot J. Let E and F be the subsets of P obtained from the crossings of J upper 

and lower than K, respectively. Let e and f be the numbers of the elements of E and F, 

respectively. Also, let G and H be the subsets of Q obtained from the crossings of J 

upper and lower than K, respectively,  and g and f the numbers of the elements of G 

and H, respectively. Then for the numbers p, q of the elements of P and Q, where we 

assume p≦q, we have  

p=e＋f,    q=g＋h. 

We change all the lower crossings of J into the upper crossings of J, so that all the 

crossings of J are upper than K by a crossing change operation in Figure 23. By this 

change, the numbers p=e＋f and q=g＋h of the meridian loops with the same 

orientations are changed into e+h and g+f, respectively (cf. Figure 18). Since now the 

knot diagram of J is upper than the diagram of K, we can move the knot diagrams of J 

and K by Reidemeister moves II，III so that they do not meet. By the topological 

invariance of the linking degree, we have  

(e＋h) – (g＋f) = 0, namely g-e = h-f. 

Hence, we have  

d = n/2 = (q-p)/2 = g-e = h-f 

and （2）is proved. 

 

Figure 23: A crossing-change operation 

 

1.5.3．Computing examples of the linking degree using the meridian loops on the 

upper crossings   

Here are some examples of computations on the linking degree.  

 

Example 0．We introduce an orientation on J as in Figure 16 to compute the linking 

degree of a link in Figure 15. Then the meridian loops on the upper crossings belonging 



13 

 

to J are the loops in Figure 24. Thus, we have d = 2-1 = 1. 

 

Figure 24: The meridian loops on the upper crossings of the diagram of Figure 16 

 

Example１．The linking degree d of the Hopf link in Figure 25 is computed to be   

d = 1. 

 

Figure 25: A computing process for the Hopf link 

 

Example 2．The linking degree d of the Whitehead link in Figure 26 is computed to be 

d = 1-1 = 0. 

 

Figure 26: A computing process for the Whitehead link 

 

Example 3．The linking degree d of a 2-braid link in Figure 27 is computed to be  

d = 2. 

 

 
Figure 27: A computing process for a 2-braid link 

 

Example 4．The linking degree d of the parallel link of a trefoil knot in Figure 28 is 

computed to be d = 3. 
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Figure 28: A computing process for the parallel link of a trefoil knot 

 

Remark. The linking degree d of a twisted parallel link of a trefoil knot in Figure 29 is 

computed to be d = 3-3 = 0. 

 

Figure 29:  A twisted parallel link of a trefoil knot 

 

Example 5．The linking degree d of a parallel link of the figure-eight knot in Figure 30 

is computed to be  d = 2-2 = 0. 

 

Figure 30: A computing process for a parallel link of the figure-eight knot 

 

1.6  Conclusion 
 

It is an ultimate purpose of knot theory to clarify a topological difference of knot 

phenomena in mathematics and in science. In this study, a building power and a 

computational ability in mathematics are needed in addition to the intuition power 

having to do with a figure. We can watch a knot with eyes and our ability of space 

perception will be grown up by playing with it. Knot theory is a subject suitable for 

understanding nature deeply and desirable for learning in an early age. 
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