On alternation numbers of links

Akio Kawauchi ¹

Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

Abstract

We construct infinitely many hyperbolic links with x-distance far from the set of (possibly, splittable) alternating links in the concordance class of every link. A sensitive result is given for the concordance class of every (possibly, split) alternating link. Our proof uses an estimate of the τ -distance by an Alexander invariant and the topological imitation theory, both established earlier by the author.

Key words: Alternating link, x-distance, Alternation number, Concordance, Alternating Laurent polynomial, Semi-classical Alexander polynomial, Link

1991 MSC: 57M25, 57M27

1 Alternation number and τ -alternation number

In this paper, links are always oriented links in the oriented 3-sphere S^3 and a knot is regarded as a link of one component. An alternating link is a link with an alternating diagram, a link diagram such that an over-crossing and an under-crossing appear alternatively along every knot diagram component. Let \mathbb{A} be the set of (possibly, splittable) alternating links. After the solution of the Tait flype conjecture on alternating links by W. W. Menasco and M. B. Thistlethwaite in [16], it became an important question to ask how a non-alternating link is "close to" or "far from" the set \mathbb{A} under a suitable metric. The x-distance (or Gordian distance) $d^{\mathsf{x}}(L,L')$ between links L and L' with the same number of components is the minimal number of cross-changes transforming a diagram of L into a diagram of L'. A zero-linking twist of an oriented link L is an operation on links to obtain a link L' from L by a twist along a trivial knot O such that $L \cap O = \emptyset$ and the linking number $\mathrm{Link}(L,O) = 0$,

Dedicating this paper to Professor Takao Matumoto on his sixtieth birthday. Email address: kawauchi@sci.osaka-cu.ac.jp (Akio Kawauchi).

and the τ -distance $d^{\tau}(L, L')$ between links L and L' with the same number of components is the minimal number of zero-linking twists transforming L into L' (cf. [12]). For links L, L' with different numbers of components, we define $d^{\tau}(L, L') = d(L, L') = +\infty$. Since the crossing change is a zero-linking twist and every link diagram is transformed into a diagram of a trivial link by crossing changes, we have

$$0 \le d^{\tau}(L, L') \le d^{\mathbf{x}}(L, L') < +\infty$$

for all links L, L' with the same number of components. The x-distance and the τ -distance are metric functions on the set of links with r components for every $r \geq 1$. An estimate of $d^{\tau}(L, L')$ was done in [12] in terms of local link signatures and a localized version of Nakanishi index (cf. [14]). For our use, the latter invariant will be useful and explained in Section 2. Here is an example showing that the τ -distance is distinct from the x-distance in general.

Example 1.1. For the 2-bridge knot 7_4 and the trivial knot O, we have $d^{\tau}(7_4, O) = 1 < 2 = d^{\mathsf{x}}(7_4, O)$. It is direct to see that $d^{\tau}(7_4, O) = 1$ and $d^{\mathsf{x}}(7_4, O) \leq 2$. By a result of T. Kanenobu and H. Murakami [7], we have $d^{\mathsf{x}}(7_4, O) > 1$ and hence $d^{\mathsf{x}}(7_4, O) = 2$. For a link example, let L be a link obtained from the (2, 2n)-torus link for n > 1 by reversing the orientation of one component, and O^2 the trivial link of two components. Then we have $d^{\tau}(L, O^2) = 1 < n = d^{\mathsf{x}}(L, O^2)$.

We put the following definition:

Definition 1.2. The alternation number $\operatorname{alt}(L)$ and the τ -alternation number $\operatorname{alt}^{\tau}(L)$ of a link L are the numbers $d^{\mathsf{x}}(L,\mathbb{A})$ and $d^{\tau}(L,\mathbb{A})$, respectively.

It is direct to see that

$$0 \le \operatorname{alt}^{\tau}(L) \le \operatorname{alt}(L) < +\infty$$

for every link L. Two links L_i (i=0,1) are concordant (= link-cobordant) if there is a smooth embedding $c: L \times [0,1] \to S^3 \times [0,1]$ for a closed oriented 1-manifold L such that $c(L \times i) = L_i$ (i=0,1) (cf. [14]). The concordance relation is an equivalence relation on the set of links. Let [L] be the concordance class of a link L, namely the set of links concordant to L. The concordance-alternation number alt[L] and the concordance- τ -alternation number $alt^{\tau}[L]$ of a link L are defined by:

$$\operatorname{alt}[L] = \min_{L' \in [L]} \operatorname{alt}(L')$$
 and $\operatorname{alt}^{\tau}[L] = \min_{L' \in [L]} \operatorname{alt}^{\tau}(L')$,

which are uniquely determined by the concordance class [L]. In this paper, we construct infinitely many hyperbolic links L^* in the concordance class of every link L such that $\operatorname{alt}(L^*)$ is equal to any previously given integer $n \geq \operatorname{alt}[L]$.

In the case of the concordance class of every (possibly, splittable) alternating link L, we can let this link L^* have the property that $\operatorname{alt}(L^*) = \operatorname{alt}^{\tau}(L^*) = d^{\tau}(L, L^*) = d^{\tau}(L, L^*)$. These results will be given in Section 3.

2 Algebraic alternation number and algebraic τ -alternation number

Let $\Lambda = \mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[t,t^{-1}]$ be the Laurent polynomial ring. A non-zero Laurent polynomial f(t) is alternating if the coefficients of the Laurent polynomial f(-t) in t are nonzero integers with the same sign. Let $\tilde{E}(L)$ be the infinite cyclic covering over the compact exterior E(L) of an oriented link L in S^3 which is induced from the epimorphism $\gamma_L : \pi_1(E(L)) \to \mathbf{Z}$ sending each oriented meridian of L to $1 \in \mathbf{Z}$. Then $H_1(\tilde{E}(L))$ is naturally regarded as a finitely generated Λ -module, called the Λ -module of L and denoted by H(L). The torsion-Alexander polynomial $A^T(L;t)$ of a link L is the zeroth characteristic polynomial of the Λ -torsion part TH(L) of the Λ -module H(L) of L (see [13]). To state it more explicitly, let M be a Λ -presentation matrix of size (q,p) for TH(L) with $p \geq q$. That is, let M be a matrix given by $\phi(x_1,x_2,\ldots,x_p) = (y_1,y_2,\ldots,y_q)M$ for a Λ -exact sequence

$$\Lambda^p \xrightarrow{\phi} \Lambda^q \to TH(L) \to 0 \quad (p \ge q)$$

with respect to Λ -bases $x_i (i=1,2,\ldots,p)$ and $y_j (j=1,2,\ldots,q)$ of Λ^p and Λ^q , respectively. Then $A^T(L;t)$ is defined to be a generator of the smallest principal ideal containing the ideal generated by q-minors of M. In other words, for the finite maximal Λ -module D(L) of H(L), the Λ -torsion module TH(L)/D(L) has a non-degenerate square Λ -presentation matrix, whose determinant is not 0 and equals to $A^T(L;t)$ up to units of Λ (see [10]). The torsion-Alexander polynomial $A^T(L;t)$ is always a non-zero Laurent polynomial and an invariant of L up to units of Λ . By definition, the classical Alexander polynomial A(L;t) of L is $A^T(L;t)$ or 0 according to whether TH(L) = H(L) or $TH(L) \neq H(L)$. The torsion-Alexander polynomial $A^T(L;t)$ is semi-classical if every knot component K of L belongs to a sublink L_K of L such that $A(L_K;t)$ is a factor of $A^T(L;t)$. Here are some examples on semi-classical torsion-Alexander polynomials.

Example 2.1.

- (1) If TH(L) = H(L), then $A^{T}(L;t) = A(L;t)$ and it is semi-classical. In particular, if L is a knot, then it is semi-classical.
- (2) If L has only trivial components, then $A^{T}(L;t)$ is semi-classical.
- (3) If L is a connected sum or a split sum of two links $L_i(i = 1, 2)$ with $A^T(L_i;t)$ (i = 1, 2) semi-classical, then $A^T(L;t)$ is semi-classical.
- (4) Let K be a knot such that A(K;t) is a non-unit of Λ , and L a 2-component

parallel link of K with mutually opposite orientations and with the linking number 0. Then L bounds an annulus as a Seifert surface whose associated Seifert matrix is the zero matrix (0). Hence we have $H(L) \cong \Lambda$ and $A^T(L;t)$ is a unit of Λ which cannot have A(K;t) as a factor. Thus, $A^T(L;t)$ is not semi-classical.

Let \mathbb{A}_a be the set of links L such that $A^T(L;t)$ is alternating and semi-classical. The following lemma is essentially a well-known result by R. H. Crowell [3] and K. Murasugi [17]:

Lemma 2.2. $\mathbb{A} \subset \mathbb{A}_a$.

Proof. Every alternating link L is a split union of non-split alternating links $L_i(i = 1, 2, ..., s)$. We see from [3] or [17] that $A(L_i; t)$ is an alternating Laurent polynomial for all i. Since we have $TH(L_i) = H(L_i)$ and

$$H(L) \cong \Lambda^{s-1} \oplus H(L_1) \oplus H(L_2) \oplus \ldots \oplus H(L_s),$$

we have that $A^T(L;t) = A(L_1;t)A(L_2;t)\dots A(L_s;t)$, implying that $A^T(L;t)$ is alternating and semi-classical. \square

The number s-1 in the proof of Lemma 2.2 is called the *splitting number* of the alternating link L. We note that the alternating torsion-Alexander polynomial of a link is not always realizable by an alternating link. It is an unsolved open problem to characterize the Alexander polynomials of alternating links. A related conjecture is the *trapezoidal conjecture* proposed by R. H. Fox [4], asking that the Alexander polynomial $A(L;t) = \sum_{i=k}^{k+m} a_i t^i$ of every non-split alternating link L has the following properties: Namely,

- (1) $|a_k| \le |a_{k+1}| \le |a_{k+2}| \le \cdots \le |a_{k+\lfloor m/2 \rfloor}|$ and
- (2) if $|a_{k+i}| = |a_{k+i+1}|$ for some *i*, then we have $|a_{k+i}| = |a_{k+j}|$ for every j = i + 1, i + 2, ..., [m/2].

This conjecture is known to be true for many classes of links including the class of 2-bridge links, and more recently proved for all alternating knots of genus up to 2 by P. Ozsváth and Z. Szabó [18] and I. Jong [5]. On the other hand, K. Murasugi [17] and I. Jong [5] observed that there are alternating Laurent polynomials of degree 4 which are realized by knots and satisfy the trapezoidal conjecture, but are not realizable by any alternating knots. For example, the Alexander polynomial $A(9_{44};t) = 1 - 4t + 7t^2 - 4t^3 + t^4$ is such an example, in addition satisfying the Ozsváth-Szabó condition in [18]. In the following proposition, we investigate which knot in the knot table with up to 10 crossings belongs to \mathbb{A} or \mathbb{A}_a :

Proposition 2.3.

(1) If the crossing number $cr(K) \leq 7$, then $K \in \mathbb{A}$.

- (2) Among the knots K with cr(K) = 8, $K \in \mathbb{A}_a$ if and only if $K \neq 8_{19}$, and $K \in \mathbb{A}$ if and only if $K \neq 8_{19}, 8_{20}, 8_{21}$.
- (3) Among the knots K with cr(K) = 9, we have always $K \in \mathbb{A}_a$, and $K \in \mathbb{A}$ if and only if $K \neq 9_i$ ($42 \leq i \leq 49$).
- (4) Among the knots K with $\operatorname{cr}(K) = 10$, $K \in \mathbb{A}_a$ if and only if $K \neq 10_{124}$, 10_{128} , 10_{139} , 10_{145} , 10_{152} , 10_{154} , 10_{161} , 10_{162} , and $K \in \mathbb{A}$ if and only if $K \neq 10_i$ ($124 \le i \le 166$).

Proof. We see (1)-(4) from the data on Alexander polynomials and diagrams of the knot table except how to determine a knot which is in \mathbb{A}_a but not in \mathbb{A} . For example, we can see it by using the data on Kauffman polynomials $F_K(a,x)$ in [14]², because for an alternating knot K the span of $F_K(a,x)$ on K is known to be equal to the crossing number K by K. Yokota [21]. K

The algebraic alternation number $\operatorname{alt}_a(L)$ (or the algebraic τ -alternation number $\operatorname{alt}_a^{\tau}(L)$, respectively) of a link L is defined to be $d^{\mathsf{x}}(L, \mathbb{A}_a)$ (or $d^{\tau}(L, \mathbb{A}_a)$, respectively). The algebraic concordance-alternation number $\operatorname{alt}_a[L]$ (or the algebraic concordance- τ -alternation number $\operatorname{alt}_a^{\tau}[L]$, respectively) of a link L is the minimal number of $\operatorname{alt}_a(L')$ (or $\operatorname{alt}_a^{\tau}(L')$, respectively) for all links $L' \in [L]$, which is uniquely determined by the concordance class [L]. A multiplicative subset of Λ is a subset $S \subset \Lambda \setminus \{0\}$ such that

- (1) the units $\pm t^i (i \in \mathbf{Z})$ of Λ are in S,
- (2) the product f(t)g(t) of any elements f(t) and g(t) of S is in S, and
- (3) every prime factor of any element $g(t) \in S$ is in S.

For the quotient field $Q(\Lambda)$ of Λ and a multiplicative subset S of Λ , let Λ_S be the subring $\{f(t)/g(t) \in Q(\Lambda)|f(t) \in \Lambda, g(t) \in S\}$ of $Q(\Lambda)$. For a Λ -module H, let H_S be the Λ_S -module $H \otimes_{\Lambda} \Lambda_S$. For a finitely generated Λ -module H and a multiplicative subset S of Λ , let $e_S(H)$ be the least number of Λ_S -generators of the Λ_S -module H_S . (We take $e_S(H) = 0$ when H = 0). Let $e_S(L) = e_S(H(L))$ for the Λ -module H(L) of L, which is equal to the Nakanishi index of L if S is the set of units $\pm t^i (i \in \mathbf{Z})$ of Λ (cf. [14]). Our basic tool is the following estimation lemma, which is proved in [12]:

Lemma 2.4. For arbitrary two links $L_i(i = 0, 1)$ with the same number of components and every multiplicative subset S of Λ , we have

$$+\infty > d^{\mathbf{x}}(L_0, L_1) \ge d^{\tau}(L_0, L_1) \ge |e_S(L_0) - e_S(L_1)|.$$

The following lemma is direct from definitions:

The table of $F_K(a, x)$ made there has an ambiguity on the multiples of a although the span of $F_K(a, x)$ on a is uniquely determined since it was computed without counting the writhe of a knot diagram.

Lemma 2.5. We have the following inequalities:

$$\operatorname{alt}_a^{\tau}(L) \leq \operatorname{alt}_a(L) \leq \operatorname{alt}(L), \quad \operatorname{alt}_a^{\tau}(L) \leq \operatorname{alt}^{\tau}(L) \leq \operatorname{alt}(L),$$

where everything is taken 0 if L is an alternating link.

The alternation number, τ -alternation number, algebraic alternation number and algebraic τ -alternation number for the non-alternating knots with up to 10 crossings are calculated as follows:

Example 2.6. For every non-alternating knot K with $\operatorname{cr}(K) \leq 10$, we have $\operatorname{alt}(K) = 1$ by checking the list of non-alternating knots in Proposition 2.3, so that we have $\operatorname{alt}^{\tau}(K) = \operatorname{alt}(K) = 1$ and $\operatorname{alt}_{a}(K) = \operatorname{alt}_{a}^{\tau}(K) \leq 1$ for all non-alternating knots with $\operatorname{cr}(K) \leq 10$. More explicitly, checking the Alexander polynomials, we have $\operatorname{alt}^{\tau}(K) = \operatorname{alt}(K) = 1$ if and only if $K = 8_{i}$ (i = 19, 20, 21), 9_{i} ($42 \leq i \leq 49$) or 10_{i} ($124 \leq i \leq 166$), and $\operatorname{alt}_{a}^{\tau}(K) = \operatorname{alt}_{a}(K) = 1$ if and only if $K = 8_{19}$ or $10_{124}, 10_{128}, 10_{139}, 10_{145}, 10_{152}, 10_{154}, 10_{161}, 10_{162},$ among the non-alternating knots K with $\operatorname{cr}(K) \leq 10$.

3 Main theorems and the proofs

As a result for an alternating link, we obtain the following theorem:

Theorem 3.1. For every $n \ge 1$, every (possibly, split) alternating link $L_{\alpha} \in \mathbb{A}$ is concordant to infinitely many hyperbolic links L_n such that

$$\operatorname{alt}(L_n) = \operatorname{alt}^{\tau}(L_n) = \operatorname{alt}_a(L_n) = \operatorname{alt}_a^{\tau}(L_n) = d^{\mathsf{x}}(L_n, L_\alpha) = d^{\mathsf{\tau}}(L_n, L_\alpha) = n.$$

Proof. We use a slice knot K such that $d^{\mathbf{x}}(K,O)=1$ for a trivial knot O and A(K;t) has a negative root. For example, the knot K in Fig. 1 is a ribbon knot such that $d^{\mathbf{x}}(K,O)=1$ is confirmed by the crossing change at the point p indicated in Fig.1 and the Alexander polynomial $A(K;t)=3-(t^2+t^{-2})$ has the negative roots $t=(-\sqrt{5}\pm 1)/2$. Let K^n be the n-fold connected sum $K\#K\#\ldots\#K$ of K. Since K^n is a ribbon knot, we see that a connected sum $L_\alpha\#K^n$ is concordant to L_α . Using that $d^{\mathbf{x}}(K^n,O) \leq n$,

Fig. 1.

we have $d^{\mathbf{x}}(L_{\alpha} \# K^n, L_{\alpha}) \leq n$. Our desired links L^n are constructed from the link $L_{\alpha} \# K^n$ by the "topological imitation" technique in [11]. In fact, we can construct from $L_{\alpha} \# K^n$ infinitely many hyperboolic links L^n with an AID (=almost identical) imitation $q:(S^3,L^n)\to (S^3,L_\alpha\#K^n)$ such that the link $L_{\alpha} \# K^{n-1}$ is obtained from L^n by a crossing change. Then the link L^n is concordant to $L_{\alpha} \# K^n$ by a property of an imitation and hence to L_{α} , and we have $d^{\mathbf{x}}(L^n, L_{\alpha}) \leq n$. We show that $\operatorname{alt}_a^{\tau}(L^n) \geq n$. Then the proof will be completed by Lemma 2.5. Let $m = \operatorname{alt}_a^{\tau}(L^n) = d^{\tau}(L^n, L')$ for a link $L' \in \mathbb{A}_a$. Let \bar{K}^n be the component of $L_{\alpha} \# K^n$ containing K^n as a connected summand. Since $A^T(L';t)$ is semi-classical, we have a sublink $C' \subset L'$ such that A(C';t)is a factor of $A^T(L';t)$ and C' changes into a sublink $C^n \subset L^n$ containing the component $q^{-1}(\bar{K}^n)$ by m times of zero-linking twists. Using that the link C^n is an (AID) imitation of the link $q(C^n)$ by the imitation map defined by q, we see from a property of an imitation that $H(C^n) = H(q(C^n))$. Since $q(C^n)$ contains K^n as a connected summand, the Λ -module $H(C^n)$ has $H(K^n) = H(K)^n$, a direct sum of n copies of H(K), as a direct summand. Let S be the subset of Λ consisting of a Laurent polynomial f(t) which has no negative root. We see that S is a multiplicative subset of Λ . It is important to note that every alternating Laurent polynomial $f(t) = \sum_{i=k}^{k+m} a_i t^i \in \Lambda$ is in S. In fact, if r is a negative number, then we see from the definition of an alternating Laurent polynomial that the signs of $a_i r^i$ for all i are the same, so that $f(r) \neq 0$. Since $H(K^n) = H(K)^n$ and $A(K;t) \notin S$, we see that $e_S(K^n) \ge n$ (see [10,12] for a calculation). Thus, we have $e_S(\mathbb{C}^n) \geq n$. On the other hand, since $A^T(\mathbb{L};t)$ is an alternating Laurent polynomial and A(C';t) is a factor of $A^{T}(L;t)$, we see that $A(C';t) \in S$. Then we show that $e(C')_S = 0$. To see this, we note that there is a Λ -exact sequence $\Lambda^h \to \Lambda^h \to H(C') \to 0$ for a positive integer h(cf.[10]), which induces a Λ_S -exact sequence $\Lambda_S^h \to \Lambda_S^h \to H(C')_S \to 0$. By the definition of the Alexander polynomial, A(C';t) is equal to the determinant of a matrix representing the Λ -homomorphism $\Lambda^{\hat{h}} \to \hat{\Lambda}^{\hat{h}}$ up to units of Λ , which is a unit in Λ_S . Hence we have $H(C')_S = 0$ and $e_S(C') = 0$. By the estimation lemma, we have

$$m \ge d^{\tau}(C^n, C') \ge |e_S(C^n) - e_S(C')| = e_S(C^n) \ge n,$$

implying that $m = \operatorname{alt}_a^{\tau}(L^n) \geq n$. This completes the proof of Theorem 3.1. \square

Here is a reason why we exclude the case n=0 in Theorem 3.1.

Remark 3.2. The Λ -rank rank H(L) is a concordance invariant of a link L (cf. [8,9,13]), so that the splitting numbers of concordant alternating links are equal. Hence any split alternating link is not concordant to any non-split (and hence hyperbolic) alternating link, although it is always concordant to a non-split (more strongly hyperbolic) link. Thus, we cannot take n=0 in Theorem 3.1.

As a result for a general link, we obtain the following theorem:

Theorem 3.3. For every link L and every integer $n \ge \operatorname{alt}[L]$ except that $n = \operatorname{alt}[L] = 0$ and [L] is represented by a split link, we have infinitely many hyperbolic links L^n such that L^n is concordant to L and $\operatorname{alt}(L^n) = n$.

Proof. If alt[L] = 0, then the concordance class [L] contains an alternating link, and the desired result follows from Theorem 3.1 for n > 0. Let d =alt[L] > 0. First, we show that there are infinitely many hyperbolic links L^d with $[L^d] = [L]$ and alt $(L^d) = d$. For a link L' with alt(L') = d representing [L], choose a crossing point of a diagram of L' to obtain a link L'_1 with alt (L'_1) = d-1 by the crossing change. By the "topological imitation" technique in [11] applied to this crossing point, we have infinitely many hyperbolic links L^d with an AID imitation $q:(S^3,L^d)\to (S^3,L')$ such that L'_1 is obtained from L^d by a crossing change. Then we have $alt(L^d) \leq alt(L'_1) + 1 = d$. Since L^d is concordant to L' by the definition of an imitation, we have $alt(L^d) \geq d$ and hence $alt(L^d) = d$. Let n > d. Let K be the knot used in the proof of Theorem 3.1, and K^h the h-fold connected sum $K \# K \# \dots \# K$ of K. For every positive integer h, we have a hyperbolic link L^{d+h} with an AID imitation $q:(S^3,L^{d+h})\to (S^3,L^d\#K^h)$ which is a composite of AID imitations $q^i:$ $(S^3, L^{d+i}) \to (S^3, L^{d+i-1} \# K)$ (i = 1, 2, 3, ..., h), constructed by using [11], such that L^{d+i-1} is obtained from L^{d+i} by a crossing change. Then we have

$$alt(L^{d+h}) \le alt(L^{d+h-1} \# K) \le alt(L^{d+h-1}) + 1.$$

By properties of an AID imitation, we note that there are infinitely many families of mutually distinct hyperbolic links L^{d+i} $(i=0,1,2,\ldots,h)$ for every h. For every such family, we show that $\lim_{h\to +\infty}\operatorname{alt}(L^{d+h})=+\infty$. To see this, let L_{α} be an alternating link such that $\operatorname{alt}(L^{d+h})=d^{\mathsf{x}}(L^{d+h},L_{\alpha})$. By the estimation lemma, we have $\operatorname{alt}(L^{d+h}) \geq |e_S(L^{d+h})-e_S(L_{\alpha})|$, where S is the multiplicative set used in the proof of Theorem 3.1. Since $H(L^{d+h}) \cong H(L^d \# K^h)$ which has $H(K^h)=H(K)^h$ as a direct summand, we have $e_S(L^{d+h})=e_S(L^d \# K^h) \geq e_S(K^h) \geq h$. Since $e_S(L_{\alpha})$ is equal to the splitting number of L_{α} which is smaller than the component number of L_{α} and hence of L, we see that $\lim_{h\to +\infty}\operatorname{alt}(L^{d+h})=+\infty$ and there is a positive integer j so that $\operatorname{alt}(L^{d+j})>n$. To complete the proof, it suffices to show that there is an integer h with 0 < h < j such that $\operatorname{alt}(L^{d+h})=n$. To see this, suppose such an h does not exist. Since $\operatorname{alt}(L^d)=d< n$, we can take the maximal integer h such that $0 \leq h < j$ and $\operatorname{alt}(L^{d+h}) \leq n$. Using $\operatorname{alt}(L^{d+h}) < n$ and $\operatorname{alt}(L^{d+j}) > n$, we have $\operatorname{alt}(L^{d+h+1}) \leq \operatorname{alt}(L^{d+h})+1 \leq n$ and 0 < h+1 < j, which contradicts the maximalness of h. \square

Here is a note on the exceptional case of Theorem 3.3.

Remark 3.4. Although the same assertion of Theorem 3.3 using $\operatorname{alt}^{\tau}$, alt_{a} or $\operatorname{alt}_{a}^{\tau}$ instead of alt also holds by a similar argument, we need a remark on the exceptional case that $\operatorname{alt}[L] = 0$ and [L] is represented by a split link. By Remark 3.2, any alternating link representing [L] is split and thus we must take

n>0 for Theorem 3.3 and its $\operatorname{alt}^{\tau}$ version. Let L be a split alternating link. By applying the "topological imitation" technique in [11] to a trivial crossing change of L into L, we obtain a hyperbolic link L^* given by an AID imitation $q:(S^3,L^*)\to (S^3,L)$ such that L is obtained from L^* by a crossing change. By properties of an AID imitation, we have $A^T(L^*;t)=A^T(L;t)$ which is a semi-classical alternating Laurent polynomial, so that $\operatorname{alt}_a(L^*)=0$. Thus, in the statement of the alt_a or $\operatorname{alt}_a^{\tau}$ version of Theorem 3.3, we can take n=0. We note that, since $\operatorname{alt}(L^*) \leq 1$, $[L^*]=[L]$ and L^* is non-split, we have $\operatorname{alt}(L^*)=\operatorname{alt}^{\tau}(L^*)=1$.

From our viewpoint it is an important problem to calculate the value $\operatorname{alt}[L]$ of a link L. For this purpose, it would be an interesting question to ask which link L has $\operatorname{alt}(L) = \operatorname{alt}[L]$. For example, does any torus link T(p,q) have $\operatorname{alt}(T(p,q)) = \operatorname{alt}[T(p,q)]$? The following remark concerns a recent development of this question.

Remark 3.5. Let $\sigma(K)$ be the (-1)-multiple of the signature of a knot K so that the positive trefoil knot takes +2, and s(K) the Rasmussen invariant or the twice of the Ozsváth-Szabó invariant which is an additive concordance knot invariant (cf. [19,20]). By using C. Livingston's observation in [15], T. Abe observed in [1] the inequality $\operatorname{alt}(K) \geq |\sigma(K) - s(K)|/2$, by which T. Abe proved that every torus knot K = T(p,q) (p > 2, q > 3) except (p,q) = (3,4), (3,5) has $\operatorname{alt}[K] > 1$, meaning that the almost alternating torus knots are just T(3,4) and T(3,5), confirming a conjecture by C. Adams in [2]. For further calculations on the alternation numbers of torus knots, see T. Kanenobu [6]. Since $|\sigma(K) - s(K)|$ is a concordance invariant, Abe's inequality actually implies the inequality

$$alt[K] \ge |\sigma(K) - s(K)|/2,$$

which is useful to know the value $\operatorname{alt}[K]$, although Abe's inequality does not detect the assertions of Theorems 3.1 and 3.3 because of its concordance invariance. For example, let T^m be the m-fold connected sum of T(4,5). Then we have $\operatorname{alt}(T^m) = \operatorname{alt}[T^m] = 2m$ by Kanenobu's calculation. Thus, if a knot K is concordant to T^m , then we have $\operatorname{alt}(K) \geq 2m$, and conversely for every integer $n \geq 2m$, there is a hyperbolic knot K which is concordant to T^m such that $\operatorname{alt}(K) = n$ by Theorem 3.3.

References

- [1] T. Abe, An estimation of the alternation number of a torus knot, J. Knot Theory Ramifications, 18(2009), 363-379.
- [2] C. Adams, The knot book, Freeman and Co. (1994).

- [3] R. H. Crowell, Genus of alternating link types, Ann. of Math., 69(1959), pp. 258-275.
- [4] R. H. Fox, A quick trip through knot theory, in: Topology of 3-manifolds and related topics, Georgia, 1961, Prentice-Hall, 1962, 120-167.
- [5] I. Jong, Alexander polynomials of alternating knots of genus two, Osaka J. Math., to appear.
- [6] T. Kanenobu, Upper bound for the alternation number of a torus knot, Topology Appl., to appear.
- [7] T. Kanenobu and H. Murakami, Two-bridge knots with unknotting number one, Proc. Amer. Math. Soc., 98(1986), 499-502.
- [8] A. Kawauchi, On quadratic forms of 3-manifolds, Invent. Math. 43(1977),177-198.
- [9] A. Kawauchi, On the Alexander polynomials of cobordant links, Osaka J. Math. 15(1978),151-159.
- [10] A. Kawauchi, On the integral homology of infinite cyclic coverings of links, Kobe J. Math. 4(1987), 31-41.
- [11] A. Kawauchi, Almost identical link imitations and the skein polynomial, in Knots 90, (1992), 465-476, Walter de Gruyter.
- [12] A. Kawauchi, Distance between links by zero-linking twists, Kobe J. Math. 13(1996),183-190.
- [13] A. Kawauchi, The quadratic form of a link, Contemporary Math., 233(1999), 97-116.
- [14] A. Kawauchi, A survey of knot theory, Birkhäuser (1996); A table correction is on the web: http://www.sci.osaka-cu.ac.jp/ kawauchi/index.html.
- [15] C. Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geometry and Topology, 8(2004), 735-742.
- [16] W. W. Menasco and M. B. Thistlethwaite, The classification of alternating links, Ann. of Math., 138(1993),113-171.
- [17] K. Murasugi, On the Alexander polynomial of the alternating knot, Osaka Math. J., 10(1958), 181-189.
- [18] P. Ozsváth and Z. Szabó, Heegaard Floer homologies and alternating knots, Geometry and Topology, 7(2003),225-254.
- [19] P. Ozsváth and Z. Szabó, Knot Floer homology and the four-ball genus, Geometry and Topology, 7(2003), 615-639.
- [20] J. Rasmussen, Khovanov homology and the slice genus, math. GT/0402131.

[21] Y. Yokota, The Kauffman polynomial of alternating links, Topology Appl. 65(1995), 229-236.