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Abstract

We construct infinitely many hyperbolic links with x-distance far from the set of
(possibly, splittable) alternating links in the concordance class of every link. A
sensitive result is given for the concordance class of every (possibly, split) alternating
link. Our proof uses an estimate of the τ -distance by an Alexander invariant and
the topological imitation theory, both established earlier by the author.
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1 Alternation number and τ-alternation number

In this paper, links are always oriented links in the oriented 3-sphere S3 and
a knot is regarded as a link of one component. An alternating link is a link
with an alternating diagram, a link diagram such that an over-crossing and
an under-crossing appear alternatively along every knot diagram component.
Let A be the set of (possibly, splittable) alternating links. After the solution
of the Tait flype conjecture on alternating links by W. W. Menasco and M.
B. Thistlethwaite in [16], it became an important question to ask how a non-
alternating link is “close to” or “far from” the set A under a suitable metric.
The x-distance (or Gordian distance) dx(L,L′) between links L and L′ with
the same number of components is the minimal number of cross-changes trans-
forming a diagram of L into a diagram of L′. A zero-linking twist of an oriented
link L is an operation on links to obtain a link L′ from L by a twist along a
trivial knot O such that L ∩ O = ∅ and the linking number Link(L,O) = 0,
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and the τ -distance dτ (L,L′) between links L and L′ with the same number
of components is the minimal number of zero-linking twists transforming L
into L′ (cf. [12]). For links L,L′ with different numbers of components, we
define dτ (L,L′) = d(L,L′) = +∞. Since the crossing change is a zero-linking
twist and every link diagram is transformed into a diagram of a trivial link by
crossing changes, we have

0 5 dτ (L,L′) 5 dx(L,L′) < +∞

for all links L, L′ with the same number of components. The x-distance and
the τ -distance are metric functions on the set of links with r components for
every r = 1. An estimate of dτ (L, L′) was done in [12] in terms of local link
signatures and a localized version of Nakanishi index (cf. [14]). For our use, the
latter invariant will be useful and explained in Section 2. Here is an example
showing that the τ -distance is distinct from the x-distance in general.

Example 1.1. For the 2-bridge knot 74 and the trivial knot O, we have
dτ (74, O) = 1 < 2 = dx(74, O). It is direct to see that dτ (74, O) = 1 and
dx(74, O) 5 2. By a result of T. Kanenobu and H. Murakami [7], we have
dx(74, O) > 1 and hence dx(74, O) = 2. For a link example, let L be a link
obtained from the (2, 2n)-torus link for n > 1 by reversing the orientation
of one component, and O2 the trivial link of two components. Then we have
dτ (L,O2) = 1 < n = dx(L,O2).

We put the following definition:

Definition 1.2. The alternation number alt(L) and the τ -alternation number
altτ (L) of a link L are the numbers dx(L, A) and dτ (L, A), respectively.

It is direct to see that

0 5 altτ (L) 5 alt(L) < +∞

for every link L. Two links Li (i = 0, 1) are concordant(= link-cobordant) if
there is a smooth embedding c : L × [0, 1] → S3 × [0, 1] for a closed oriented
1-manifold L such that c(L × i) = Li (i = 0, 1) (cf. [14]). The concordance
relation is an equivalence relation on the set of links. Let [L] be the concordance
class of a link L, namely the set of links concordant to L. The concordance-
alternation number alt[L] and the concordance-τ -alternation number altτ [L] of
a link L are defined by:

alt[L] = min
L′∈[L]

alt(L′) and altτ [L] = min
L′∈[L]

altτ (L′),

which are uniquely determined by the concordance class [L]. In this paper, we
construct infinitely many hyperbolic links L∗ in the concordance class of every
link L such that alt(L∗) is equal to any previously given integer n = alt[L].
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In the case of the concordance class of every (possibly, splittable) alternating
link L, we can let this link L∗ have the property that alt(L∗) = altτ (L∗) =
dτ (L,L∗) = dx(L,L∗). These results will be given in Section 3.

2 Algebraic alternation number and algebraic τ-alternation num-
ber

Let Λ = Z[Z] = Z[t, t−1] be the Laurent polynomial ring. A non-zero Laurent
polynomial f(t) is alternating if the coefficients of the Laurent polynomial
f(−t) in t are nonzero integers with the same sign. Let Ẽ(L) be the infinite
cyclic covering over the compact exterior E(L) of an oriented link L in S3

which is induced from the epimorphism γL : π1(E(L)) → Z sending each
oriented meridian of L to 1 ∈ Z. Then H1(Ẽ(L)) is naturally regarded as a
finitely generated Λ-module, called the Λ-module of L and denoted by H(L).
The torsion-Alexander polynomial AT (L; t) of a link L is the zeroth charac-
teristic polynomial of the Λ-torsion part TH(L) of the Λ-module H(L) of
L (see [13]). To state it more explicitly, let M be a Λ-presentation matrix
of size (q, p) for TH(L) with p = q. That is, let M be a matrix given by
ϕ(x1, x2, . . . , xp) = (y1, y2, . . . , yq)M for a Λ-exact sequence

Λp ϕ→ Λq → TH(L) → 0 (p = q)

with respect to Λ-bases xi(i = 1, 2, . . . , p) and yj(j = 1, 2, . . . , q) of Λp and Λq,
respectively. Then AT (L; t) is defined to be a generator of the smallest principal
ideal containing the ideal generated by q-minors of M . In other words, for the
finite maximal Λ-module D(L) of H(L), the Λ-torsion module TH(L)/D(L)
has a non-degenerate square Λ-presentation matrix, whose determinant is not
0 and equals to AT (L; t) up to units of Λ (see [10]). The torsion-Alexander
polynomial AT (L; t) is always a non-zero Laurent polynomial and an invariant
of L up to units of Λ. By definition, the classical Alexander polynomial A(L; t)
of L is AT (L; t) or 0 according to whether TH(L) = H(L) or TH(L) ̸=
H(L). The torsion-Alexander polynomial AT (L; t) is semi-classical if every
knot component K of L belongs to a sublink LK of L such that A(LK ; t) is a
factor of AT (L; t). Here are some examples on semi-classical torsion-Alexander
polynomials.

Example 2.1.
(1) If TH(L) = H(L), then AT (L; t) = A(L; t) and it is semi-classical. In
particular, if L is a knot, then it is semi-classical.
(2) If L has only trivial components, then AT (L; t) is semi-classical.
(3) If L is a connected sum or a split sum of two links Li(i = 1, 2) with
AT (Li; t) (i = 1, 2) semi-classical, then AT (L; t) is semi-classical.
(4) Let K be a knot such that A(K; t) is a non-unit of Λ, and L a 2-component
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parallel link of K with mutually opposite orientations and with the linking
number 0. Then L bounds an annulus as a Seifert surface whose associated
Seifert matrix is the zero matrix (0). Hence we have H(L) ∼= Λ and AT (L; t)
is a unit of Λ which cannot have A(K; t) as a factor. Thus, AT (L; t) is not
semi-classical.

Let Aa be the set of links L such that AT (L; t) is alternating and semi-classical.
The following lemma is essentially a well-known result by R. H. Crowell [3]
and K. Murasugi [17]:

Lemma 2.2. A ⊂ Aa.

Proof. Every alternating link L is a split union of non-split alternating links
Li(i = 1, 2, . . . , s). We see from [3] or [17] that A(Li; t) is an alternating
Laurent polynomial for all i. Since we have TH(Li) = H(Li) and

H(L) ∼= Λs−1 ⊕ H(L1) ⊕ H(L2) ⊕ . . . ⊕ H(Ls),

we have that AT (L; t) = A(L1; t)A(L2; t) . . . A(Ls; t), implying that AT (L; t)
is alternating and semi-classical. 2

The number s−1 in the proof of Lemma 2.2 is called the splitting number of the
alternating link L. We note that the alternating torsion-Alexander polynomial
of a link is not always realizable by an alternating link. It is an unsolved open
problem to characterize the Alexander polynomials of alternating links. A
related conjecture is the trapezoidal conjecture proposed by R. H. Fox [4],
asking that the Alexander polynomial A(L; t) =

∑k+m
i=k ait

i of every non-split
alternating link L has the following properties: Namely,

(1) |ak| 5 |ak+1| 5 |ak+2| 5 · · · 5 |ak+[m/2]| and
(2) if |ak+i| = |ak+i+1| for some i, then we have |ak+i| = |ak+j| for every
j = i + 1, i + 2, . . . , [m/2].

This conjecture is known to be true for many classes of links including the
class of 2-bridge links, and more recently proved for all alternating knots of
genus up to 2 by P. Ozsváth and Z. Szabó [18] and I. Jong [5]. On the other
hand, K. Murasugi [17] and I. Jong [5] observed that there are alternating
Laurent polynomials of degree 4 which are realized by knots and satisfy the
trapezoidal conjecture, but are not realizable by any alternating knots. For
example, the Alexander polynomial A(944; t) = 1 − 4t + 7t2 − 4t3 + t4 is such
an example, in addition satisfying the Ozsváth-Szabó condition in [18]. In the
following proposition, we investigate which knot in the knot table with up to
10 crossings belongs to A or Aa:

Proposition 2.3.
(1) If the crossing number cr(K) 5 7, then K ∈ A.
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(2) Among the knots K with cr(K) = 8, K ∈ Aa if and only if K ̸= 819, and
K ∈ A if and only if K ̸= 819, 820, 821.
(3) Among the knots K with cr(K) = 9, we have always K ∈ Aa, and K ∈ A
if and only if K ̸= 9i (42 5 i 5 49).
(4) Among the knots K with cr(K) = 10, K ∈ Aa if and only if K ̸= 10124,
10128, 10139, 10145, 10152, 10154, 10161, 10162, and K ∈ A if and only if K ̸= 10i

(124 5 i 5 166).

Proof. We see (1)-(4) from the data on Alexander polynomials and diagrams
of the knot table except how to determine a knot which is in Aa but not in
A. For example, we can see it by using the data on Kauffman polynomials
FK(a, x) in [14] 2 , because for an alternating knot K the span of FK(a, x) on
a is known to be equal to the crossing number cr(K) by Y. Yokota [21]. 2

The algebraic alternation number alta(L) (or the algebraic τ -alternation num-
ber altτ

a(L), respectively) of a link L is defined to be dx(L, Aa) (or dτ (L, Aa),
respectively). The algebraic concordance-alternation number alta[L] (or the al-
gebraic concordance-τ -alternation number altτ

a[L], respectively) of a link L is
the minimal number of alta(L

′) (or altτ
a(L

′), respectively) for all links L′ ∈ [L],
which is uniquely determined by the concordance class [L]. A multiplicative
subset of Λ is a subset S ⊂ Λ\{0} such that

(1) the units ±ti(i ∈ Z) of Λ are in S,
(2) the product f(t)g(t) of any elements f(t) and g(t) of S is in S, and
(3) every prime factor of any element g(t) ∈ S is in S.

For the quotient field Q(Λ) of Λ and a multiplicative subset S of Λ, let ΛS be
the subring {f(t)/g(t) ∈ Q(Λ)|f(t) ∈ Λ, g(t) ∈ S} of Q(Λ). For a Λ-module H,
let HS be the ΛS-module H⊗Λ ΛS. For a finitely generated Λ-module H and a
multiplicative subset S of Λ, let eS(H) be the least number of ΛS-generators of
the ΛS-module HS. (We take eS(H) = 0 when H = 0). Let eS(L) = eS(H(L))
for the Λ-module H(L) of L, which is equal to the Nakanishi index of L if S
is the set of units ±ti(i ∈ Z) of Λ (cf. [14]). Our basic tool is the following
estimation lemma, which is proved in [12]:

Lemma 2.4. For arbitrary two links Li(i = 0, 1) with the same number of
components and every multiplicative subset S of Λ, we have

+∞ > dx(L0, L1) = dτ (L0, L1) = |eS(L0) − eS(L1)|.

The following lemma is direct from definitions:

2 The table of FK(a, x) made there has an ambiguity on the multiples of a although
the span of FK(a, x) on a is uniquely determined since it was computed without
counting the writhe of a knot diagram.
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Lemma 2.5. We have the following inequalities:

altτ
a(L) 5 alta(L) 5 alt(L), altτ

a(L) 5 altτ (L) 5 alt(L),

where everything is taken 0 if L is an alternating link.

The alternation number, τ -alternation number, algebraic alternation number
and algebraic τ -alternation number for the non-alternating knots with up to
10 crossings are calculated as follows:

Example 2.6. For every non-alternating knot K with cr(K) 5 10, we have
alt(K) = 1 by checking the list of non-alternating knots in Proposition 2.3,
so that we have altτ (K) = alt(K) = 1 and alta(K) = altτ

a(K) 5 1 for all
non-alternating knots with cr(K) 5 10. More explicitly, checking the Alexan-
der polynomials, we have altτ (K) = alt(K) = 1 if and only if K = 8i (i =
19, 20, 21), 9i (42 5 i 5 49) or 10i (124 5 i 5 166), and altτ

a(K) = alta(K) =
1 if and only if K = 819 or 10124, 10128, 10139, 10145, 10152, 10154, 10161, 10162,
among the non-alternating knots K with cr(K) 5 10.

3 Main theorems and the proofs

As a result for an alternating link, we obtain the following theorem:

Theorem 3.1. For every n = 1, every (possibly, split) alternating link Lα ∈ A
is concordant to infinitely many hyperbolic links Ln such that

alt(Ln) = altτ (Ln) = alta(Ln) = altτ
a(Ln) = dx(Ln, Lα) = dτ (Ln, Lα) = n.

Proof. We use a slice knot K such that dx(K,O) = 1 for a trivial knot
O and A(K; t) has a negative root. For example, the knot K in Fig. 1 is
a ribbon knot such that dx(K,O) = 1 is confirmed by the crossing change
at the point p indicated in Fig.1 and the Alexander polynomial A(K; t) =
3 − (t2 + t−2) has the negative roots t = (−

√
5 ± 1)/2. Let Kn be the n-fold

connected sum K#K# . . . #K of K. Since Kn is a ribbon knot, we see that
a connected sum Lα#Kn is concordant to Lα. Using that dx(Kn, O) 5 n,

Fig. 1.
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we have dx(Lα#Kn, Lα) 5 n. Our desired links Ln are constructed from the
link Lα#Kn by the “topological imitation”technique in [11]. In fact, we can
construct from Lα#Kn infinitely many hyperbpolic links Ln with an AID
(=almost identical) imitation q : (S3, Ln) → (S3, Lα#Kn) such that the link
Lα#Kn−1 is obtained from Ln by a crossing change. Then the link Ln is
concordant to Lα#Kn by a property of an imitation and hence to Lα, and
we have dx(Ln, Lα) 5 n. We show that altτ

a(L
n) = n. Then the proof will be

completed by Lemma 2.5. Let m = altτ
a(L

n) = dτ (Ln, L′) for a link L′ ∈ Aa.
Let K̄n be the component of Lα#Kn containing Kn as a connected summand.
Since AT (L′; t) is semi-classical, we have a sublink C ′ ⊂ L′ such that A(C ′; t)
is a factor of AT (L′; t) and C ′ changes into a sublink Cn ⊂ Ln containing the
component q−1(K̄n) by m times of zero-linking twists. Using that the link Cn is
an (AID) imitation of the link q(Cn) by the imitation map defined by q, we see
from a property of an imitation that H(Cn) = H(q(Cn)). Since q(Cn) contains
Kn as a connected summand, the Λ-module H(Cn) has H(Kn) = H(K)n, a
direct sum of n copies of H(K), as a direct summand. Let S be the subset
of Λ consisting of a Laurent polynomial f(t) which has no negative root. We
see that S is a multiplicative subset of Λ. It is important to note that every
alternating Laurent polynomial f(t) =

∑k+m
i=k ait

i ∈ Λ is in S. In fact, if r is
a negative number, then we see from the definition of an alternating Laurent
polynomial that the signs of air

i for all i are the same, so that f(r) ̸= 0. Since
H(Kn) = H(K)n and A(K; t) ̸∈ S, we see that eS(Kn) = n (see [10,12] for a
calculation). Thus, we have eS(Cn) = n. On the other hand, since AT (L; t) is
an alternating Laurent polynomial and A(C ′; t) is a factor of AT (L; t), we see
that A(C ′; t) ∈ S. Then we show that e(C ′)S = 0. To see this, we note that
there is a Λ-exact sequence Λh → Λh → H(C ′) → 0 for a positive integer h(cf.
[10]), which induces a ΛS-exact sequence Λh

S → Λh
S → H(C ′)S → 0. By the

definition of the Alexander polynomial, A(C ′; t) is equal to the determinant of
a matrix representing the Λ-homomorphism Λh → Λh up to units of Λ, which
is a unit in ΛS. Hence we have H(C ′)S = 0 and eS(C ′) = 0. By the estimation
lemma, we have

m = dτ (Cn, C ′) = |eS(Cn) − eS(C ′)| = eS(Cn) = n,

implying that m = altτ
a(L

n) = n. This completes the proof of Theorem 3.1. 2

Here is a reason why we exclude the case n = 0 in Theorem 3.1.

Remark 3.2. The Λ-rank rankΛH(L) is a concordance invariant of a link
L (cf. [8,9,13]), so that the splitting numbers of concordant alternating links
are equal. Hence any split alternating link is not concordant to any non-split
(and hence hyperbolic) alternating link, although it is always concordant to
a non-split (more strongly hyperbolic) link. Thus, we cannot take n = 0 in
Theorem 3.1.

As a result for a general link, we obtain the following theorem:
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Theorem 3.3. For every link L and every integer n = alt[L] except that
n = alt[L] = 0 and [L] is represented by a split link, we have infinitely many
hyperbolic links Ln such that Ln is concordant to L and alt(Ln) = n.

Proof. If alt[L] = 0, then the concordance class [L] contains an alternating
link, and the desired result follows from Theorem 3.1 for n > 0. Let d =
alt[L] > 0. First, we show that there are infinitely many hyperbolic links Ld

with [Ld] = [L] and alt(Ld) = d. For a link L′ with alt(L′) = d representing [L],
choose a crossing point of a diagram of L′ to obtain a link L′

1 with alt(L′
1) =

d − 1 by the crossing change. By the “topological imitation”technique in [11]
applied to this crossing point, we have infinitely many hyperbolic links Ld

with an AID imitation q : (S3, Ld) → (S3, L′) such that L′
1 is obtained from

Ld by a crossing change. Then we have alt(Ld) 5 alt(L′
1) + 1 = d. Since Ld

is concordant to L′ by the definition of an imitation, we have alt(Ld) = d
and hence alt(Ld) = d. Let n > d. Let K be the knot used in the proof
of Theorem 3.1, and Kh the h-fold connected sum K#K# . . . #K of K. For
every positive integer h, we have a hyperbolic link Ld+h with an AID imitation
q : (S3, Ld+h) → (S3, Ld#Kh) which is a composite of AID imitations qi :
(S3, Ld+i) → (S3, Ld+i−1#K) (i = 1, 2, 3, . . . , h), constructed by using [11],
such that Ld+i−1 is obtained from Ld+i by a crossing change. Then we have

alt(Ld+h) 5 alt(Ld+h−1#K) 5 alt(Ld+h−1) + 1.

By properties of an AID imitation, we note that there are infinitely many
families of mutually distinct hyperbolic links Ld+i (i = 0, 1, 2, . . . , h) for every
h. For every such family, we show that limh→+∞ alt(Ld+h) = +∞. To see this,
let Lα be an alternating link such that alt(Ld+h) = dx(Ld+h, Lα). By the esti-
mation lemma, we have alt(Ld+h) = |eS(Ld+h)− eS(Lα)|, where S is the mul-
tiplicative set used in the proof of Theorem 3.1. Since H(Ld+h) ∼= H(Ld#Kh)
which has H(Kh) = H(K)h as a direct summand, we have eS(Ld+h) =
eS(Ld#Kh) = eS(Kh) = h. Since eS(Lα) is equal to the splitting number
of Lα which is smaller than the component number of Lα and hence of L, we
see that limh→+∞ alt(Ld+h) = +∞ and there is a positive integer j so that
alt(Ld+j) > n. To complete the proof, it suffices to show that there is an inte-
ger h with 0 < h < j such that alt(Ld+h) = n. To see this, suppose such an h
does not exist. Since alt(Ld) = d < n, we can take the maximal integer h such
that 0 5 h < j and alt(Ld+h) 5 n. Using alt(Ld+h) < n and alt(Ld+j) > n, we
have alt(Ld+h+1) 5 alt(Ld+h) + 1 5 n and 0 < h + 1 < j, which contradicts
the maximalness of h. 2

Here is a note on the exceptional case of Theorem 3.3.

Remark 3.4. Although the same assertion of Theorem 3.3 using altτ , alta

or altτ
a instead of alt also holds by a similar argument, we need a remark on

the exceptional case that alt[L] = 0 and [L] is represented by a split link. By
Remark 3.2, any alternating link representing [L] is split and thus we must take
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n > 0 for Theorem 3.3 and its altτ version. Let L be a split alternating link.
By applying the “topological imitation”technique in [11] to a trivial crossing
change of L into L, we obtain a hyperbolic link L∗ given by an AID imitation
q : (S3, L∗) → (S3, L) such that L is obtained from L∗ by a crossing change.
By properties of an AID imitation, we have AT (L∗; t) = AT (L; t) which is a
semi-classical alternating Laurent polynomial, so that alta(L

∗) = 0. Thus, in
the statement of the alta or altτ

a version of Theorem 3.3, we can take n = 0.
We note that, since alt(L∗) 5 1, [L∗] = [L] and L∗ is non-split, we have
alt(L∗) = altτ (L∗) = 1.

From our viewpoint it is an important problem to calculate the value alt[L]
of a link L. For this purpose, it would be an interesting question to ask which
link L has alt(L) = alt[L]. For example, does any torus link T (p, q) have
alt(T (p, q)) = alt[T (p, q)] ? The following remark concerns a recent develop-
ment of this question.

Remark 3.5. Let σ(K) be the (−1)-multiple of the signature of a knot K
so that the positive trefoil knot takes +2, and s(K) the Rasmussen invari-
ant or the twice of the Ozsváth-Szabó invariant which is an additive con-
cordance knot invariant (cf. [19,20]). By using C. Livingston’s observation in
[15], T. Abe observed in [1] the inequality alt(K) = |σ(K) − s(K)|/2, by
which T. Abe proved that every torus knot K = T (p, q) (p > 2, q > 3) except
(p, q) = (3, 4), (3, 5) has alt[K] > 1, meaning that the almost alternating torus
knots are just T (3, 4) and T (3, 5), confirming a conjecture by C. Adams in
[2]. For further calculations on the alternation numbers of torus knots, see T.
Kanenobu [6]. Since |σ(K)−s(K)| is a concordance invariant, Abe’s inequality
actually implies the inequality

alt[K] = |σ(K) − s(K)|/2,

which is useful to know the value alt[K], although Abe’s inequality does not
detect the assertions of Theorems 3.1 and 3.3 because of its concordance in-
variance. For example, let Tm be the m-fold connected sum of T (4, 5). Then
we have alt(Tm) = alt[Tm] = 2m by Kanenobu’s calculation. Thus, if a knot
K is concordant to Tm, then we have alt(K) = 2m, and conversely for every
integer n = 2m, there is a hyperbolic knot K which is concordant to Tm such
that alt(K) = n by Theorem 3.3.
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[18] P. Ozsváth and Z. Szabó, Heegaard Floer homologies and alternating knots,
Geometry and Topology, 7(2003),225-254.
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