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Abstract. It is well known that surface-links in 4-space can be presented
by diagrams on the plane of 4-valent spatial graphs with makers on the ver-
tices, called marked graph diagrams. In this paper we extend the method

of presenting surface-links by marked graph diagrams to presenting immersed
surface-links. We also give some moves on marked graph diagrams that pre-
serve the ambient isotopy classes of their presenting immersed surface-links.

1. Introduction

A surface-link, or an embedded surface-link, is a closed surface embedded in
Euclidean 4-space R4. An immersed surface-link is a closed surface immersed in R4

such that the multiple points are transverse double points. It is well known that
surface-links can be presented by diagrams on the plane of 4-valent spatial graphs
with makers on the vertices, called marked graph diagrams (cf. [1, 3, 6, 7, 8, 9, 10]).

In this paper we extend the method of presenting surface-links by marked graph
diagrams to presenting immersed surface-links. We also give some moves on marked
graph diagrams that preserve the ambient isotopy classes of their presenting im-
mersed surface-links, which are extension of moves given by Yoshikawa [10] for
presentation of embedded surface-links.

2. Marked graph diagrams of immersed surface-links

In this section, we introduce a marked graph presentation of immersed surface-
links. First, we recall quickly the notion of marked graph diagrams and links with
bands from [9, 10].

Let A be the square {(x, y)| − 1 ≤ x, y ≤ 1}, X be the diagonals in A presented
by x2 = y2, and Mh (or Mv) be a thick interval in A given by {(x, y)| − 1/2 ≤ x ≤
1/2, −δ ≤ y ≤ δ} (or {(x, y)| − 1/2 ≤ y ≤ 1/2, −δ ≤ x ≤ δ}), where δ is a small
positive number.

A marked graph (in R3) is a spatial graph G in R3 which satisfies the following:

(1) G is a finite regular graph with 4-valent vertices.
(2) Each vertex v is rigid; that is, there is a neighborhood N(v) of v which is

identified with thickened A such that v corresponds to the origin and the
edges restricted to N(v) correspond to X.
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(3) Each v has a marker, which is a thick interval in N(v) which corresponds
to Mh or Mv under the identification in (2).

An orientation of a marked graph G is a choice of an orientation for each edge of
G such that around every vertex v, two edges incident to v in a diagonal position
are oriented toward v and the other two incident edges are oriented outward. For
example, see Fig. 1.
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Figure 1. An orientation around a marked vertex

Not every marked graph admits an orientation. A marked graph is called ori-
entable (or non-orientable) if it admits (or does not admit) an orientation. A marked
graph depicted in Fig. 2 is non-orientable. An oriented marked graph is a marked
graph equipped with an orientation. Two (oriented) marked graphs are said to be
equivalent if they are ambient isotopic in R3 with respect to markers as subsets of
R3 (and the orientations).

Figure 2. A non-orientable marked graph

A banded link BL (or a link with bands) is a pair (L,B) of a link L in R3 and
a set of mutually disjoint bands in R3 attached to L. It is called oriented if L is
oriented and all bands are oriented coherently with respect to the orientation of
L. In this case, the link obtained from L by surgery along the bands inherits an
orientation, see Fig. 3. Two (oriented) banded links are equivalent if there is an
ambient isotopy of R3 carrying the (oriented) link and (oriented) bands of one to
those of the other.

α α’

L L

B

Figure 3. Surgery

For a marked graph G, we obtain a banded link (L,B) by replacing a neighbor-
hood of each 4-valent vertex with a band such that the core of the band corresponds
to the marker as in Fig. 4 (b). The banded link is called the banded link associated
with G and is denoted by BL(G). Conversely, a marked graph G is recovered from
a banded link BL by shortening and replacing each band to a 4-valent vertex as in
Fig. 4 (a). If G is oriented, then BL(G) is oriented, and vice versa.
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Figure 4. A band and a marked vertex

For a banded link BL = (L,B), the lower resolution L−(BL) is L and the upper
resolution L+(BL) is the surgery result. For a marked graph G, the lower resolution
L−(G) and the upper resolution L+(G) are defined to be those of the banded link
BL(G) = (L,B) associated with G.

We present a marked graph by a diagram on the plane, which we call a marked
graph diagram, in a usual way in knot theory.

Let D be a marked graph diagram. We denote by BL(D), L−(D), and L+(D)
the banded link, the lower resolution and the upper resolution of the marked graph
presented by D. See Fig. 5.

A link is called H-trivial if it is a split union of trivial knots and Hopf links [4].
A trivial link is regarded as an H-trivial link without Hopf links.

Definition 2.1. A marked graph diagramD (or a marked graph G) is H-admissible
if both resolutions L−(D) and L+(D) (or L−(G) and L+(G)) are H-trivial links.

L+(D)

BL(D)

L
−
(D)

D

Figure 5. An H-admissible marked graph diagram

A marked graph diagram D (or a marked graph G) is called admissible if both
resolutions L−(D) and L+(D) (or L−(G) and L+(G)) are trivial links. By defini-
tion, an admissible marked graph (diagram) is H-admissible.

Now we discuss a marked graph presentation of an immersed surface-link.
For a subset A ⊂ R3 and an interval I ⊂ R, let

AI = {(x, t) ∈ R4|x ∈ A, t ∈ I}.
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Let D be an H-admissible marked graph diagram, and BL(D) = (L,B) the
banded link associated with D. Consider a surface S1

−1 in R3[−1, 1] satisfying

S1
−1 ∩ R3[t] =

 L+(D)[t] for 0 < t ≤ 1,
(L−(D) ∪ |B|)[t] for t = 0,
L−(D)[t] for −1 ≤ t < 0,

where |B| denotes the union of the bands belonging to B.
When D is oriented, we assume that the surface S1

−1 is oriented so that the
orientation of L+(D)[1] as the boundary of S1

−1 coincides with the orientation of
L+(D) induced from D.

Let L be an H-trivial link with trivial knot components Oi (i = 1, . . . ,m) and
Hopf link components Hj (j = 1, . . . , n), where m ≥ 0 and n ≥ 0. For an interval
[a, b], let L∧[a, b] be the union of disks ∆i (i = 1, . . . ,m) and n pairs of disks Cj

(j = 1, . . . , n) in R3[a, b] such that (1) ∂∆i = Oi[a] and ∂Cj = Hj [a], (2) ∆i has
a unique maximal point, (3) each disk of Cj has a unique maximal point, and (4)
the two disks of Cj intersect in a point transversely. We call ∆i (i = 1, . . . ,m) a
cone system with base Oi (i = 1, . . . ,m) and Cj (j = 1, . . . , n) a cone system with
base Hj (j = 1, . . . , n).

We often assume an additional condition: (5) for each cone Cj over Hj , the
intersection point of the two disks of Cj in condition (4) is the unique maximal point
of each of the disks in condition (3). Similarly, for an H-trivial link L′ with trivial
knot components O′

i (i = 1, . . . ,m′) and Hopf link components H ′
j (j = 1, . . . , n′),

where m′ ≥ 0 and n′ ≥ 0, let L′
∨[a, b] be the disjoint union of a cone system ∆′

i in
R3[a, b] with base O′

i in R3[a] (i = 1, . . . ,m′) and a cone system C ′
j in R3[a, b] with

base H ′
j in R3[a] (i = 1, . . . , n′), where each disk in the cone system has a unique

minimal point.
Let D be an H-admissible marked graph diagram. Consider the union

S(D) = L′
∨[−2,−1] ∪ S1

−1 ∪ L∧[1, 2],

which is an immersed surface-link in R4, where L and L′ be upper and lower
resolutions of D, respectively.

By an argument in [4, 5] it is seen that the ambient isotopy class of the immersed
surface-link S(D) is uniquely determined fromD. We call the immersed surface-link
S(D) the immersed surface-link constructed from D.

Theorem 2.2. Let L be an immersed surface-link. There is an H-admissible
marked graph diagram D such that L is ambient isotopic to S(D).

In the situation of this theorem, we say that L is presented by D.

Proof. The following argument is based on an argument in [5] where embedded
and oriented surface-links are discussed (cf. [3]). Let L be an immersed surface-
link. Let d1, . . . , dn be the double points of L, and let N(d1), . . . , N(dn) be regular
neighborhoods of them. Moving L by an ambient isotopy, we may assume the
following conditions:

(1) All critical points of L, except the double points, with respect to the pro-
jection R4 = R3 × R → R are elementary critical points, that are maximal
points, saddle points and minimal points.

(2) L is in R3(−2, 2).
(3) All double points are in R3[1].
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(4) For each i (i = 1, . . . , n), N(di) = N3(di)[1 − ϵ, 1 + ϵ] for a 3-disk N3(di),
and N(di) ∩ L is the cone of a Hopf link Hi ⊂ (intN3(di))[1 − ϵ] with the
cone point di ∈ R3[1]. Here ϵ is a sufficiently small positive number. The
3-disks N3(d1), . . . , N

3(dn) are mutually disjoint.

Move double points into R3[3] such that the condition (4) is preserved although
the 3-disk N3(di) may change and the time level of di changes from 1 to 3, i.e.,

(1) All critical points of L, except the double points, with respect to the pro-
jection R4 = R3 × R → R are elementary critical points, that are maximal
points, saddle points and minimal points.

(2) L is in R3(−2, 4).
(3) All double points are in R3[3]. All maximal, saddle and minimal points are

in R3(−2, 2)
(4) For each i (i = 1, . . . , n), N(di) = N3(di)[3 − ϵ, 3 + ϵ] for a 3-disk N3(di),

and N(di) ∩ L is the cone of a Hopf link Hi ⊂ (intN3(di))[3 − ϵ] with
the cone point di ∈ R3[3]. The 3-disks N3(d1), . . . , N

3(dn) are mutually
disjoint.

Let p1, . . . , pm be the maximal points of L, q1, . . . , qm′ be the minimal points of
L, and let N(p1), . . . , N(pm), N(q1), . . . , N(qm′) be regular neighborhoods of them.
Moving L by an ambient isotopy, we may assume the following conditions:

(1) All critical points of L, except the double points, with respect to the pro-
jection R4 = R3 × R → R are elementary critical points, that are maximal
points, saddle points and minimal points.

(2) L is in R3(−4, 4).
(3) All double points and all maximal points are in R3[3]. All minimal points

are in R3[−3]. All saddle points are in R3(−2, 2).
(4) For each i (i = 1, . . . , n), N(di) = N3(di)[3 − ϵ, 3 + ϵ] for a 3-disk N3(di),

and N(di) ∩ L is the cone of a Hopf link Hi ⊂ (intN3(di))[3 − ϵ] with the
cone point di. The 3-disks N3(d1), . . . , N

3(dn) are mutually disjoint.
(5) For each i (i = 1, . . . ,m), N(pi) = N3(pi)[3− ϵ, 3 + ϵ] for a 3-disk N3(pi),

and N(pi)∩L is the cone of a trivial knot Oi ⊂ (intN3(pi))[3− ϵ] with the
cone point pi. The 3-disks N3(p1), . . . , N

3(pm) are mutually disjoint, and
also disjoint from N3(d1), . . . , N

3(dn).
(6) For each i (i = 1, . . . ,m′), N(qi) = N3(qi)[−3−ϵ,−3+ϵ] for a 3-diskN3(qi),

and N(qi) ∩ L is the cone of a trivial knot O′
i ⊂ (intN3(qi))[−3 + ϵ] with

the cone point qi. The 3-disks N3(q1), . . . , N
3(qm′) are mutually disjoint.

Finally, applying the argument in [5], we can move all saddle points into the
same hyperplane R3[0]. Then we see the result. □

Remark 2.3. Theorem 1.4 of [4] states that any immersed and oriented surface-
link is ambient isotopic to an immersed surface-link satisfying a certain condition.
Applying the argument in [5], we can obtain an immersed surface-link required in
Theorem 2.2.

3. Moves on marked graph diagrams

We discuss moves on marked graph diagrams which preserve the ambient isotopy
classes of the immersed surface-links presented by the diagrams.

The moves depicted in Figs. 6 and 7 were introduced by Yoshikawa [10] as moves
on marked graph diagrams which do not change the ambient isotopy classes of their
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Figure 6. Moves of Type I
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Figure 7. Moves of Type II

presenting surface-links. The moves and their mirror images are called Yoshikawa
moves. Furthermore, we call the moves in Fig. 6 (Fig. 7) and their mirror images
moves of type I (moves of type II). Moves of type I do not change the ambient isotopy
classes of marked graphs in R3, and moves of type II do. Note that Yoshikawa moves
preserve H-admissibility and admissibility.

It is known that two admissible marked graph diagrams present ambient isotopic
surface-links if and only if they are related by Yoshikawa moves (cf. [7, 9, 10]).

Let D be a link diagram of an H-trivial link L. A crossing point p of D is an
unlinking crossing point if it is a crossing between two components of the same Hopf
link of L and if the crossing change at p makes the Hopf link into a trivial link.
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Definition 3.1. Let D be an H-admissible marked graph diagram and let D−
and D+ be the diagrams of the lower resolution L−(D) and the upper resolution
L+(D), respectively. A crossing point p of D is a lower singular point (or an upper
singular point, resp.) if p is an unlinking crossing point of D− (or D+, resp.).

We introduce new moves for H-admissible marked graph diagrams. They are
the moves Ω9, Ω

′
9 and Ω10 in Fig. 8 and their mirror images, which we call moves of

type III. Here we assume that the moves of type III are defined only if two diagrams
appearing before and after the move are H-admissible. For example, for the move
Ω9 (or Ω

′
9, resp.) in Fig. 8, we require that the component l in the resolution L+(D)

(or L−(D), resp.) is trivial and that p is an upper (or lower, resp.) singular point.
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Figure 8. Moves of Type III: Ω9,Ω
′
9 and Ω10

Definition 3.2. The generalized Yoshikawa moves are Yoshikawa moves (moves of
type I and II) and moves of type III introduced above. Two marked graph diagrams
are stably equivalent if they are related by a finite sequence of generalized Yoshikawa
moves.

Theorem 3.3. Let L and L′ be immersed surface-links presented by marked graph
diagrams D and D′, respectively. If D and D′ are stably equivalent, then L and L′

are ambient isotopic.

Proof. It suffices to show that L and L′ are ambient isotopic when D′ is obtained
from D by a move of Ω9, Ω

′
9 or Ω10. The moves Ω9 and Ω′

9 correspond to a creation
or removal of a saddle point, and the move Ω10 corresponds to a change the level of
double point singularity. See Fig. 9, which shows partial pictures of broken surface
diagrams in 3-space in the sense of [2]. (In [2], embedded surfaces are discussed.
However, broken surface diagrams are considered for immersed surface-links and it
is true that if two broken surface diagrams are ambient isotopic in 3-space then the
immersed surface-links are ambient isotopic in 4-space.) Since the moves Ω9, Ω

′
9

and Ω10 do not change the ambient isotopy classes of broken surface diagrams in
3-space, we see that L and L′ are ambient isotopic. □

Let Ω∗
9 and Ω′∗

9 be the moves depicted in Fig. 10 or their mirror images. They are
equivalent to Ω9 and Ω′

9 modulo Yoshikawa moves (of type I) as shown in Fig. 11.
We conclude the paper by proposing a question.

Question 3.4. Suppose that D and D′ are marked graph diagrams presenting
ambient isotopic immersed surface-links. Is D stably equivalent to D′?
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Ω9 :
(a)

(b)

Ω10 :

(a)

(b)
Ω
9
:

Figure 9. Immersed surface-links presented by Ω9, Ω
′
9, and Ω10
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Figure 10. Moves Ω∗
9 and Ω′∗
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Figure 11. Moves Ω∗
9, Ω

′∗
9 are equivalent to Ω9, Ω

′
9.
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