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Abstract. It is shown that the projection image of an oriented spatial arc to
any oriented plane is approximated by a unique arc diagram (up to isomor-
phic arc diagrams) determined from the spatial arc and the projection. In a
separated paper, the knotting probability of an arc diagram is defined as an

invariant under isomorphic arc diagrams. By combining them, the knotting

probability of every oriented spatial arc is defined.

1. Introduction

A spatial arc is a polygonal arc in the 3-space R3, which is considered as a
model of a protein or a linear polymer in science. The following question on science
is an interesting question that can be set as a mathematical question:

Question. How a linear scientific object such as a linear molecule (e.g. a non-
circular DNA, protein, linear polymer,…) is considered as a knot object ?

In this paper, it is shown that the projection image of an oriented spatial arc to
any oriented plane is approximated into a unique arc diagrams (up to isomorphic
arc diagrams) determined from the spatial arc and the projection. Further, the
orientation change of the spatial arc makes only substitutes for these unique arc
diagrams (up to isomorphic arc diagrams). This argument is more or less similar to
an argument transforming a classical knot in R3 into a regular knot diagram (see
[1], [3]). Let

S2 = {u ∈ R3| ||u|| = 1}
be the unit sphere, where || || denotes the norm on R3. Every element u ∈ S2 is
regarded as a unit vector from the origin 0. For a unit vector u ∈ R3, let Pu be
the oriented plane containing the origin 0 such that the unit vector u is a positively
normal vector to Pu. The orthogonal projection from R3 to the plane Pu is called
the projection along the unit vector u ∈ S2 and denoted by

λu : R3 → Pu.

For a small positive number δ, a δ-approximation of the projection λu : R3 →
Pu along u ∈ S2 is the projection

λu′ : R3 → Pu′
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2 A. KAWAUCHI

along a unit vector u′ ∈ S2 with ||u′ − u|| < δ, which is denoted by

λδu : R3 → Pu.

The projection image λu(L) of a spatial arc L in the plane Pu is an arc diagram in
the oriented plane Pu if λu(L) has only crossing points (i.e., transversely meeting
double points with over-under information) and the starting and terminal points
as single points. The arc diagram (Pu, λu(L)) is sometimes denoted by (P,D).

An arc diagram (P,D) is isomorphic to an arc diagram (P ′, D′) if there is
an orientation-preserving homeomorphism f : P → P ′ sending D to D′ which
preserves the crossing points of D and D′, and the starting and terminal points of
D and D′. The map f is called an isomorphism from D to D′. In an illustration
of an arc diagram, it is convenient to illustrate an arc diagram with smooth edges
in the class of isomorphic arc diagrams instead of a polygonal arc diagram.

In this paper, the following observation is shown.

Theorem 1.1. Let L be an oriented arc in R3, and λu : R3 → Pu the projection
along a unit vector u ∈ S2. For any sufficiently small positive number δ, the
projection λu has a δ-approximation

λδu : R3 → Pu

such that the projection image λδu(L) is an arc diagram determined uniquely from
the spatial arc L and the projection λu up to isomorphic arc diagrams.

The proof of Theorem 1.1 is done in § 2. In [10], the knotting probability

p(D) = (pI(D), pII(D), pIII(D))

of an arc diagram D is defined so that it is unique up to isomorphic arc diagrams.
By the arc diagram D(L;u) = λδu(L), the knotting probability p(L;u) of an oriented
spatial arc L is defined by

p(L;u) = p(D(L;u))

for every unit vector u ∈ S2. More details are discussed in § 3.
We mention here that a knotting probability of a circular knot is studied by

Deguchi and Tsurusaki [2] (see also E. Uehara and T. Deguchi [2]) from the view-
point of a random knotting, which is independent of our viewpoint. The case of
a spatial arc is also studied by Millett, Dobay and Stasiak in [12] from a random
knotting viewpoint with the same motivation as the present question1. We also
note that a knotting probability of a spatial arc was defined directly from a knot-
ting structure of a spatial graph but with the demerit that it depends on the heights
of the crossing points of a diagram of the spatial arc in [4, 6].

In § 2, the proof of Theorem 1.1 is done. In § 3, the knotting probability of a
spatial arc with a given direction of the projection is explained. In § 4, the knotting
probability of an example of a spatial arc is computed.

1Some protein knotting data are listed in “KnotProt”(https://knotprot.cent.uw.edu.pl/).
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2. Proof of Theorem 1.1

Let L be an oriented spatial arc, and s and pt the starting point and the
terminal point of L, respectively. The front edge of L is the interval γ in R3 joining
the starting point s and the terminal point t. Orient γ by the orientation from s to
t. Let u(γ) be the unit vector of the front edge γ of L, called the front edge vector
of L.

Let L be an oriented spatial arc with the starting point s and the terminal
point t. An edge line of L is an oriented line2 ℓ extending an edge of L oriented by
L. The front line ℓγ is the oriented line extending the oriented front edge γ of L.

Assume that there is an edge line of L distinct from the front line ℓγ because
otherwise there is nothing to show. The starting front-pop line of L is the edge line
ℓs of the edge which pops for the first time from the front line ℓγ when a point is
going on L along the orientation of L. The ending front-pop line of L is the edge
line ℓt of the edge which reaches the front line ℓγ at the end when a point is going
on L along the orientation of L.

The starting front-pop plane of an oriented spatial arc L is the oriented plane
P (ℓγ , ℓs) determined by the front line ℓγ and the starting pop line ℓs in this order.
The terminal front-pop plane of an oriented spatial arc L is the oriented plane
P (ℓγ , ℓt) determined by the front line ℓγ and the terminal pop line ℓs in this order.

Let u(ℓ) ∈ S2 be the unit vector of an oriented line ℓ in R3. The unit vector
u(ℓγ) of ℓγ is equal to the front edge vector u(γ).

Let us, ut ∈ S2 denote the unit vectors u(ℓs) and u(ℓt) of the starting and
terminal front-pop line ℓs and ℓt, called the starting and terminal front-pop vectors,
respectively.

For a plane P in R3, the great circle C of P in S2 is the great circle obtained
as the intersection of S2 and a plane P ′ parallel to P .

The trace set T of a spatial arc L is the subset of S2 consisting of the great
circles and the unit vectors obtained from L in the following cases (i) and (ii)*

(i) The great circle C of S2 of the plane P in R3 determined by a vertex u of L
and an edge line ℓ or the front line ℓγ of L which is disjoint from u.

(ii) The unit vectors ±uη ∈ S2 of an oriented line η in R3 meeting three edge lines
ℓi (i = 1, 2, 3) of L any two of which are not on the same plane with 3 distinct
points.

By (i), note that the following great circles are in the trace set T :

(1) the great circles of the starting and terminal front-pop planes P (ℓγ , ℓs) and
P (ℓγ , ℓt),

(2) the great circle of the plane determined by two parallel distinct edge lines ℓandℓ′,

(3) the great circle of the plane determined by two distinct edge lines ℓ, ℓ′ meeting
a point,

(4) the great circle of the plane determined by an edge line ℓ and the front line ℓγ
meeting a point.

2Throughout the paper, by a line, we mean a straight line in R3.
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In particular, the unit vectors ±u(ℓ) ∈ S2 of every edge line ℓ of L and the
unit vectors ±u(ℓγ) ∈ S2 and the great circle of any plane containing any three
distinct lines ℓi (i = 1, 2, 3) is the trace set T . Also the unit vectors ±u(η) ∈ S2 of
an oriented line η in R3 meeting three edge lines ℓi (i = 1, 2, 3) of L some two of
which are on the same plane with 3 distinct points.

In (ii), note that a line η meeting ℓi (i = 1, 2, 3) by different 3 points is unique,
because if there is another such line η′, then the lines η, η′, ℓi (i = 1, 2, 3) and hence
the lines ℓi (i = 1, 2, 3) are on the same plane, contradicting the assumption.

Also, note that if a unit vector u ∈ S2 is in the trace set T , then −u is also in
T .

For every unit vector u ∈ S2, let Pu be the oriented plane containing the
origin 0 such that u is positively normal to Pu, and λu : R3 → Pu the orthogonal
projection. We show the following lemma.

Lemma 2.1. For every unit vector u ∈ S2 \ T , the projection image λu(L) is an
arc diagram in the plane Pu. Further, the arc diagram λu(L) up to isomorphic arc
diagrams is independent of any choice of a unit vector u′ in the connected region
R(u) of S2 \ T containing u.

Proof of Lemma 2.1. If a unit vector u ∈ S2 is not in (i), then every edge of L
and the front line ℓγ are embedded in the plane Pu by the projection λu. If a unit
vector u ∈ S2 is in neither (i) nor (ii), then the set of vertexes of L is embedded in
Pu by the projection λu whose image is disjoint from the image of any open edge of
L. In particular, any two distinct parallel edge lines are disjointedly embedded in
Pu. Further, the images of the edges of L meet only in the images of the open edges
of L. Thus, if a unit vector u ∈ S2 is in neither (i) nor (ii), namely if u ∈ S2 \ T ,
then the meeting points among the edges of L consisting of double points between
two open edges of L and hence the projection image λu(L) is an arc diagram in the
plane Pu. The arc diagram λu′(L) is unchanged up to isomorphisms for any unit
vector u′ in a connected open neighborhood of u in S2 \T , so that the arc diagram
λu′(L) is unchanged up to isomorphisms for any unit vector u′ in the connected
region R(u). □

The proof of Theorem 1.1 is done as follows:

Proof of Theorem 1.1. The idea of the proof is to specify a unique connected
region R(u′) of S2 \ T adjacent to every unit vector u ∈ S2. For this purpose, for
any given oriented spatial arc L (not in the front line ℓγ), the new x-axis, y-axis
and z-axis of the 3-space R3 are set as follows:

The front edge vector u(γ) of the front edge γ is taken as the unit vector of the
x-axis and denoted by ux:

u(γ) = ux = (1, 0, 0).

Let uy ∈ S2 be the unit vector orthogonal to the front edge vector ux = u(γ) in
the starting front-pop plane P (ℓγ , ℓs) of L with positive inner product uy · us for
the starting front-pop vector us. The unit vector uy is taken as the unit vector the
y-axis:

uy = (0, 1, 0).
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Then the exterior product uz = ux × uy is given by the z-axis:

uz = (0, 0, 1).

Note that the unit vectors ux, uy, uz are uniquely specified by the oriented spatial
arc L.

Under this setting of the coordinate axis, let S2 be the unit sphere which is the
union of the upper hemisphere S2

+, the equatorial circle S
2
0 and the lower hemisphere

S2
− given as follows:

S2
+ = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1, z > 0},
S2
0 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1, z = 0},

S2
− = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1, z > 0}.

Note that the equatorial circle S2
0 belongs to T since the front-pop plane PL coin-

cides with the plane with z = 0.
Every unit vector u in S2

+ except the north pole (0, 0, 1) is uniquely written as

u = ψ(r, θ) = (r cos θ, r sin θ,
√
1− r2)

for real numbers r and θ with 0 < r ≤ 1 and 0 ≤ θ < 2π in a unique way.

Case 1: u = ψ(r, θ) ∈ S2
+ with 0 < r < 1.

Note that when the number r with 0 < r < 1 is fixed, the points ψ(r, θ′) for all
θ′ with 0 ≤ θ′ < 2π form a circle in S2 which is different from every great circle of
S2 and hence meets T only in finitely many points.

The connected region R(u′) is taken to be the connected region of S2
+ \T which

is adjacent to the unit vector ψ(r, θ′) and contains the unit vector ψ(r, θ + ε) for a
sufficiently small positive number ε, which is uniquely determined.

Case 2: u = (0, 0, 1) ∈ S2
+. By taking a positive number r sufficiently small, take a

unit vector ψ(r, 0) = (r, 0,
√
1− r2) ∈ S2

+ such that ψ(r′, 0) does not meet the great
circles in T for any r′ with 0 < r′ ≤ r except for the meridian circle x2 + z2 = 1
(if it is in T ). Then the connected region R(u′) is taken to be the connected region
of S2

+ \ T which is adjacent to the unit vector ψ(r, 0) and contains the unit vector
ψ(r, ε) for a sufficiently small positive number ε, which is uniquely determined.

Case 3: u = ψ(1, θ) ∈ S2
0 .

Let 0 ≤ θ < π. By taking a positive number r with 1 − r a sufficiently small
positive number, take a unit vector ψ(r, θ) ∈ S2

+ such that ψ(r′, θ) does not meet
the great circles in T for any r′ with r ≤ r′ < 1. Then the connected region
R(u′) is taken to be the connected region of S2

+ \ T which is adjacent to the unit
vector ψ(r, θ) and contains the unit vector ψ(r, θ+ε) for a sufficiently small positive
number ε, which is uniquely determined.

Let π ≤ θ < 2π. Since −u = ψ(1, θ − π) ∈ S2
0 , we specified the connected

component R((−u)′) of S2 \T . The desired connected component R(u′) of S2 \T is
the image of R((−u)′) under the antipodal map −1 : S2 → S2 defined by (x, y, z)
to (−x,−y,−z) with (−1)(T ) = T .

Case 4: u ∈ S2
−.

Since the unit vector −u is in S2
+, we specified the connected component

R((−u)′) of S2 \ T in the cases 1-3. The desired connected component R(u′) of
S2 \ T is the image of R(u′) under the antipodal map −1 : S2 → S2.
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Thus, for every unit vector u ∈ S2, the connected region R(u′) and is specified,
so that for every u′′ ∈ R(u′), the image λu′′(L) of L by the orthogonal projection
λu′′ : R3 → Pu′′ is an arc diagram determined uniquely up to isomorphic arc
diagrams from L and the projection λu.

Since the connected region R(u′) is adjacent to the normal vector u ∈ S2,
for every δ > 0 there is a unit vectors u′′ ∈ R(u′) with ||u′′ − u′|| < δ and by
Lemma 3.1, the orthogonal projection λu′′ : R3 → Pu′′ is a desired δ-approximation
λδu : R3 → Pu. This completes the proof of Theorem 1.1. □

An arc diagram D is inbound if the starting point s and the terminal point
t of D are in the same region of the plane divided by the arc diagram D. More
generally, the projection image λu(L) of a spatial arc L which need not be an arc
diagram is inbound if

λu(L \ ∂γ) ∩ λu(γ) = ∅
for the front edge γ of L. A spatial arc L is an arc knot if the union cl(L) = L̄ = L∪γ
of L and the front edge γ of L is a knot (i.e., a simple closed curve) in R3. The
knot cl(L) is called the closed knot of L. A spatial arc L is even if the starting
front-pop plane P (ℓγ , ℓs) and the terminal front-pop plane P (ℓγ , ℓt) are exactly the
same. Let −L denote the same spatial arc as L but with the opposite orientation.
We have the following observations from the proof of Theorem 1.1.

Corollary 2.2. For an oriented spatial arc L and an arc diagram D(L;u) = λδu(L),
we have the following (1)-(5).

(1) The arc diagram D(L;−u) is the mirror image of D(L;u).

(2) If the projection image λu(L) is an arc diagram, then the arc diagram D(L;u)
is isomorphic to the arc diagram λu(L).

(3) There are only finitely many arc diagramsD(L;u) up to isomorphic arc diagrams
for all unit vectors u ∈ S2.

(4) If the projection image λu(L) is inbound, then the arc diagram D(L;u) is an
inbound arc diagram. In particular, if L is an arc knot, then the arc diagram
D(L;ux) for the front edge vector ux is an inbound arc diagram.

(5) If the spatial arc L is even, then the arc diagram D(−L;u) is isomorphic to
the arc diagram D(L;u) or the mirror image D(L;−u) of D(L;u) with the string
orientation changed according to whether the orientations of P (ℓγ , ℓs) and P (ℓγ , ℓt)
coincide or not.

3. The knotting probability of a spatial arc

A chord graph is a trivalent connected graph (o;α) in R3 consisting of a trivial
oriented link o (called a based loop system) and the attaching arcs α (called a it
chord system), where some chords of α may meet. A chord diagram is a diagram
C(o;α) (in a plane) of a chord graph (o;α).

A ribbon surface-link is a surface-link in the 4-space R4 obtained from a trivial
S2-link by mutually disjoint embedded 1-handles (see [11, II], [14]). From a chord
diagram C, a ribbon surface-link F (C) in the 4-space R4 is constructed so that an
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equivalence of F (C) corresponds to a combination of the moves M0, M1 and M2

(see [5, 7, 8, 9]).
Let D be an oriented n-crossing arc diagram. We obtain from D a chord

diagram C(D) with n + 2 based loops and n chords by replacing every crossing
point and every endpoint with a based loop as in Fig. 1.

Figure 1. Transformation of an oriented arc diagram into a chord diagram

Let D be an oriented n-crossing arc diagram, and C(D) the chord diagram
of D. Let os and ot be the based loops in C(D) transformed from the starting
and terminal points vs and vt, respectively. There are (n + 2)2 chord diagrams A
obtained from the chord diagram C(D) by joining the loops os and ot with any
based loops of C(D) by two chords not passing the other based loops. A chord
diagram obtained in this way is called an adjoint chord diagram of C(D) with an
additional chord pair. Note that the ribbon surface-knot F (C(D)) of the chord
diagram C(D) is a ribbon S2-knot and the ribbon surface-knot F (A) of an adjoint
chord diagram A is a genus 2 ribbon surface-knot. A chord diagram is said to
be unknotted or knotted according to whether it represents a trivial or non-trivial
ribbon surface-knot, respectively.

The idea of the knotting probability is to measure how many knotted chord
diagrams there are among the (n+2)2 adjoint chord diagrams of C(D). Since there
are canonical overlaps among them up to canonical isomorphisms, we consider the
n2+2n+2 adjoint chord diagrams A of C(D) by removing them which are classified
by the following three types:

Type I. Here are the 2 adjoint chord diagrams of C(D) which are the adjoint chord
diagram with two self-attaching additional chords and the adjoint chord diagram
with a self-attaching additional chord on os and an additional chord joining os with
ot.

Type II. Here are the 2n adjoint chord diagrams A of C(D). The 2n adjoint chord
diagrams of C(D) are given by the additional chord pairs consist of a self-attaching
additional chord on os (or ot, respectively) and an additional chord joining ot (or
os, respectively) with a based loop except for os and ot.

Type III. Here are the n adjoint chord diagrams A of C(D) where the additional
chord pairs consist of an additional chord joining os with ot and an additional chord
joining os with a a based loop except for os and ot.

Type IV. Here are the n(n − 1) adjoint chord diagrams A of C(D) where the
additional chord pair joins the pair of os and ot with a distinct based loop pair not
containing os and ot.
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In [10], it is shown that every adjoint chord diagram of the chord diagram
C(D) of any n crossing arc diagram D is deformed into one of the adjoint chord
diagrams of type I, II, III and IV of the chord diagram C(D). Thus, it is justified
to reduce the (n + 2)2 adjoint chord diagrams to the n2 + 2n + 2 adjoint chord
diagrams.

The knotting probability p(D) of an arc diagram D is defined to be the quadru-
plet

p(D) = (pI(D), pII(D), pIII(D), pIV(D))

of the following knotting probabilities pI(D), pII(D), pIII(D), pIV(D) of types I, II
III, IV.

Definition.
(1) Let A1 and A2 be the adjoint chord diagrams of type I and assume that there
are just k knotted chord diagrams among them. Then the type I knotting probability
of D is

pI(D) =
k

2
.

Thus, pI(D) is 0, 12 or 1 for any arc diagram D.

(2) Let Ai (i = 1, 2, . . . , 2n) be the adjoint chord diagrams of type II and assume
that there are just k knotted chord diagrams among them. Then the type II knotting
probability of D is

pIII(D) =
k

2n
.

(3) Let Ai (i = 1, 2, . . . , n) be the adjoint chord diagrams of type III and assume
that there are just k knotted chord diagrams among them. Then the type III
knotting probability of D is

pIII(D) =
k

n
.

(4) Let Ai (i = 1, 2, . . . , n(n − 1)) be the adjoint chord diagrams of type IV and
assume that there are just k knotted chord diagrams among them. Then the type
IIV knotting probability of D is

pIV(D) =
k

n(n− 1)
.

When the orientation of an arc diagram D is changed, all the orientations of
the based loops of the chord graph C(D) are changed at once. This means that
the knotting probability p(D) does not depend on any choice of orientations of D,
and we can omit the orientation of D in figures. See [10] for actual calculations of
p(D). It is known by [10, Theorem 3.3 (3)] that pI(D) = 0 or 1, pII(D) = pIII(D)
and p(D) = p(D∗) for any inbound arc diagram D and the mirror image D∗ of D.

The knotting probability p(D) has p(D) = 1 if

pI(D) = pII(D) = pIII(D) = pIV(D) = 1

and otherwise, p(D) < 1. The knotting probability p(D) has p(D) > 0 if

pI(D) + pII(D) + pIII(D) + pIV(D) > 0

and otherwise, p(D) = 0.
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For an oriented spatial arc L in R3, the knotting probability p(L;u) of L for a
unit vector u ∈ S2 is defined to be

p(L;u) = p(D(L;u))

for the arc diagram D(L;u) for u. Thus,

pI(L;u) = pI(D(L;u)),

pII(L;u) = pII(D(L;u)),

pIII(L;u) = pIII(D(L;u)),

pIV(L;u) = pIV(D(L;u)).

Although p(L;u) is unchanged by any choice of a string orientation in the arc
diagram level D(L;u), the knotting probability p(−L;u) may be much different
from the arc diagram p(L;u) in general, because the arc diagram D(L;u) may be
much different from the arc diagram D(−L;u) in general (cf. Corollary 2.4). In
any case, the unordered pair of p(L;u) and p(−L;u) is considered as the knotting
probability of a spatial arc L independent of the string orientation. When one-
valued probability is desirable, a suitable average of the knotting probabilities

pI(±L;u), pII(±L;u), pIII(±L;u), pIV(±L;u)

is considered. For a special spatial arc L, we have the following corollary.

Corollary 3.1.
(1) If the projection image λu(L) is inbound, then

p(L;u) = p(L;−u).

In particular, if L is an arc knot, then p(L;ux) = p(L;−ux) for the front edge
vector ux.

(2) If L is even, then

p(−L;u) = p(L;u) or p(−L;u) = p(L;−u)

for any unit vector u ∈ S2 according to whether the orientations of P (ℓγ , ℓs) and
P (ℓγ , ℓt) coincide or not.

(3) If L is even and the projection image λu(L) is inbound, then the four knotting
probabilities p(±L;±u) are equal to p(L;u).

Proof of Corollary 3.1. In [10], it is shown p(D) = p(D∗) for an inbound arc
diagram D and the mirror image D∗ of D. By Corollary 2.2 (1) and (4), the
arc diagrams D(L;u) and D(L;ux) are inbound arc diagram with D(L;−u) and
D(L;−ux) the mirror images. Thus, (1) is obtained. For (2), by Corollary 2.2 (1)
and (5), the arc diagram D(−L;u) is isomorphic to the arc diagram D(L;u) or
D(L;−u) according to whether the orientations of P (ℓγ , ℓs) and P (ℓγ , ℓt) coincide
or not. The assertion (3) is a combination result of (1) and (2). □
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Figure 2. The spatial arc L given by the vertex co-
ordinate data: namely, the (x, y) vertex coordinates
(0, 0), (1, 1), (2, 3), (1, 3), (2, 1), (4, 4), (0, 4), (0, 2), (3, 2), (4, 0)
of λuz (L) in the xy plane and the z vertex coordinate data in the
figure.

4. Computing some examples

It is stated in Corollary 2.2 (3) that for every spatial arc L, there are only
finitely many arc diagrams D(L;u) up to isomorphic arc diagrams for all unit
vectors u ∈ S2. However, it is a very hard problem to enumerate all the arc diagrams
D(L;u) even for a simple spatial arc L. By this reason and Corollary 3.1, at most the
12 arc diagrams D(±L;±ux), D(±L;±uy) and D(±L;±uz) determined uniquely
by the spatial arc L are recommended in computing the knotting probabilities for
an actual spatial arc.

In this section, the knotting probabilities of three concrete examples of even
arc knots are computed in Examples A, B and C.

Figure 3. Producing the chord diagram C(D(L;uz)) and a sim-
plified chord diagram from the projection image λuz

(L)
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Example A. Consider an even arc knot L in Fig. 2 given by the projection image
λuz (L) in the xy plane together with z-coordinate information such that the vertex
coordinates (x, y)z of L ordered from the starting point s are given by

(0, 0)0, (1, 1)0, (2, 3)4, (1, 3)1, (2, 1)1, (4, 4)2, (0, 4)3, (0, 2)3, (3, 2)0, (4, 0)0.

The closed knot cl(L) is a trefoil knot. The arc diagram D(L;uz) obtained from
λuz (L) is illustrated in Fig. 3. In computing the knotting probability p(L;uz) from
the chord diagram C(D(L;uz)) of the arc diagram D(L;uz), a simplified chord
diagram of the chord diagram C(D(L;uz)) given by the following observation is
used to make the computation simpler.

Observation 4.1. If two based loops are connected by a chord not meeting the
other chords, one can replace the two based loops with the chord by one based loop
without changing the knotting probability.

Figure 4. Calculations on the chord diagram C(D(L;uz))

In Fig. 3, a simplified chord diagram of the chord diagram C(D(L;uz)) is
given. In the use of a simplified chord diagram obtained by using Observation 4.1, a
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carefulness is needed in counting the knotted and unknotted adjoint chord diagrams.
In fact, a calculation on the numbers of the knotted and unknotted adjoint chord
diagrams of the arc diagram C(D(L;uz)) using the simplified chord diagram of
C(D(L;uz)) is done in Fig. 4 (see [10] for the details of the calculation). Thus, we
have

p(L;uz) = p(L;−uz) = p(−L, uz) = p(−L,−uz) = (1,
1

2
,
1

2
,
1

6
)

by Corollary 3.1, for L is an even spatial arc andD(L;uz) is an inbound arc diagram.

Figure 5. The spatial arc L given by the vertex co-
ordinate data: namely, the (y, z) vertex coordinates
(0, 0), (1, 0), (3, 4), (3, 1), (1, 1), (4, 2), (4, 3), (2, 3), (2, 0), (0, 0)
of λux

(L) in the yz plane and the x vertex coordinate data in the
figure.

Figure 6. Producing the chord diagram C(D(L;ux)) and a sim-
plified chord diagram from the projection image λux

(L)
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Figure 7. Calculations on the chord diagram C(D(L;ux))

In Fig. 5, the same arc knot L is presented by the projection image λux
(L) in the

yz plane together with x-coordinate information such that the vertex coordinates
(y, z)x of L ordered from the starting point s are given by

(0, 0)0, (1, 0)1, (3, 4)2, (3, 1)1, (1, 1)2, (4, 2)4, (4, 3)0, (2, 3)0, (2, 0)3, (0, 0)4.

The arc diagram D(L;ux) obtained from λux(L) is illustrated in Fig. 6. In Fig. 6,
the chord diagram C(D(L;ux)) and a simplified chord diagram of it are illustrated.
A calculation on the numbers of the knotted and unknotted adjoint chord diagrams
of the arc diagram C(D(L;ux)) using the simplified chord diagram of C(D(L;ux))
is done in Fig. 7. Thus, we have

p(L;ux) = p(L;−ux) = p(−L, ux) = p(−L,−ux) = (1,
1

2
,
1

2
,
3

14
)

by Corollary 3.1, for L is an even arc knot and D(L;ux) is an inbound arc diagram.

In Fig. 8, the same arc knot L is presented by the projection image λuy (L) in the
zx plane together with y-coordinate information such that the vertex coordinates
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Figure 8. The spatial arc L given by the vertex co-
ordinate data: namely, the (y, z) vertex coordinates
(0, 0), (0, 1), (4, 2), (1, 1), (1, 2), (2, 4), (3, 0), (3, 0), (0, 3), (0, 4)
of λuy

(L) in the yz plane and the y vertex coordinate data in the
figure.

Figure 9. Producing the chord diagram C(D(L;uy)) and a sim-
plified chord diagram from the projection image λuy (L)

(z, x)y of L ordered from the starting point s are given by

(0, 0)0, (0, 1)1, (4, 2)3, (1, 1)3, (1, 2)1, (2, 4)4, (3, 0)4, (3, 0)2, (0, 3)2, (0, 4)0.

The arc diagram D(L;uy) obtained from λuy
(L) is illustrated in Fig. 9. In Fig. 9,

the chord diagram C(D(L;uy)) and a simplified chord diagram of it are illustrated.
A calculation on the numbers of the knotted and unknotted adjoint chord diagrams
of the arc diagram C(D(L;uy)) using the simplified chord diagram of C(D(L;uy))
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Figure 10. Calculations on the chord diagram C(D(L;uy))

is done in Fig. 10. Thus, we have

p(L;uy) = p(L;−uy) = p(−L, uy) = p(−L,−uy) = (1,
1

2
,
1

2
,
1

15
)

by Corollary 3.1, for L is an even arc knot and D(L;uy) is an inbound arc diagram.

Example B. Consider an even arc knot L in Fig. 11 given by the non-inbound
projection image λuz

(L) in the xy plane together with z-coordinate information
such that the vertex coordinates (x, y)z of L ordered from the starting point s are
given by

(0, 0)0, (1, 1)0, (2, 3)1, (3, 1)−1, (1,−1)2, (−1, 0)1, (1, 2)0, (3, 0)0.

The closed knot cl(L) is also a trefoil knot. The knotting probability of the chord
diagrams C(D(L;±uz)) of the arc diagrams D(L;±uz) has been computed in [10].
Thus, we have

p(L;uz) = p(−L,−uz) = (
1

2
,
1

2
, 0,

1

2
), p(L;−uz) = p(−L, uz) = 0.
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Figure 11. The spatial arc L given by the vertex co-
ordinate data: namely, the (x, y) vertex coordinates
(0, 0), (1, 1), (2, 3), (3, 1), (1,−1), (−1, 0), (1, 2), (3, 0) of λuz (L)
in the xy plane and the z vertex coordinate data in the figure.

Figure 12. Producing the arc diagram D(L;uz) and the chord
diagram C(D(L;uz)).

In Fig. 13, the same arc knot L is presented by the projection image λux
(L) in

the yz plane together with x-coordinate information such that the vertex coordi-
nates (y, z)x of L ordered from the starting point s are given by

(0, 0)0, (1, 0)1, (3, 1)2, (1,−1)3, (−1, 2)1, (0, 1)−1, (2, 0)1, (0, 0)3.
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Figure 13. The spatial arc L given by the vertex co-
ordinate data: namely, the (y, z) vertex coordinates
(0, 0), (1, 0), (3, 1), (1,−1), (−1, 2), (0, 1), (2, 0), (0, 0) of λux(L)
in the yz plane and the x vertex coordinate data in the figure.

Figure 14. Producing the chord diagram C(D(L;ux)) and a sim-
plified chord diagram from the projection image λux

(L)

The arc diagram D(L;ux) obtained from λux
(L) is illustrated in Fig. 14. In Fig. 14,

the chord diagram C(D(L;ux)) and a simplified chord diagram of it are illustrated.
A calculation on the numbers of the knotted and unknotted adjoint chord diagrams
of the arc diagram C(D(L;ux)) using the simplified chord diagram of C(D(L;ux))
is done in Fig. 15. Thus, we have

p(L;ux) = p(L;−ux) = p(−L, ux) = p(−L,−ux) = (1,
1

3
,
1

3
,
1

15
)

by Corollary 3.1, for L is an even arc knot and D(L;ux) is an inbound chord
diagram.
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Figure 15. Calculations on the chord diagram C(D(L;ux))

In Fig. 16, the same arc knot L is presented by the projection image λuy
(L) in

the zx plane together with y-coordinate information such that the vertex coordi-
nates (z, x)y of L ordered from the starting point s are given by

(0, 0)0, (0, 1)1, (1, 2)3, (−1, 3)1, (2, 1)−1, (1,−1)0, (0, 1)2, (0, 3)0.

The arc diagram D(L;uy) obtained from λuy
(L) is illustrated in Fig. 17. In Fig. 17,

the chord diagram C(D(L;uy)) and a simplified chord diagram of it are illustrated.
A calculation on the numbers of the knotted and unknotted adjoint chord diagrams
of the arc diagram C(D(L;uy)) using the simplified chord diagram of C(D(L;uy))
is done in Fig. 18. Thus, we have

p(L;uy) = p(L;−uy) = p(−L, uy) = p(−L,−uy) = (1, 0, 0, 0)

by Corollary 3.1, for L is an even arc knot and D(L;uy) is an inbound chord
diagram.

Example C. Consider an even arc knot L in Fig. 19 given by the non-inbound
projection image λuz (L) in the xy plane together with z-coordinate information
such that the vertex coordinates (x, y)z of L ordered from the starting point s are
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Figure 16. The spatial arc L given by the vertex co-
ordinate data: namely, the (z, x) vertex coordinates
(0, 0), (0, 1), (1, 2), (−1, 3), (2, 1), (1,−1), (0, 1), (0, 3) of λuy

(L)
in the zx plane and the y vertex coordinate data in the figure.

Figure 17. Producing the arc diagram D(L;uy), the chord dia-
gram C(D(L;uy)) and a simplified chord diagram from the pro-
jection image λuy (L)

given by

(0, 0)0, (1, 1)0, (2, 3)1, (3, 1)−1, (1,−1)−1, (−1, 0)1, (1, 2)0, (3, 0)0.
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Figure 18. Calculations on the chord diagram C(D(L;uy))

Note that the closed knot cl(L) is a trivial knot. The arc diagramD(L;uz) coincides
with the arc diagram D(L;uz) in Example B. Thus, we have

p(L;uz) = p(−L,−uz) = (
1

2
,
1

2
, 0,

1

2
), p(L;−uz) = p(−L, uz) = 0.

This means that even if the closed knot cl(L) of an even arc knot L is a trivial knot,
the knotting probability p(L;u) may not be zero for a general unit vector u.

In Fig. 20, the same arc knot L is presented by the projection image λux(L) in
the yz plane together with x-coordinate information such that the vertex coordi-
nates (y, z)x of L ordered from the starting point s are given by

(0, 0)0, (1, 0)1, (3, 1)2, (1,−1)3, (−1,−1)1, (0, 1)−1, (2, 0)1, (0, 0)3.

The arc diagram D(L;ux) obtained from λux
(L) is illustrated in Fig. 21 and is an

inbound arc diagram whose under-closed knot diagram clu(D(L;ux)) (that is, a
knot diagram obtained from D(L;ux) by joining the endpoints with an under-arc)
represents a trivial knot. By [10], we have

p(L;ux) = p(L;−ux) = p(−L, ux) = p(−L,−ux) = 0.
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Figure 19. The spatial arc L given by the vertex co-
ordinate data: namely, the (x, y) vertex coordinates
(0, 0), (1, 1), (2, 3), (3, 1), (1,−1), (−1, 0), (1, 2), (3, 0) of λuz

(L)
in the xy plane and the z vertex coordinate data in the figure.

Figure 20. The spatial arc L given by the vertex co-
ordinate data: namely, the (y, z) vertex coordinates
(0, 0), (1, 0), (3, 1), (1,−1), (−1, 2), (0, 1), (2, 0), (0, 0) of λux

(L)
in the yz plane and the x vertex coordinate data in the figure.

In Fig. 22, the same arc knot L is presented by the projection image λuy
(L) in

the zx plane together with y-coordinate information such that the vertex coordi-
nates (z, x)y of L ordered from the starting point s are given by

(0, 0)0, (0, 1)1, (1, 2)3, (−1, 3)1, (−1, 1)−1, (1,−1)0, (0, 1)2, (0, 3)0.
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Figure 21. Producing the arc diagram D(L;ux)

Figure 22. The spatial arc L given by the vertex co-
ordinate data: namely, the (z, x) vertex coordinates
(0, 0), (0, 1), (1, 2), (−1, 3), (2, 1), (1,−1), (0, 1), (0, 3) of λuy (L)
in the zx plane and the y vertex coordinate data in the figure.

The arc diagram D(L;uy) obtained from λuy (L) is illustrated in Fig. 23 and isomor-
phic to the inbound arc diagram in [10, Example 4.5] with the knotting probability
calculated. Thus, we have

p(L;uy) = p(L;−uy) = p(−L, uy) = p(−L,−uy) = (1,
1

3
,
1

3
, 0)
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Figure 23. Producing the arc diagram D(L;uy)
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