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Abstract

In this paper, we discuss the (co)homology theory of biquandles, derived
biquandle cocycle invariants for oriented surface-links using broken surface dia-
grams and how to compute the biquandle cocycle invariants from marked graph
diagrams. We also develop the shadow (co)homology theory of biquandles and
construct the shadow biquandle cocycle invariants for oriented surface-links.

1 Introduction

In [9], D. Joyce introduced an algebraic structure known as a quandle, which is a
set X with a binary operation satisfying certain conditions coming from oriented
Reidemeister moves for oriented link diagrams (see also [18]). Quandles were gener-
alized to racks in [7] and racks were generalized to biracks in [8] and a (co)homology
theory for racks and biracks was introduced. In the quandle case, a subcomplex was
defined corresponding to Reidemeister moves of type I and this leads to the quandle
(co)homology theory and quandle cocycle invariants of links and surface-links in [5].
In [4], the shadow quandle cocycle invariants was also defined for links and surface-
links. These invariants are defined as the state-sums over all quandle colorings of
arcs and sheets and corresponding Boltzman weights that are the evaluations of a
given quandle 2 and 3-cocycle at the crossings and triple points in a link diagram
and broken surface diagram, respectively. In [10], S. Kamada, J. Kim and S. Y. Lee
developed an interpretation of the quandle and shadow quandle cocycle invariants
of surface-links in terms of marked graph diagram presentation of surface-links.

On the other hand, a generalization of quandles (called biquandles) is introduced
in [14]. A biquandle is an algebraic structure with two binary operations satisfying

1



2 S. Kamada, A. Kawauchi, J. Kim & S. Y. Lee

certain conditions which can be presented by semi-arcs of (virtual) links (or semi-
sheets of surface-links) as its generators modulo oriented Reidemeister moves (or
Roseman moves). In [6], J. S. Carter, M. Elhamdadi and M. Saito introduced
a (co)homology theory for the set-theoretic Yang-Baxter equations and cocycles
are used to define invariants via colorings of (virtual) link diagrams by biquandles
and a state-sum formulation. In [20], S. Nelson and J. Rosenfield introduced a
generalization of biquandle homology to the case of an involutory biquandle (also
known as a bikei), called bikei homology, and used bikei 2-cocycles to enhance the
bikei counting invariant for unoriented knots and links as well as unoriented and
non-orientable surface-links.

In this paper, we discuss the (co)homology theory of biquandles and develop
the biquandle cocycle invariants for oriented surface-links by using broken surface
diagrams generalizing quandle cocycle invariants. Then we show how to compute
the biquandle cocycle invariants from marked graph diagrams. Further, we develop
the shadow biquandle (co)homology theory and construct the shadow biquandle
cocycle invariants for oriented surface-links presented by broken surface diagrams
and also marked graph diagrams generalizing shadow quandle cocycle invariants.
We also discuss a method of computing the shadow biquandle cocycle invariants
from marked graph diagrams.

This paper is organized as follows. In Section 2, we review two presentations of
surface-links, broken surface diagrams and marked graph diagrams. In Section 3,
we recall the definition of a biquandle and examples. In Section 4, we review the
fundamental biquandles and discuss biquandle colorings for marked graph diagrams
and broken surface diagrams. In Section 5, we review the (co)homology groups
of biquandles. In Section 6, the biquandle cocycle invariants of oriented links and
surface-links presented by broken surface diagrams are introduced. In Section 7, we
introduce a method of computing biquandle 3-cocycle invariants from marked graph
diagrams. In Section 8 we develope the shadow (co)homology theory of biquandles
and construct the shadow biquandle cocycle invariants of oriented surface-links. In
Section 9, we introduce a method of computing shadow biquandle 3-cocycle invari-
ants from marked graph diagrams.

2 Presentations of surface-links

A surface-link is a closed surface smoothly (or piecewise linearly and locally flatly)
embedded in the Euclidian 4-dimensional space R

4. Two surface-links L and L′

are equivalent if they are ambient isotopic. That is, equivalently, there exists an
orientation preserving diffeomorphism (or PL homeomorphism) h : R4 → R

4 such
that h(L) = L′. When L and L′ are oriented, it is assumed that the restriction
h|L : L → L′ is also an orientation preserving homeomorphism. Throughout this
paper a surface-link means an oriented surface-link unless otherwise stated.

Let f : F → R
4 be a smooth embedding of a closed surface F in R

4 and let
p : R4 → R

3 be the orthogonal projection onto an affine subspace, identified with R
3,

which does not intersect L = f(F ). By deforming the map f slightly by an ambient
isotopy of R4 if necessary, we may assume that the map p ◦ f : F → R

3 is a generic
map. This means that for any y = p(f(x)) ∈ R

3 there is a neighborhood N(y) ⊂ R
3

and a diffeomorphism ψ : N(y)→ R
3 such that the image of p(f(F )) ∩N(y) under
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ψ looks like the intersection of 1, 2, 3 coordinate planes or the cone on a figure eight
(Whitney umbrella) as depicted in Fig. 1. In these cases, the point y is called a
non-singular point, a double point, a triple point, or a branch point, respectively. A
surface-link diagram, or simply a diagram, of a surface-link L = f(F ) is the image
p(L) equipped with “over/under” information on the multiple points with respect
to the direction of the projection p.

Figure 1: The images of p(f(F )) ∩N(y) under ψ

A common way to indicate over/under information on a diagram is as follows.
Along the double point curves on p(L), one of the sheets (called the over-sheet)
lies farther than the other (called the under-sheet) with respect to the projection
direction. The under-sheets are coherently broken in the projection image, and
such a broken surface is called a broken surface diagram of L. We call the connected
components of over-sheets and under-sheets coherently broken along the double
point curves in the projection semi-sheets. Consequently any surface-link gives rise
to a broken surface diagram. On the other hand, for a given broken surface diagram,
an embedding of a closed surface in R

4 can be constructed. When the surface-link
is oriented, we take normal vectors ~n to the projection of the surface such that the
triple (~v1, ~v2, ~n) matches the orientation of R3, where (~v1, ~v2) defines the orientation
of the surface. Such normal vectors are defined on the projection at all points other
than the isolated branch points. For more details, see [3].

In [22], D. Roseman introduced local moves of seven types on broken surface
diagrams called Roseman moves as depicted in Fig. 2, where over/under information
is omitted for simplicity.

Theorem 2.1 ([22]). Let L and L′ be two surface-links and let D and D′ be broken
surface diagrams of L and L′, respectively. Then L and L′ are equivalent if and
only if D and D′ are transformed into each other by a finite sequence of ambient
isotopies of R3 and Roseman moves.

Now we review marked graph presentation of surface-links. A marked graph is a
spatial graph G in R

3 satisfying that G is a finite graph with 4-valent vertices, say
v1, v2, . . . , vn; each vi is a rigid vertex, that is, we fix a rectangular neighborhood
Ni homeomorphic to {(x, y)| − 1 ≤ x, y ≤ 1}, where the vertex vi corresponds to
the origin and the edges incident to vi are represented by x2 = y2; each vi has a
marker, which is the line segment on Ni represented by {(x, 0)| − 1 ≤ x ≤ 1}. In
this paper, a classical link in R

3 is regarded as a marked graph without marked
vertices. An orientation of a marked graph G is a choice of an orientation for each

edge of G such that every vertex in G looks like
❄❄

❄❄
❄❄

❄❄
❄
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. A marked graph G
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Type 2

Type 3
Type 4

Type 5

Type 6

Type 7

Type 1

Figure 2: Roseman moves on broken surface diagrams

is said to be orientable if it admits an orientation. Otherwise, it is said to be non-
orientable. As usual, a marked graph G in R

3 is described by a diagram (called a
marked graph diagram) D in R

2 which is a generic projection on R
2 with over/under

crossing information for each double point such that the restriction to a rectangular
neighborhood of each marked vertex is an embedding. Fig. 3 shows an oriented
marked graph diagram and a non-orientable marked graph diagram. Throughout
this paper, a marked graph (diagram) means an oriented marked graph (diagram),
unless otherwise stated.

A surface-link L in R
4 can be described in terms of its cross-sections Lt =

L ∩ (R3 × {t}), t ∈ R (motion pictures). Let p : R4 → R be the projection given
by p(x1, x2, x3, x4) = x4, and we denote by pL : L → R the restriction of p to L. It
is known ([15],[17]) that any surface-link L is equivalent to a surface-link L′, called
a hyperbolic splitting of L, such that the projection pL′ : L′ → R satisfies that all
critical points are non-degenerate, all the index 0 critical points (minimal points)
are in R

3×{−1}, all the index 1 critical points (saddle points) are in R
3×{0}, and

all the index 2 critical points (maximal points) are in R
3 × {1}.
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>

>
>

>

>
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>

Figure 3: Marked graph diagrams

Let L be a surface-link and let L′ be a hyperbolic splitting of L. The cross-
section L′0 = L′ ∩ (R3 × {0}) at t = 0 is a 4-valent graph G in R

3 × {0}. We give
a marker at each 4-valent vertex (saddle point) that indicates how the saddle point
opens up above as illustrated in Fig. 4. We assume that the cross-section L′0 has
the induced orientation as the boundary of the oriented surface L′∩ (R3× (−∞, 0]).
The resulting oriented marked graph G is called a marked graph presenting L. A
diagram of G is called a marked graph diagram presenting L.

t=ǫ

t=−ǫ

t= 0

Figure 4: Marking of a vertex

Let D be a marked graph diagram and D0 the singular link diagram obtained
from D by removing all markers. Let V (D) = {v1, v2, . . . , vn} be the set of all
vertices of D. For each i (i = 1, . . . , n), consider four points v1i , v

2
i , v

3
i , and v

4
i on D

in a neighborhood of vi as in Fig. 5. We define

D+ =
[
D0 \

n
∪
i=1

( 4
∪
j=1
|vi, v

j
i |
)]
∪
[ n
∪
i=1

(
|v1i , v

2
i | ∪ |v

3
i , v

4
i |
)]
,

which is called the positive resolution of D, and

D− =
[
D0 \

n
∪
i=1

( 4
∪
j=1
|vi, v

j
i |
)]
∪
[ n
∪
i=1

(
|v1i , v

3
i | ∪ |v

2
i , v

4
i |
)]
,

the negative resolution of D, where |v,w| is the line segment connecting v and w.
When both resolutions D− and D+ are diagrams of trivial links, we say that D is
admissible.

When D is admissible, we construct a surface-link as follows (cf. [15],[24]). Let
L0 be a spatial graph in R

3 whose diagram is D0. Let wji and wi be the points

on L0 such that π(wji ) = vji and π(wi) = vi, respectively, where π : R
3 → R

2

is the projection (x, y, z) 7→ (x, y). For each t ∈ [0, 1], let wji (t) be the point

(1− t)wi + twji ∈ R
3.
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Figure 5: v1i , v
2
i , v

3
i , and v

4
i

For each t ∈ [0, 1], let L+
t and L−

t be links in R
3 defined by

L+
t =

[
L0 \

n
∪
i=1

( 4
∪
j=1
|wi, w

j
i (t)|

)]
∪
[ n
∪
i=1

(
|w1
i (t), w

2
i (t)| ∪ |w

3
i (t), w

4
i (t)|

)]
,

L−
t =

[
L0 \

n
∪
i=1

( 4
∪
j=1
|wi, w

j
i (t)|

)]
∪
[ n
∪
i=1

(
|w1
i (t), w

3
i (t)| ∪ |w

2
i (t), w

4
i (t)|

)]
.

Put L+ = L+
1 and L− = L−

1 . Then L+ and L− have diagrams D+ and D−,
respectively. Let B+

1 , . . . , B
+
µ be mutually disjoint 2-disks in R

3 with ∂(B+
1 ∪ · · · ∪

B+
µ ) = L+, and let B−

1 , . . . , B
−
λ be mutually disjoint 2-disks in R

3 with ∂(B−
1 ∪ · · ·∪

B−
λ ) = L−. Let F (D) be a surface-link in R

4 defined by

F (D) =(B−
1 ∪ · · · ∪B

−
λ )× {−2} ∪ L− × (−2,−1)

∪ (∪t∈[−1,0)L
−
−t × {t}) ∪ L0 × {0} ∪ (∪t∈(0,1]L

+
t × {t})

∪ L+ × (1, 2) ∪ (B+
1 ∪ · · · ∪B

+
µ )× {2}.

We say that F (D) is a surface-link associated with D. It is uniquely determined
from D up to equivalence (see [15]). A surface-link L is said to be presented by a
marked graph diagram D if L is equivalent to the surface-link F (D). Any surface-
link can be presented by an admissible marked graph diagram. Moreover, we have

Theorem 2.2 ([11],[13],[23]). Let L and L′ be two surface-links and let D and
D′ be marked graph diagrams presenting L and L′, respectively. Then L and L′

are equivalent if and only if D and D′ are transformed into each other by a finite
sequence of ambient isotopies of R2 and Yoshikawa moves.

In [1], S. Ashihara introduced a method of constructing a broken surface diagram
of a surface-link from its marked graph diagram. For our use below, we review his
construction. In what follows, by D → D′ we mean that a link diagram D′ is
obtained from a link diagram D by a single Reidemeister move Ri(1 ≤ i ≤ 3) shown
in Fig. 6 or an ambient isotopy of R2.

//oo

R1

//oo //oo

R2

//oo

R3

//oo

Figure 6: Reidemeister moves

LetD be an admissible marked graph diagram and letD+ andD− be the positive
and the negative resolutions of D, respectively. Since D+ is a diagram of a trivial
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link, there is a sequence of link diagrams from D+ to a trivial link diagram O related
by ambient isotopies of R2 and Reidemeister moves:

D+ = D1 → D2 → · · · → Dr = O.

For each i (i = 1, . . . , r−1), let {f
(i)
t }t∈I be a 1-parameter family of homeomorphisms

from R
3 to R

3 that satisfies

f
(i)
0 = id, f

(i)
1 (L(Di)) = L(Di+1),

where L(Di) denotes a link in R
3 whose diagram is Di (i = 1, . . . , r). Without loss

of generality, we may assume that L(D1) = L(D+) = L+ and the following two
conditions are satisfied.

• When the move Di → Di+1 is an ambient isotopy of R
2, let {h

(i)
t }t∈I be

an ambient isotopy of R
2 such that h

(i)
1 (Di) = Di+1. Then f

(i)
t satisfies

π(f
(i)
t (L(Di))) = h

(i)
t (π(L(Di))) = h

(i)
t (Di) for t ∈ I.

• When the move Di → Di+1 is a Reiedemeister move, let B(i) be a disk in
R
2 where the move is applied and let M(i) be the subset of B(i) × I ⊂ R

3

determined by π(M(i) ∩ (B(i) × {t})) = π(f
(i)
t (L(Di))) ∩ B(i) for t ∈ I. Then

M(i) is as shown in Fig. 7, 8, or 9.

Figure 7: M(i) for R1

Figure 8: M(i) for R2

Take real numbers t1, . . . , tr with 1 < t1 < · · · < tr < 2. For each i (i = 1, . . . , r−1),
we define a homeomorphism F (i) : R4(= R

3 × R)→ R
4 by

F (i)(x, t) =





(x, t) for t ≤ ti;

(f
(i)
φ(t)(x), t) for ti < t < ti+1;

(f
(i)
1 (x), t) for t ≥ ti+1

for all x ∈ R
3 and t ∈ R, where φ(t) = (t− ti)/(ti+1 − ti).
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Figure 9: M(i) for R3

Similarly, consider a sequence of link diagrams from D− to a trivial link diagram
O′ related by ambient isotopies of R2 and Reidemeister moves:

D− = D′
1 → D′

2 → · · · → D′
s = O′.

For each j (j = 1, . . . , s − 1), let {g
(j)
t }t∈I be a 1-parameter family of homeomor-

phisms from R
3 which satisfies

g
(j)
0 = id, g

(j)
1 (L(D′

j)) = L(D′
j+1).

Without loss of generality, we may assume that L(D′
1) = L(D−) = L− and the

following two conditions are satisfied.

• When the move D′
j → D′

j+1 is an ambient isotopy of R2, let {h′t
(j)}t∈I be

an ambient isotopy of R
2 such that h′1

(j)(D′
j) = D′

j+1. Then g
(j)
t satisfies

π(g
(j)
t (L(D′

j))) = h′t
(j)(π(L(D′

j))) for t ∈ I.

• When the move D′
j → D′

j+1 is a Reidemeister move, let B′
(j) be a disk in

R
2 where the move is applied and let M ′

(j) be the subset of B′
(j) × I ⊂ R

3

determined by π(M ′
(j) ∩ (B′

(j) × {t})) = π(g
(j)
t (L(D′

j))) ∩ B
′
(j) for t ∈ I. Then

M ′
(j) is as shown in Fig. 7, 8, or 9.

Take real numbers t′1, . . . , t
′
s with −1 > t′1 > · · · > t′s > −2. For each j (j =

1, . . . , s− 1), we define a homeomorphism G(j) : R4(= R
3 × R)→ R

4 by

G(j)(x, t) =





(x, t) (t ≥ t′j),

(g
(j)
ψ(t)(x), t) (t′j+1 < t < t′j),

(g
(j)
1 (x), t) (t ≤ t′j+1),

where ψ(t) = (t′j − t)/(t
′
j − t

′
j+1). Let

F ′ = (G(s−1) ◦G(s−2) ◦ · · · ◦G(1) ◦ F (r−1) ◦ F (r−2) ◦ · · · ◦ F (1))(F (D)).

Then F ′ is equivalent to F (D).
Let B1, . . . , Bµ be mutually disjoint 2-disks in R

3 such that ∂(B1 ∪ · · · ∪ Bµ) =
L(O) and π|B1∪···∪Bµ is an embedding. Let B′

1, . . . , B
′
λ be mutually disjoint 2-disks

in R
3 such that ∂(B′

1 ∪ · · · ∪B
′
λ) = L(O′) and π|B′

1∪···∪B
′

λ
is an embedding. Finally,

we define F to be the surface constructed as follows:

F = (B′
1 ∪ · · · ∪B

′
λ)× {−2} ∪ (F ′ ∩ (R3 × (−2, 2))) ∪ (B1 ∪ · · · ∪Bµ)× {2}.

It is in general position with respect to the projection q : R
4 → R

3 defined by
(x, y, z, t) 7→ (x, y, t). The broken surface diagram of F obtained from q(F ) is called
a broken surface diagram associated with the marked graph diagram D and denoted
by B(D).
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3 Quandles and biquandles

In this section we review the definitions and examples of quandles and biquandles.

Definition 3.1 ([9],[18]). A quandle is a nonempty set X with a binary operation
∗ : X ×X → X satisfying that

(Q1) For any x ∈ X, x ∗ x = x.

(Q2) There exists a binary operation ∗−1 : X ×X → X such that for any x, y ∈ X,
(x ∗ y) ∗−1y = x and (x ∗−1 y) ∗ y = x.

(Q3) For any x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

A rack is a set with a binary operation that satisfies (Q2) and (Q3).

Definition 3.2 ([8],[14]). A biquandle is a nonempty set X with two binary oper-
ations ⊲ : X ×X → X and ⊲ : X ×X → X satisfying the following axioms:

(B1) For any x ∈ X, x ⊲ x = x ⊲ x.

(B2) There exist two binary operations ⊲−1, ⊲−1 : X × X → X such that for any
x, y ∈ X, (x ⊲ y) ⊲−1y = x, (x ⊲ y) ⊲−1y = x, (x ⊲−1y) ⊲ y = x, and
(x ⊲−1y) ⊲ y = x.

(B3) The map H : X ×X → X ×X defined by (x, y) 7→ (y ⊲ x, x ⊲ y) is invertible.

(B4) For any x, y, z ∈ X,

(x ⊲ y) ⊲ (z ⊲ y) = (x ⊲ z) ⊲ (y ⊲ z),

(x ⊲ y) ⊲ (z ⊲ y) = (x ⊲ z) ⊲ (y ⊲ z),

(x ⊲ y) ⊲ (z ⊲ y) = (x ⊲ z) ⊲ (y ⊲ z).

A birack is a nonempty set X with two binary operations ⊲, ⊲ : X×X → X that
satisfies the axioms (B2), (B3) and (B4) above.

We remind that the biquandle axioms come from the oriented Reidemeister
moves. We divide a knot or link diagram D at every crossing point (considered as
a 4-valence vertex) to obtain a collection of semi-arcs. We think of elements of a
biquandle X as labels for the semi-arcs in D with different operations at positive
and negative crossings as illustrated in the top of Fig. 10. The axioms are then
transcriptions of a minimal set of oriented Reidemeister moves which are sufficient
to generate any other oriented Reidemeister move (cf. [21]). The axiom (B1) comes
from the Reidemeister move of type I as illustrated in Fig. 10. The axioms (B2) and
(B3) come from the direct and reverse Reidemeister moves of type II respectively as
illustrated in Fig. 10. The axiom (B4) comes from the oriented Reidemeister move
of type III with all positive crossings as illustrated in Fig. 11.

Example 3.3. Let (X, ∗) be a quandle. Define x ⊲ y = x ∗ y and x ⊲ y = x for all
x, y ∈ X. Then X is a biquandle. Any group G is a biquandle with x ⊲ y = y−nxy
and x ⊲ y = x as well as with x ⊲ y = x and x ⊲ y = y−nxy, where n ∈ Z.
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a
a

φ(a,a) φ(a,a)-1

ab

ab

a

b

a b

=
a

a

a

a

a

a
=

a

a

b b

φ(a,b)

φ(a,b)-1

b

b

b

b

b

b
φ(a,b)

φ(a,b)-1

b

b

b

φ(a, b) φ(a, b)−1

b

b

Figure 10: Reidemeister moves of Type I and II and biquandle axioms

ba a

b

(c ) ( b)

φ(a, b)

c

c c ( b) (c )

φ(b, c)
c

c

φ(a, c)

c
φ(b )

φ( c)

( c) ( c)

=(b ) (c )

b (c ) (b )

( c) ( c)c

Figure 11: Reidemeister move of Type III and biquandle axioms

A binary operation ∗ : X × X → X is trivial if a ∗ b = a for each a, b ∈ X. A
biquandle with trivial ⊲ (or ⊲) is really a quandle, which we call a quandle biquandle.
Otherwise, it is called a non-quandle biquandle.

Example 3.4. Let X be a module over a commutative ring R. Let s and t be
invertible elements of R. Define

x ⊲ y = t(x− y) + s−1y and x ⊲ y = s−1x.

Then X is a biquandle. In particular, any module over the two-variable Laurent
polynomial ring R = Z[t±1, s±1] is a biquandle, which is called an Alexander biquan-
dle (see [12, 14]).

Let X = {x1, x2, . . . , xn} be a finite biquandle. The matrix of X, denoted by
MX , is defined to be the block matrix:

MX =
[
M1 M2

]
,

where M1 = (m1
ij)1≤i,j≤n and M2 = (m2

ij)1≤i,j≤n are n× n matrices with entries in
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X given by

mk
ij =

{
xi ⊲ xj for k = 1,
xi ⊲ xj for k = 2.

Example 3.5. The Alexander biquandle X = Z4 = {0, 1, 2, 3} in Example 3.4
modulo 4 with s = 3 and t = 1 is a non-quandle biquandle with the biquandle
matrix:

MX =




3 1 3 1 3 3 3 3
0 2 0 2 2 2 2 2
1 3 1 3 1 1 1 1
2 0 2 0 0 0 0 0


 .

Let X and Y be biquandles. A function f : X → Y is called a biquandle homo-
morphism if f(x ⊲ y) = f(x) ⊲ f(y) and f(x ⊲ y) = f(x) ⊲ f(y) for any x, y ∈ X.
We denote the set of all biquandle homomorphisms from X to Y by Hom(X,Y ).
A bijective biquandle homomorphism is called a biquandle isomorphism. Two bi-
quandles X and Y are said to be isomorphic if there is a biquandle isomorphism
f : X → Y . In [19], S. Nelson and J. Vo classified biquandles of order 2, 3, and 4
up to biquandle isomorphism. There are 2 biquandles of order 2, 10 biquandles of
order 3, and 57 non-quandle biquandles of order 4.

4 Biquandle colorings of diagrams

Let D be a marked graph diagram and let C(D) and V (D) denote the set of all
crossings and marked vertices of D, respectively. By a semi-arc of D we mean a
connected component of D \ (C(D)∪V (D)). (At a crossing of D the under-arcs are
assumed to be cut.) Let S(D) denote the set of semi-arcs of D. Since D is oriented,
we assume that it is co-oriented: The co-orientation of a semi-arc of D satisfies that
the pair (orientation, co-orientation) matches the (right-handed) orientation of R2.
The co-orientation is also called the normal in this paper.

Note that at a crossing, if the pair of the co-orientation of the over-arc and that
of the under-arc matches the (right-handed) orientation of R2, then the crossing is
positive; otherwise it is negative. The crossing in (a) of Fig. 12 is positive and that
in (b) is negative.

Among the four quadrants around a crossing c, the unique quadrant from which
all co-orientations of the two arcs point outward is called the source region of c. The
regions labeled by R in (a) and (b) of Fig. 12 are source regions.

Definition 4.1. Let X be a biquandle and let D be a marked graph diagram.
A biquandle coloring of D by X, or simply biquandle X-coloring of D, is a map
C : S(D)→ X satisfying the following three conditions:

(1) For each positive crossing c, let s1, s2, s3 and s4 be the semi-arcs with co-
orientations as shown in (a) of Fig. 12. Then

C(s3) = C(s1) ⊲ C(s2) and C(s4) = C(s2) ⊲ C(s1).

(2) For each negative crossing c, let s1, s2, s3 and s4 be the semi-arcs with co-
orientations as shown in (b) of Fig. 12. Then

C(s3) = C(s1) ⊲ C(s2) and C(s4) = C(s2) ⊲ C(s1).
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(3) For each marked vertex v, let s1, s2, s3 and s4 be the semi-arcs of D as shown
in (c) or (d) of Fig. 12. Then C(s1) = C(s2) = C(s3) = C(s4).

❄❄
❄❄

❄❄
❄

❄❄❄❄❄❄❄

❄❄❄❄❄❄❄
��⑧⑧

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

��

❄❄
❄
y

s3

⑧⑧⑧q

s2 c

(a)

s1
s4

R

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄
��

⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧

��

❄❄
❄
y

s3

s1

s2 c

(b)

s4

R

⑧⑧⑧q

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

x

q

p

y s3

s1

s2

s4

v

(c)
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

q

x

y

p s3

s1

s2

s4

v

(d)

Figure 12: Labels of semi-arcs

In cases (1) and (2), s1 (or s2) is called the source semi-arc and s3 (or s4) is
called the target semi-arc at c. The biquandle element C(si) is called a color of the
semi-arc si. We denote by ColBX(D) the set of all biquandle X-colorings of D.

Let D be a marked graph diagram and let D̂ be the diagram obtained from
D by removing orientations of arcs and all crossings of D as depicted in Fig. 13.
(We do not remove marked vertices of D.) We label the connected components of
D̂ as b1, . . . , bn. Let C(D) = {c1, . . . , cm} be the set of all crossings of D and let
ǫi(1 ≤ i ≤ m) be the sign of the crossing ci. For each crossing ci ∈ C(D), if the
crossing ci has four adjacent connected components (they may not be distinct), say
bi1 , bi2 , bi3 , bi4 , we produce two relations r1ǫi(ci) and r

2
ǫi
(ci) depending on the crossing

sign ǫi = + or − as shown in Fig. 14.

Then the biquandle BQ(D) associated with D is defined by the biquandle with
a presentation:

PD =< b1, . . . , bn | r
1
ǫ1
(c1), r

2
ǫ1
(c1), . . . , r

1
ǫm

(cm), r
2
ǫm

(cm) > . (4.1)

It is noted that if D and D′ are two admissible marked graph diagrams presenting
the same surface-link L, then BQ(D) is isomorphic to BQ(D′) and hence BQ(D)
is an invariant of the surface-link L. The biquandle BQ(D) with a presentation in
(4.1) is called the fundamental biquandle of L and denoted by BQ(L) (cf. [1],[2]).
If D is a classical link diagram, then the biquandle BQ(D) with a presentation in
(4.1) is the fundamental biquandle of the classical link L in R

3 presented by D.

Now let B be a broken surface diagram of a surface-link L in R
4 and let S(B) be

the set of the semi-sheets in B. For a given finite biquandle X, we define a biquandle
coloring of B by X or a biquandle X-coloring of B to be a function C : S(B) → X
satisfying the following condition at each double point curve: At a double point
curve, two coordinate planes intersect locally and one is the under-sheet and the

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧��

❄❄❄❄❄❄
��

❄❄❄❄❄❄

D

⑧⑧⑧⑧⑧

⑧⑧⑧⑧

❄❄❄❄❄

❄❄❄❄❄

−→ ←−

D̂

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

��

⑧⑧
⑧⑧
⑧⑧

⑧⑧
⑧⑧
⑧⑧

��

D

Figure 13: Removing a crossing
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Figure 14: Relations at a crossing

other is the over-sheet. The under-sheet (resp. over-sheet) is broken into two semi-
sheets, say u1 and u2 (resp. o1 and o2). A normal of the under-sheet (resp. over-
sheet) points to one of the components, say o2 (resp. u2). If C(u1) = a and C(o1) = b,
then we require that C(u2) = a ⊲ b and C(o2) = b ⊲ a (see Fig. 15). The biquandle
element C(s) assigned to a semi-sheet s by a biquandle coloring is called a color of s.
Using biquandle axioms, it is easily checked that the above condition is compatible
at each triple point of B as illustrated in Fig. 15 (right). We denote by ColBX(B) the
set of all biquandle colorings of B by X.

o1

C(u1) = a, C(o ) =b, 1

C(u2) = a⊲b, and C(o2) = b⊲a.

u1

o2

u2

a

b

c

c

c

b

b

=
(c ) (b )
(c ) ( b)

c
c

=
( c) ( c)
( b) (c )

(b ) (c )
= ( c) ( c)

θ(a,b,c)

Figure 15: Biquandle colors at a double point curve and a triple point

Theorem 4.2 ([2]). Let L be a surface-link and let B and B′ be two broken surface
diagrams of L. Then for any finite biquandleX, there is a one-to-one correspondence
between ColBX(B) and ColBX(B

′).

Proof. By Theorem 2.2, it suffices to verify the assertion for the case that B′ is
obtained from B by a single Roseman move. Let E be an open 3-disk in R

3 where a
Roseman move under consideration is applied. Then B ∩ (R3 −E) = B′ ∩ (R3−E).
Now let C be a biquandle X-coloring of B. Using biquandle axioms of Definition
3.2 and Fig. 15, for each Roseman move, it is seen that the restriction of C to
B ∩ (R3 − E)(= B′ ∩ (R3 − E)) can be extended to a unique biquandle X-coloring
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C′ of B′ and conversely the restriction of the unique biquandle X-coloring C′ to
B′ ∩ (R3 − E) is extended to the biquandle X-coloring C of B. �

Theorem 4.3 ([1]). Let L be a surface-link and let D and B be a marked graph
diagram and a broken surface diagram presenting L, respectively. Then there
is a one-to-one correspondence between ColBX(D) and ColBX(B). Consequently,
♯ColBX(D) = ♯ColBX(B).

Proof. Let D be a marked graph diagram presenting a surface-link L in R
4. It

is direct by definition that there is a one-to-one correspondence between ColBX(D)
and Hom(BQ(D),X). By Theorem 4.2, we may assume that B is a broken surface
diagram B(D) associated with D defined in Section 2. Then by the same argument
as in [1] we see that there is a natural isomorphism from BQ(D) to the fundamen-
tal quandle BQ(B) of B. Since ColBX(D) is identified with Hom(BQ(D),X) and
ColBX(B) is identified with Hom(BQ(B),X), there is a bijection from ColBX(D) to
ColBX(B). �

We call the cardinal number ♯ColBX(L) the biquandle X-coloring number of L (see
Example 7.3). In particular, if D is a classical link diagram, i.e., a marked graph
diagram without marked vertices, then the biquandle X-coloring number ♯ColBX(D)
is an invariant of the link L in R

3 presented by D.

5 Biquandle (co)homology groups

Let X be a biquandle. For each positive integer n, let CBR
n (X) be the free abelian

group generated by n-tuples (x1, . . . , xn) of elements ofX. We assume that CBR
n (X) =

{0} for all n ≤ 0. Define a homomorphism ∂n : CBR
n (X)→ CBR

n−1(X) by

∂n(x1, . . . , xn) =
n∑

i=1

(−1)i[(x1, . . . , xi−1, xi+1, . . . , xn)

− (x1 ⊲ xi, . . . , xi−1 ⊲ xi, xi+1 ⊲ xi, . . . , xn ⊲ xi)]

for n ≥ 2 and ∂n = 0 for n ≤ 1. It is verified that for each integer n, ∂n−1∂n = 0.
Therefore CBR

∗ (X) = {CBR
n (X), ∂n} is a chain complex.

Let CBD
n (X) be the subset of CBR

n (X) generated by n-tuples (x1, . . . , xn) with
xi = xi+1 for some i ∈ {1, . . . , n − 1} if n ≥ 2; otherwise, let CBD

n (X) = 0. Then
∂n(C

BD
n (X)) ⊂ CBD

n−1(X) and CBD
∗ (X) = {CBD

n (X), ∂n} is a subcomplex of CBR
∗ (X).

Put CBQ
n (X) = CBR

n (X)/CBD
n (X) and CBQ

∗ (X) = {CBQ
n (X), ∂n}.

For an abelian group A, we define the biquandle chain and cochain complexes

CW
∗ (X;A) = CW

∗ (X)⊗A, ∂ = ∂ ⊗ id,

C∗
W(X;A) = Hom(CW

∗ (X), A), δ = Hom(∂, id)

in the usual way, where W = BR,BD,BQ.

Definition 5.1. The nth birack homology group and the nth birack cohomology
group of a birack (biquandle) X with coefficient group A are defined by

HBR
n (X;A) = Hn(C

BR
∗ (X;A)),Hn

BR(X;A) = Hn(C∗
BR(X;A)).
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The nth degeneration homology group and the nth degeneration cohomology group
of a biquandle X with coefficient group A are defined by

HBD
n (X;A) = Hn(C

BD
∗ (X;A)),Hn

BD(X;A) = Hn(C∗
BD(X;A)).

The nth biquandle homology group and the nth biquandle cohomology group of a
biquandle X with coefficient group A are defined by

HBQ
n (X;A) = Hn(C

BQ
∗ (X;A)),Hn

BQ(X;A) = Hn(C∗
BQ(X;A)).

The n-cycle group and n-boundary group (resp. n-cocycle group and n-coboundary
group) are denoted by ZBQ

n (X;A) andBBQ
n (X;A) (resp. ZnBQ(X;A) andBn

BQ(X;A)).
Then

HBQ
n (X;A) = ZBQ

n (X;A)/BBQ
n (X;A),Hn

BQ(X;A) = ZnBQ(X;A)/Bn
BQ(X;A).

We will omit the coefficient group A if A = Z as usual. The biquandle homology and
cohomology groups are also known as the Yang-Baxter homology and cohomology
groups (cf. [6]).

Lemma 5.2. A homomorphism φ : CBR
2 (X) → A is a 2-cocycle of the biquandle

cochain complex C∗
BQ(X;A) if and only if φ satisfies the following two conditions:

(i) φ(a, a) = 0 for all a ∈ X.

(ii) φ(b, c) + φ(a, b) + φ(a ⊲ b, c ⊲ b) = φ(a, c) + φ(b ⊲ a, c ⊲ a) + φ(a ⊲ c, b ⊲ c) for
all a, b, c ∈ X.

Proof. It follows from the definition by a direct calculation. �

The two conditions (i) and (ii) are called the biquandle 2-cocycle condition. A
homomorphism φ : CBR

2 (X)→ A or a map φ : X ×X → A satisfying the biquandle
2-cocycle condition is called a biquandle 2-cocycle.

Lemma 5.3. A homomorphism θ : CBR
3 (X) → A is a 3-cocycle of the biquandle

cochain complex C∗
BQ(X;A) if and only if θ satisfies the following two conditions:

(i) θ(a, a, b) = 0 and θ(a, b, b) = 0 for all a, b ∈ X.

(ii) θ(b, c, d) + θ(a, b, d) + θ(a ⊲ b, c ⊲ b, d ⊲ b) + θ(a ⊲ d, b ⊲ d, c ⊲ d) = θ(a, c, d) +
θ(a, b, c) + θ(b ⊲ a, c ⊲ a, d ⊲ a) + θ(a ⊲ c, b ⊲ c, d ⊲ c) for all a, b, c, d ∈ X.

Proof. It follows from the definition by a direct calculation. �

The two conditions (i) and (ii) are called the biquandle 3-cocycle condition. A
homomorphism θ : CBR

3 (X) → A or a map θ : X × X × X → A satisfying the
biquandle 3-cocycle condition is called a biquandle 3-cocycle.
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6 Biquandle cocycle invariants of surface-links

By using the cohomology theory of quandles, the quandle cocycle invariants are
defined for classical links and surface-links via link diagrams and broken surface
diagrams ([5]). These invariants are defined as state-sums over all quandle color-
ings of arcs and sheets by use of Boltzman weights that are evaluations of a fixed
cocycle at crossings and triple points in link diagrams and broken surface diagrams,
respectively. In [6], J. S. Carter, M. Elhamdadi and M. Saito introduced a homol-
ogy theory for the set-theoretic Yang-Baxter equations and used cocycles to define
invariants of (virtual) links via colorings of (virtual) link diagrams by biquandles
and a state-sum formulation. In this section, we first recall the biquandle cocycle
invariants of links and then develop biquandle cocycle invariants of surface-links
which is a generalization of quandle cocycle invariants of surface-links. We begin
with introducing biquandle cocycle invariants of links in the terminologies of this
paper.

Let X be a finite biquandle and let A be an abelian group written multiplica-
tively. Let φ be a biquandle 2-cocycle. Let D be a link diagram and let C be a
biquandle X-coloring of D. A (Boltzman) weight WB

φ (c, C) (associated with φ) at
a crossing c of D is defined as follows. Let u1 (resp. o1) be the semi-arc in the
under-arc (resp. over-arc) that intersects with the source region of the crossing c.
Let a = C(u1) and b = C(o1). Then we define WB

φ (c, C) = φ(a, b)ǫ(c) ∈ A, where
ǫ(c) = 1 or −1 if the sign of c is positive or negative, respectively. The state-sum or
partition function of D (associated with φ) is defined by the expression

ΦBφ (D;A) =
∑

C∈ColBX(D)

∏

c∈C(D)

WB
φ (c, C),

where the value of the state-sum ΦBφ (D;A) is in the group ring Z[A].

Theorem 6.1 ([6]). Let D be a diagram of a link L in R
3 and let φ be a biquandle

2-cocycle. The state-sum ΦBφ (D;A) of D (associated with φ) is an invariant of L.

(It is denoted by ΦBφ (L;A).) �

The state-sum invariant ΦBφ (L;A) is also called the biquandle cocycle invariant

of L. We say that the state-sum invariant ΦBφ (L;A) of a knot or link L is said to be
trivial if it is an integer. In this case, the integer is equal to the number of biquandle
X-colorings of a diagram D of L, i.e., ΦBφ (L;A) = ♯ColBX(D).

The following proposition shows that the state-sum invariant ΦBφ (L;A) depends
on the cohomology class of a biquandle 2-cocycle φ. It is verified by a similar
argument as in [5, Proposition 4.5] and we omit the proof.

Proposition 6.2. Let φ, φ′ ∈ Z2
BQ(X;A) be biquandle 2-cocycles. If ΦBφ and ΦBφ′

denote the state-sum invariants defined from cohomologous biquandle 2-cocycles φ
and φ′ (so that φ = φ′δψ for some biquandle 1-cochain ψ), then ΦBφ = ΦBφ′ (so that

ΦBφ (L;A) = ΦBφ′(L;A) for any oriented link L). In particular, the state-sum is trivial
if the 2-cocycle used for the Boltzman weight is a coboundary. �

Now let L be a surface-link in R
4 and let B be a broken surface diagram of L.

Let τ be a triple point of B intersecting three sheets that have relative positions
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top, middle, and bottom with respect to the projection direction of p : R4 → R
3.

The sign of the triple point τ is defined to be positive if the normals of top, middle,
bottom sheets in this order match the orientation of the 3-space R

3. Otherwise, the
sign of τ is defined to be negative. We use the right-handed rule convention for the
orientation of R3.

Fix a finite biquandle X, an abelian group A written multiplicatively, and a
biquandle 3-cocycle θ. Let R be the source region of a triple point τ in B, that is,
the octant from which all normal vectors of the three sheets point outwards. For a
given biquandle X-coloring C of B, let a, b and c be the colors of the bottom, middle
and top sheets, respectively, that bound the source region R. Set ǫ(τ) = 1 or −1
according as τ is positive or negative, respectively. The (Boltzman) weightWB

θ (τ, C)
at τ with respect to C is defined by

WB
θ (τ, C) = θ(a, b, c)ǫ(τ) ∈ A.

For example, see Fig. 15, where ǫ(τ) = 1.

Definition 6.3. Let B be a broken surface diagram of a surface-link and let θ be a
biquandle 3-cocycle. The state-sum or partition function of B (associated with θ) is
defined to be the sum

ΦBθ (B;A) =
∑

C∈ColBX(B)

∏

τ∈T (B)

WB
θ (τ, C),

where T (B) denotes the set of all triple points of B and the state-sum ΦBθ (B;A) is
an element of the group ring Z[A].

Theorem 6.4. Let L be a surface-link and let B be a broken surface diagram of L.
For a given biquandle 3-cocycle θ, the state-sum ΦBθ (B;A) is an invariant of L. (It
is denoted by ΦBθ (L;A).)

Proof. Suppose that B′ is a broken surface diagram obtained from B by a single
Roseman move. For each biquandle X-coloring C of B, let C′ be the corresponding
biquandle X-coloring of B′ as in the proof of Theorem 4.2. By Theorems 2.1 and
4.2, it suffices to prove that

∏
τ∈T (B)W

B
θ (τ, C) =

∏
τ∈T (B′)W

B
θ (τ, C

′). From Fig. 2, it
is immediate that the Roseman moves of type 1, 2, 3 and 4 involve no triple points.
For the Roseman move of type 5, the product of weights differ by θ(x1, x1, x2)

±1

or θ(x1, x2, x2)
±1 for some x1, x2 ∈ X. But it follows from Lemma 5.3 (i) that

θ(x1, x1, x2)
±1 = θ(x1, x2, x2)

±1 = 1 and hence the product of the weights are
unchanged. For the Roseman move of type 6, two triple points with the same
weights of opposite signs are involved and the product of the weights are canceled.
For the Roseman move of type 7, there are four involved triple points before and
after the move as illustrated in Figs. 16 and 17 in motion pictures (the tetrahedral
move). From Lemma 5.3 (ii), it is seen that the product of the weights are not
changed. �

In what follows we also call the state-sum invariant ΦBθ (L;A) the biquandle
cocycle invariant of L. The following proposition shows that ΦBθ (B;A) depends on
the cohomology class of a biquandle 3-cocycle θ and is proved by a similar argument
as in [5, Proposition 5.7].
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Figure 16: The tetrahedral move and a biquandle 3-cocycle condition (ii), LHS
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Proposition 6.5. Let B be a broken surface diagram of a surface-link L and let
θ and θ′ be two cohomologous biquandle 3-cocycles (so that θ = θ′δφ for some
biquandle 2-cochain φ). Then ΦBθ (B;A) = ΦBθ′(B;A) and consequently ΦBθ (L;A) =
ΦBθ′(L;A) for any surface-link L. In particular, if θ is a coboundary, then ΦBθ (L;A)
is trivial for all surface-link L, i.e., ΦBθ (L;A) = ♯ColBX(B). �

7 Biquandle cocycle invariants from marked graph dia-
grams

In this section we give an interpretation of the biquandle 3-cocycle invariants of
surface-links in terms of marked graph diagrams. Let D be a marked graph diagram
and let D+ be the positive resolution of D. Let D+ = D1 → D2 → · · · → Dr = O be
a sequence of link diagrams from D+ to a trivial link diagram O related by ambient
isotopies of R2 and Reidemeister moves. Let

I3+ = {i | Di → Di+1 is a Reidemeister move R3}.

For each i ∈ I3+, let B(i) be a 2-disk in R
2 where the move Di → Di+1 is applied.

Similarly, let D− be the negative resolution of D and let D− = D′
1 → D′

2 → · · · →
D′
s = O′ be a sequence of link diagrams from D− to a trivial link diagram O′ related

by ambient isotopies of R2 and Reidemeister moves. Let

I3− = {j | D′
j → D′

j+1 is a Reidemeister move R3}.

For each j ∈ I3−, let B
′
(j) be a 2-disk in R

2 where the move D′
j → D′

j+1 is applied.

Let i ∈ I3+ (resp., j ∈ I3−). We note that there exists a unique region in Di or
Di+1 (resp., D′

j or D
′
j+1) facing three semi-arcs (the bottom, middle, top semi-arcs)

such that all co-orientations of the semi-arcs point outward as depicted in Fig. 19
where the regions are shaded by the blue color. We call the (blue) region the source
region of the stage i (resp., j). We define two sign functions ǫtm and ǫb from the
disjoint union I3+∐ I

3
− to {±1} as follows: Let i ∈ I3+ (or i ∈ I3−, resp.) and let ci be

the crossing between the top arc and the two middle arcs in Di ∩B(i) (or D
′
i ∩B

′
(i),

resp.) and let nb be the co-orientation of the bottom arc. Define ǫtm(i) and ǫb(i)
for i ∈ I3+ ∐ I

3
− by

ǫtm(i) = sign(ci), (7.2)

ǫb(i) =

{
1 if nb points from ci,

−1 otherwise. (cf. Fig. 18.)
(7.3)

Let D be a marked graph diagram, let C : S(D)→ X a biquandle X-coloring of
D, and let θ be a biquandle 3-cocycle. Set i ∈ I3+ ∐ I

3
−. Let R be the source region

of the stage i. The (Boltzman) weight WB
θ (i, C) at i with respect to C is defined by

WB
θ (i, C) = θ(x1, x2, x3)

ǫtm(i)ǫb(i),

where x1, x2 and x3 are the colors of the bottom, middle and top semi-arcs facing
the source region R at the stage i, respectively, as depicted in Fig. 19.
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tm(i)
c 

c 

c 

c 

b(i) =−1b(i) =1

= 1

tm(i)

= −1

Figure 18: The sign functions ǫtm and ǫb

Definition 7.1. Let D be a marked graph diagram of a surface-link L. For a given
biquandle 3-cocycle θ, the state-sum or partition function of D (associated with θ)
is defined by

ΦBθ (D;A) =
∑

C∈ColBX(D)

(∏

i∈I3+

WB
θ (i, C)

∏

j∈I3
−

WB
θ (j, C)−1

)
.

Theorem 7.2. Let L be a surface-link and let D be a marked graph diagram of L.
Then for any biquandle 3-cocycle θ, ΦBθ (L;A) = ΦBθ (D;A).

Proof. Let B = B(D) be a broken surface diagram associated with D defined in
Section 2. By Theorem 6.4, it is sufficient to prove that ΦBθ (D) = ΦBθ (B). Since
there is a natural bijection between ColBX(D) and ColBX(B) (see Theorem 4.3), it
suffices to show the following claim.

Claim: For each biquandle X-coloring C ∈ ColBX(D),

∏

i∈I3+

WB
θ (i, C)

∏

j∈I3
−

WB
θ (j, C)−1 =

∏

τ∈T (B)

WB
θ (τ, C̃),

where C̃ ∈ ColBX(B), which corresponds to the biquandle X-coloring C.

Proof of Claim. Let Bij = B ∩ (R2 × [t′j, ti]) for i = 1, . . . , r and j = 1, . . . , s.

Let φ : (R2,D0) → (R2 × [t′1, t1],B
1
1) be the natural embedding at t = 0 as shown,

for example, in Fig. 20. The vertices of D0 correspond to the saddle points in B11
and the crossings of D0 correspond to the intersection of R2 × {0} and the double
point curves in B11. There are no triple points in B11.

Let Bi = B ∩ (R
2× [ti, ti+1]) for i = 1, . . . , r− 1 and B′j = B∩ (R

2× [t′j+1, t
′
j ]) for

j = 1, . . . , s − 1. Note that T (B) =
(
r−1
∪
i=1

T (Bi)
)
∪
(
s−1
∪
j=1

T (B′j)
)
, where T (·) stands

for the set of triple points.
If the move Di → Di+1 is an ambient isotopy of R2, then Di× [ti, ti+1] ∼= Bi, and

there are no triple points in Bi. Suppose that the move Di → Di+1 is a Reidemeister
move. Since Di \ B(i) and Di+1 \ B(i) are identical, there are no triple points in
Bi \M(i) and we have T (Bi) = T (M(i)), whereM(i) is a subset of B(i)×I determined
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Figure 19: Boltzman weight at i ∈ I3+ ∐ I
3
−

by π(M(i) ∩ (B(i) × {t})) = π(f
(i)
t (L(Di))) ∩ B(i) for t ∈ I and a homeomorphism

f
(i)
t : R3 → R

3 satisfying f
(i)
0 = id and f

(i)
1 (L(Di)) = L(Di+1). If the move Di →

Di+1 is of type R1 or R2, then there are no triple points in M(i). See Figs. 7 and
8. If the move Di → Di+1 is of type R3, then there is a triple point τi in M(i) as in

Fig. 21 and T (Bi) = {τi}. Then
r−1
∪
i=1

T (Bi) = {τi | i ∈ I
3
+}.

Similarly, suppose that the move D′
j → D′

j+1 is a Reidemeister move and M ′
(j)

is a subset of B′
(j)× I determined by π(M ′

(j) ∩ (B
′
(j)×{t})) = π(g

(j)
t (L(D′

j)))∩B
′
(j),

where g
(j)
t : R3 → R

3 is a homeomorphism satisfying g
(j)
0 = id and g

(j)
1 (L(D′

j)) =

L(D′
j+1) for t ∈ I. There is a triple point τ ′j ∈ M ′

(j) for j ∈ I3−. We have that
s−1
∪
j=1

T (B′j) = {τ
′
j | j ∈ I

3
−}. Now we have

T (B) = {τi | i ∈ I
3
+} ∪ {τ

′
j | j ∈ I

3
−}.
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>
>

> >

t1

t1

0

B1
1D0

φ

Figure 20: φ : (R2,D0)→ (R2 × [t′1, t1],B
1
1)

Let i ∈ I3+, i.e., Di → Di+1 is a Reidemeister move of type R3 and let τi be
the corresponding triple point in M(i). Let nb, nm and nt be the co-orientations of
the bottom, the middle and the top arcs of Di in B(i), respectively. By an ambient
isotopy, we deform M(i) in B(i)× I to the standard form of the neighborhood of the
triple point τi as in Fig. 21. Let n̄b, n̄m, and n̄t be the normal vectors corresponding
to nb, nm, and nt, respectively. Without loss of generality, we may assume n̄t = e1,
n̄m = ǫe2 and n̄b = ǫ′e3 for some ǫ, ǫ′ ∈ {1,−1}, where e1 = (1, 0, 0), e2 = (0, 1, 0)
and e3 = (0, 0, 1). See Fig. 21. Let ci be the crossing between the top and the middle
arcs in B(i). It is clear from Fig. 21 that ǫ = sign(ci). By (7.2), ǫ = sign(ci) = ǫtm(i).
Hence n̄m = ǫtm(i)e2. The sign ǫ′ depends on the co-orientation nb of the bottom
arc. If nb points from ci, then ǫ

′ = 1. If nb points toward ci, then ǫ
′ = −1. So, by

(7.3), ǫ′ = ǫb(i) and hence n̄b = ǫb(i)e3. On the other hand, by definition, the sign
ǫ(τi) of the triple point τi is positive if the co-orientations of the top, the middle
and the bottom sheets in this order match the given (right-handed) orientation of
R
3. Otherwise, the sign ǫ(τi) is negative. This gives

ǫ(τi) =

{
1 if (n̄t, n̄m, n̄b) ∈ A,

−1 if (n̄t, n̄m, n̄b) ∈ B,

whereA = {(e1, e2, e3), (e1,−e2,−e3)} andB = {(e1,−e2, e3), (e1, e2,−e3)}. There-
fore, for each i ∈ I3+,

ǫ(τi) = ǫtm(i)ǫb(i). (7.4)

Let j ∈ I3−, i.e., D
′
j → D′

j+1 is a Reidemeister move of type R3. Let τ ′j be the
corresponding triple point in M ′

(j). Let nb, nm and nt be the co-orientations of the

bottom, the middle and the top arcs of D′
j in B′

(j), respectively. By an ambient

isotopy, we deform M ′
(j) to the standard form of the neighborhood of the triple

point τ ′j . Let n̄b, n̄m, and n̄t be the co-orientations corresponding to nb, nm, and
nt, respectively. Without loss of generality, we may assume n̄t = e1, n̄m = ǫe2
and n̄b = ǫ′e3 for some ǫ, ǫ′ ∈ {1,−1}. Let cj be the crossing between the top
and the middle arcs in B′

(j). It is easily seen that ǫ = sign(cj) (cf. Fig. 21). By

(7.2), ǫ = sign(cj) = ǫtm(j). Hence n̄m = ǫtm(j)e2. The sign ǫ′ depends on the
co-orientation nb of the bottom arc. If nb points from cj , then ǫ

′ = −1. If nb points
toward cj , then ǫ

′ = 1. So, by (7.3), ǫ′ = −ǫb(j) and hence n̄b = −ǫb(j)e3. On the
other hand, by definition, ǫ(τ ′j) = 1 if n̄t, n̄m, and n̄b in this order match the given
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Figure 21: Reidemeister move R3 and corresponding triple point

(right-handed) orientation of R3. Otherwise, ǫ(τ ′j) = −1. This gives

ǫ(τ ′j) =

{
1 if (n̄t, n̄m, n̄b) ∈ B,

−1 if (n̄t, n̄m, n̄b) ∈ A.

Therefore, for each j ∈ I3−,

ǫ(τ ′j) = −ǫtm(j)ǫb(j). (7.5)

Now we will show that for each i ∈ I3+, W
B
θ (i, C) = WB

θ (τi, C) and that for
each j ∈ I3−, W

B
θ (j, C) = WB

θ (τ ′j , C)
−1. Let i ∈ I3+ (resp. j ∈ I3−). Let R be

the source region of the stage i (resp. j) facing the bottom, middle, top semi-arcs
with colors x1, x2, x3, respectively, by the coloring C as depicted in Fig. 19. For
simplicity, we denote M(i) (resp. M ′

(j)) by M and [ti, ti+1] (resp. [t′j+1, t
′
j ]) by I

in this proof below. The top (the middle) sheet in M corresponds to the top (the
middle) arc times I. As shown, for example, in Fig. 21, R × I is divided into two
(3-dimensional) regions by the bottom sheet and one of them is the source region,
say R, of the corresponding triple point τi (resp. τ

′
j). The colors x1, x2 and x3 of the

bottom, the middle and the top arc facing the source region R of the stage i (resp.
j) are the colors of the bottom, the middle and the top sheets facing R. From (7.4)
and (7.5), we have WB

θ (i, C) = θ(x1, x2, x3)
ǫtm(i)ǫb(i) = θ(x1, x2, x3)

ǫ(τi) = WB
θ (τi, C)

and WB
θ (j, C) = θ(x1, x2, x3)

ǫtm(j)ǫb(j) = θ(x1, x2, x3)
−ǫ(τ ′j) = WB

θ (τ ′j , C)
−1. This

completes the proof of Claim, and therefore the proof of Theorem 7.2. �
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Example 7.3. Let τ3(31) be the 3-twist-spun trefoil, which is presented by a marked
graph diagram D3 in Fig. 22.

c

( b) ( b)

b
d

d

( d) ( d)

( c) ( c)

c

a

b

d

c

a
bd

c

a

b

d

a

a

a
=

= c
b

=

b
b=

d
d=

c
c
=

Figure 22: A marked graph diagram D3 of the 3-twist-spun trefoil

Let X = {1, 2, 3, 4} be a non-quandle biquandle in [19] with the matrix:

MX =




1 4 2 3 1 1 1 1
2 3 1 4 3 3 3 3
3 2 4 1 4 4 4 4
4 1 3 2 2 2 2 2


 .

It follows from Fig. 22 that ColBX(D3) is identified with the set C of quadruples
(a, b, c, d) with a, b, c, d ∈ X, where C = {(1, 1, 1, 1), (1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3),
(2, 1, 4, 3), (2, 2, 2, 2), (2, 3, 1, 4), (2, 4, 3, 1), (3, 1, 2, 4), (3, 2, 4, 1), (3, 3, 3, 3), (3, 4, 1, 2),
(4, 1, 3, 2), (4, 2, 1, 3), (4, 3, 2, 1), (4, 4, 4, 4)}. This gives ♯ColBX(τ

3(31)) = 16. Let
θ = χ(1,4,1)χ(1,4,3)χ(2,4,1)χ(2,4,3)χ(3,2,1)χ(3,2,3)χ(4,2,1)χ(4,2,3), where χ(a,b,c)(x, y, z) is
defined to be t if (x, y, z) = (a, b, c) and 1 otherwise. Then it is seen that θ is a
biquandle 3-cocycle with the coefficients in Z2 =< t | t2 = 1 >.

To compute ΦBθ (τ
3(31);Z2), we consider two sequences L+(D3) = D1 → D2 →

· · · → D7 = O4 and L−(D3) = D′
1 → D′

2 → · · · → D′
6 = O4 depicted in Fig. 23.

From the sequences, B(D3) has 9 triple points. Let ia,1, ia,2 and ia,3 be the triple
points corresponding to the Reidemeister move R3 between the upper parts, lower
left parts, and lower right parts of Da and Da+1 for a = 2, 4, respectively. Let j3,1,
j3,2 and j3,3 be the triple points corresponding to the Reidemeister move R3 between
the upper parts, lower left parts, and lower right parts of D′

3 and D′
4, respectively,

as indicated in Fig. 23. Then I3+ = {i2,1, i2,2, i2,3, i4,1, i4,2, i4,3}, I
3
− = {j3,1, j3,2, j3,3}.

For the biquandle coloring C corresponding to (a, b, c, d), the (Boltzman) weights
are given by

WB
θ (i2,1, C) = θ(a, a, b), WB

θ (i2,2, C) = θ(a, a, c), WB
θ (i2,3, C) = θ(a, a, d),

WB
θ (i4,1, C) = θ(a, c, a), WB

θ (i4,2, C) = θ(a, d, a), WB
θ (i4,3, C) = θ(a, b, a),

WB
θ (j3,1, C) = θ(c, a, c), WB

θ (j3,2, C) = θ(d, a, d), WB
θ (j3,3, C) = θ(b, a, b).
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Figure 23: A sequence of link diagrams for two resolutions of D3
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Therefore

ΦBθ (τ
3(31);Z2) = ΦBθ (B(D3);Z2) =

∑

C∈ColBX(D3)

(∏

i∈I3+

WB
θ (i, C)

∏

j∈I3
−

WB
θ (j, C)−1

)

=
∑

(a,b,c,d)∈C

(
θ(a, a, b)θ(a, a, c)θ(a, a, d)θ(a, c, a)θ(a, d, a)

θ(a, b, a)θ(c, a, c)−1θ(d, a, d)−1θ(b, a, b)−1
)

= 4 + 12t ∈ Z[Z2].

8 Shadow biquandle cocycle invariants of surface-links

In [4], J. S. Carter, S. Kamada and M. Saito introduced the shadow quandle cocycle
invariants for classical links and surface-links (including more general cases) by using
the shadow cohomology theory of quandles, which are generalizations of quandle
cocycle invariants. These invariants for links and surface-links are defined as state-
sums over all quandle colorings of arcs and sheets together with particularly designed
region colorings by use of Boltzman weights that are evaluations of a fixed cocycle at
crossings of link diagrams and triple points of broken surface diagrams, respectively.
In [16], S. Y. Lee introduced state-sum invariants for certain equivalence classes of
cobordism surfaces in R

4 between links by using the shadow cohomology theory of
biquandles, which give shadow biquandle cocycle invariants for links as a special
case.

In this section we construct shadow biquandle cocycle invariants for surface-links.
We begin with reviewing the shadow biquandle (co)homology groups. Let X be a
biquandle. The associated group GX of X is the group with a group presentation:

〈a ∈ X | a · (b ⊲ a) = b · (a ⊲ b) for a, b ∈ X〉.

An X-set is a nonempty set Y with a right action of the associated group GX . We
denote by y ⊲ g the image of an element y ∈ Y by the action of g ∈ GX . Let
CBR
n (X)Y be the free abelian group generated by (n + 1)-tuples (y, x1, . . . , xn) for

n ≥ 0, where y ∈ Y and x1, . . . , xn ∈ X. For n < 0, we assume that CBR
n (X)Y = 0.

Define a homomorphism ∂n : CBR
n (X)Y → CBR

n−1(X)Y by

∂n(y, x1, . . . , xn) =
n∑

i=1

(−1)i[(y, x1, . . . , xi−1, xi+1, . . . , xn)

− (y ⊲ xi, x1 ⊲ xi, . . . , xi−1 ⊲ xi, xi+1 ⊲ xi, . . . , xn ⊲ xi)] (8.6)

for n ≥ 2 and ∂n = 0 for n ≤ 1. Then we see that CBR
∗ (X)Y = {CBR

n (X)Y , ∂n} is a
chain complex.

Let CBD
n (X)Y be the subset of CBR

n (X)Y generated by (y, x1, . . . , xn) with xi =
xi+1 for some i ∈ {1, . . . , n − 1} if n ≥ 2; otherwise, let CBD

n (X)Y = 0. If X is a
biquandle, then ∂n(C

BD
n (X)Y ) ⊂ CBD

n−1(X)Y and CBD
∗ (X)Y = {CBD

n (X)Y , ∂n} is a

subcomplex of CBR
∗ (X)Y . Put C

BQ
n (X)Y = CBR

n (X)Y /C
BD
n (X)Y and CBQ

∗ (X)Y =
{CBQ

n (X)Y , ∂n}.
For an abelian group A, we define the chain and cochain complexes
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CW
∗ (X;A)Y = CW

∗ (X)Y ⊗A, ∂ = ∂ ⊗ id,

C∗
W(X;A)Y = Hom(CW

∗ (X)Y , A), δ = Hom(∂, id)

in the usual way, where W = BR,BD,BQ.

Definition 8.1. The nth shadow birack homology group and the nth shadow birack
cohomology group of a birack/biquandle X with coefficient group A are defined by

HBR
n (X;A)Y = Hn(C

BR
∗ (X;A)Y ),H

n
BR(X;A)Y = Hn(C∗

BR(X;A)Y ).

The nth shadow degeneration homology group and the nth shadow degeneration
cohomology group of a biquandle X with coefficient group A are defined by

HBD
n (X;A)Y = Hn(C

BD
∗ (X;A)Y ),H

n
BD(X;A)Y = Hn(C∗

BD(X;A)Y ).

The nth shadow biquandle homology group and the nth shadow biquandle cohomology
group of a biquandle X with coefficient group A are defined by

HBQ
n (X;A)Y = Hn(C

BQ
∗ (X;A)Y ),H

n
BQ(X;A) = Hn(C∗

BQ(X;A)Y ).

The shadow n-cycle and n-boundary groups (resp. the shadow n-cocycle and n-
coboundary groups) are denoted by ZW

n (X;A)Y and BW
n (X;A)Y (resp. ZnW(X;A)Y

and Bn
W(X;A)Y ), so that

HW
n (X;A)Y = ZW

n (X;A)Y /B
W
n (X;A)Y ,

Hn
W(X;A)Y = ZnW(X;A)Y /B

n
W(X;A)Y ,

where W is one of BR,BD,BQ. We will omit the coefficient group A if A = Z.

Lemma 8.2. Let X be a finite biquandle and let Y be a nonempty X-set. A
homomorphism θ : CBR

3 (X)Y → A is a 3-cocycle of the shadow biquandle cochain
complex C∗

BQ(X;A)Y if and only if θ satisfies the following two conditions:

(i) θ(y, a, a, b) = 0 and θ(y, a, b, b) = 0 for all y ∈ Y and a, b ∈ X.

(ii) θ(y, b, c, d)+θ(y, a, b, d)+θ(y ⊲ b, a ⊲ b, c ⊲ b, d ⊲ b)+θ(y ⊲ d, a ⊲ d, b ⊲ d, c ⊲ d)
= θ(y, a, c, d)+θ(y, a, b, c)+θ(y ⊲ a, b ⊲ a, c ⊲ a, d ⊲ a)+θ(y ⊲ c, a ⊲ c, b ⊲ c, d ⊲ c)
for all y ∈ Y and a, b, c, d ∈ X.

Proof. Suppose that θ ∈ Z3
BQ(X;A)Y . Then θ(C

BD
3 (X)Y ) = 0 and δ(θ) = θ◦∂4 = 0.

Since (y, a, a, b), (y, a, b, b) ∈ CBD
3 (X)Y for all y ∈ Y and a, b ∈ X, we obtain the

condition (i). For every y ∈ Y and a, b, c, d ∈ X, (y, a, b, c, d) ∈ CBR
4 (X)Y and hence

(θ ◦ ∂4)((y, a, b, c, d)) = 0. From (8.6), we have

∂4(y, a, b, c, d) = (y, b, c, d) − (y, a, c, d) + (y, a, b, d) − (y, a, b, c)

− (y ⊲ a, b ⊲ a, c ⊲ a, d ⊲ a) + (y ⊲ b, a ⊲ b, c ⊲ b, d ⊲ b)

− (y ⊲ c, a ⊲ c, b ⊲ c, d ⊲ c) + (y ⊲ d, a ⊲ d, b ⊲ d, c ⊲ d).

(8.7)

By takng θ on both sides of (8.7), we have the condition (ii).
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Conversely, suppose that a homomorphism θ : CBR
3 (X)Y → A satisfies the two

conditions (i) and (ii). Since CBD
3 (X)Y is generated by the elements (y, a, a, b)

and (y, a, b, b) for y ∈ Y and a, b ∈ X, it is direct from the condition (i) that
θ(CBD

3 (X)Y ) = 0. Now for every (y, a, b, c, d) ∈ Y × X4, it is easily seen from
(8.7) and the condition (ii) that (θ ◦ ∂4)((y, a, b, c, d)) = 0. Since CBR

4 (X)Y is
generated by the elements (y, a, b, c, d) ∈ Y × X4, we see that δ(θ)(CBR

4 (X)Y ) =
(θ ◦ ∂4)(C

BR
4 (X)Y ) = 0, i.e., δ(θ) = 0. This implies that θ ∈ Z3

BQ(X;A)Y . �

The two conditions (i) and (ii) in Lemma 8.2 are called the shadow biquandle
3-cocycle condition. A homomorphism θ : CBR

3 (X)Y → A or a map θ : Y ×X3 → A
satisfying the shadow biquandle 3-cocycle condition is called a shadow biquandle
3-cocycle.

Let X be a finite biquandle and let Y be a nonempty X-set. Let B be a broken
surface diagram and let R(B) be the set of the complementary regions of B in R

3.
For a biquandle X-coloring C : S(B) → X of B, a shadow biquandle coloring of B
(extending a given biquandle coloring C) by (X,Y ) or simply a shadow biquandle
(X,Y )-coloring of B is a map C̃ : S(B) ∪R(B)→ X ∪ Y satisfying the conditions:

• C̃(S(B)) ⊂ X and C̃(R(B)) ⊂ Y .

• The restriction of C̃ to S(B) is a given biquandle X-coloring C.

• If two adjacent regions f1 and f2 are separated by a semi-sheet e and the co-
orientation of e points from f1 to f2, then C̃(f2) = C̃(f1) ⊲ C̃(e) (see Fig. 24).

We denote by ColSB(X,Y )(B) the set of all shadow biquandle (X,Y )-colorings of B.
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(c ) (b )
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( c) ( c)
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Figure 24: Shadow colors at a double point curve and a triple point

Theorem 8.3. Let L be a surface-link and let B and B′ be two broken surface
diagrams of L. Then for any finite biquandle X and a nonempty X-set Y , there is
a one-to-one correspondence between ColSB(X,Y )(B) and ColSB(X,Y )(B

′). Consequently,

the cardinal number ♯ColSB(X,Y )(B) is an invariant of L.

Proof. By Theorem 2.1, it suffices to prove the assertion for the case that B′ is
obtained from B by a single Roseman move. Let E be an open 3-disk in R

3 where a
Roseman move under consideration is applied. Then B ∩ (R3 −E) = B′ ∩ (R3−E).
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Now let C be a shadow biquandle (X,Y )-coloring of B. Using biquandle axioms of
Definition 3.2, the definition of anX-set and Fig. 24, it is seen that for each Roseman
move, the restriction of C to B∩(R3−E)(= B′∩(R3−E)) can be uniquely extended
to a biquandle (X,Y )-coloring C′ of B′, and conversely the restriction of the unique
biquandle (X,Y )-coloring C′ to B′ ∩ (R3 − E) is extended to the biquandle (X,Y )-
coloring C. �

We call the cardinal number ♯ColSB(X,Y )(B) the shadow biquandle (X,Y )-coloring

number of L and denote it by ♯ColSB(X,Y )(L).

Let θ be a shadow biquandle 3-cocycle and let C̃ be a shadow biquandle (X,Y )-
coloring of a broken surface diagram B. Let R be the source region of a triple point
τ of B. If x is the color of the source region R and a, b and c are the colors of
the bottom, middle and top semi-arcs facing R, respectively, as depicted in Fig. 24.
Then we define the shadow Boltzman weight W SB

θ (τ, C̃) at τ with respect to C̃ by

W SB
θ (τ, C̃) = θ(x, a, b, c)ǫ(τ).

Definition 8.4. Let θ be a shadow biquandle 3-cocycle. The shadow state-sum
or shadow partition function (associated with θ) of a broken surface diagram B is
defined by

ΦSB
θ (B;A) =

∑

C̃∈ColSBX (B)Y

∏

τ∈T (B)

W SB
θ (τ, C̃) ∈ Z[A].

Theorem 8.5. Let L be a surface-link and let B be a broken surface diagram of L.
For any given shadow biquandle 3-cocycle θ, the shadow state-sum ΦSB

θ (B;A) is an
invariant of L. (It is denoted by ΦSB

θ (L;A).)

Proof. Suppose that B′ is a broken surface diagram obtained from B by a single
Roseman move. For each shadow biquandle (X,Y )-coloring C̃ of B, let C̃′ be the
corresponding shadow biquandle (X,Y )-coloring of B′ as in the proof of Theorem
8.3. It suffices to verify that

∏
τ∈T (B)W

SB
θ (τ, C̃) =

∏
τ∈T (B′)W

SB
θ (τ, C̃′). It is direct

from Fig. 2 that the Roseman moves of type 1, 2, 3 and 4 involve no triple points.
For the Roseman move of type 5, the product of weights differ by φ(y, x1, x1, x2)

±1

or φ(y, x1, x2, x2)
±1 for some y ∈ Y and x1, x2 ∈ X and it is immediate from

Lemma 8.2 (i) that φ(y, x1, x1, x2)
±1 = φ(y, x1, x2, x2)

±1 = 1. Hence the product
of the weights are not changed. For the Roseman move of type 6, two triple points
with the same weights of opposite signs are involved and the product of the weights
are cancelled. For the Roseman move of type 7, there are four involved triple points
before and after the move as illustrated in Figs. 25 and 26 in motion pictures (the
tetrahedral move). From Lemma 8.2 (ii), we see that the product of the weights are
unchanged. �

By a similar argument as in the proof of [5, Proposition 5.7], it is verified that
if ΦSB

θ and ΦSB
θ′ are the shadow state-sum invariants defined from cohomologous

shadow biquandle cocycles θ and θ′ (so that θ = θ′δφ for some shadow 2-cochain
φ), then ΦSB

θ (L) = ΦSB
θ′ (L) for any surface-link L. In particular, if θ is a shadow

coboundary, then ΦSB
θ (L) is trivial for all surface-link L.
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Figure 25: The tetrahedral move and shadow biquandle 3-cocycle condition (ii),
LHS
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9 Shadow biquandle cocycle invariants from marked graph
diagrams

In this section we introduce a method of computing shadow biquandle 3-cocycle
invariants of surface-links from marked graph diagrams.

Definition 9.1. Let X be a finite biquandle and let Y be a nonempty X-set.
Let D be a marked graph diagram in R

2 with co-orientation, R(D) the set of the
complementary regions of D in R

2, and let C be a biquandle X-coloring of D. A
shadow biquandle coloring of D by (X,Y ) or a shadow biquandle (X,Y )-coloring
of D (extending C) is a map C̃ : S(D) ∪ R(D) → X ∪ Y satisfying the following
conditions (1), (2), and (3):

(1) C̃(S(D)) ⊂ X and C̃(R(D)) ⊂ Y.

(2) The restriction of C̃ to S(D) is a given biquandle X-coloring C.

(3) If two adjacent regions f1 and f2 are separated by a semi-arc e and the co-
orientation of e points from f1 to f2, then C̃(f2) = C̃(f1) ⊲ C̃(e) (see Fig. 27).
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f f

a a

a

a a
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x

a

a a

a

a a

x

x

21

Figure 27: Colorings of regions

We denote by ColSB(X,Y )(D) the set of all shadow biquandle (X,Y )-colorings of
D.

Theorem 9.2. Let L be a surface-link and let D and B be a marked graph di-
agram and a broken surface diagram presenting L, respectively. Then there is a
one-to-one correspondence between ColSB(X,Y )(D) and ColSB(X,Y )(B). Consequently,

♯ColSB(X,Y )(B) = ♯ColSB(X,Y )(D).

Proof. By Theorem 8.3, we may assume that B is a broken surface diagram B(D)
associated with D defined in Section 2. Let C̃ be a shadow biquandle (X,Y )-
coloring of B. Then the 0-level cross-section with colors inherited from C̃ is a shadow
biquandle (X,Y )-coloring of D. This gives a map from ColSB(X,Y )(B) to ColSB(X,Y )(D).
Conversely, using the same argument as in [1], we obtain the inverse map from
ColSB(X,Y )(D) to ColSB(X,Y )(B). �

Let D be a marked graph diagram and let D+ and D− be the positive and
negative resolution of D, respectively. Let D+ = D1 → D2 → · · · → Dr = O and
D− = D′

1 → D′
2 → · · · → D′

s = O′ be sequences of link diagrams from D+ and D−
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to trivial link diagrams O and O′, respectively, related by ambient isotopies of R2

and Reidemeister moves. Let I3+, I
3
−, ǫtm(i) and ǫb(i) be the same as in Section 7.

Let C̃ : S(D) ∪R(D)→ X ∪ Y be a shadow biquandle (X,Y )-coloring of D and let
θ be a shadow biquandle 3-cocycle. Let i ∈ I3+ ∐ I

3
− and let R be the source region

of the stage i. The shadow (Boltzman) weight W SB
θ (i, C̃) at i with respect to C̃ is

defined by

W SB
θ (i, C̃) = θ(y, x1, x2, x3)

ǫtm(i)ǫb(i),

where y is the color of the source region R and x1, x2 and x3 are the colors of the
bottom, middle and top semi-arcs facing R at the stage i, respectively, as illustrated
in Fig. 28.
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Figure 28: Shadow Boltzman weight at i ∈ I3+ ∐ I
3
−

Definition 9.3. Let D be a marked graph diagram. The shadow state-sum or
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shadow partition function of D (associated with θ) is defined by

ΦSB
θ (D;A) =

∑

C̃∈ColSB(X,Y )(D)

(∏

i∈I3+

W SB
θ (i, C̃)

∏

j∈I3
−

W SB
θ (j, C̃)−1

)
.

Theorem 9.4. Let L be a surface-link and let D be a marked graph diagram of L.
Then for any shadow biquandle 3-cocycle θ, ΦSB

θ (L;A) = ΦSB
θ (D;A).

Proof. By the same argument as the proof of Theorem 7.2, the assertion follows. �
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