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ABSTRACT

We characterize the first Alexander Z[Z]-modules of ribbon surface-links in
the 4-sphere fixing the number of components and the total genus, and then the
first Alexander Z[Z]-modules of surface-links in the 4-sphere fixing the number
of components. Using the result of ribbon torus-links, we also characterize the
first Alexander Z[Z]-modules of virtual links fixing the number of components.
For a general surface-link, an estimate of the total genus is given in terms
of the first Alexander Z[Z]-module. We show a graded structure on the first
Alexander Z[Z]-modules of all surface-links and then a graded structure on
the first Alexander Z[Z]-modules of classical links, surface-links and higher-
dimensional manifold-links.
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1. The first Alexander Z[Z]-module of a surface-link

For every non-negative partition g = g1 + g2 + ... + gr of a non-negative integer
g, we consider a closed oriented 2-manifold F = F r

g = F r
g1,g2,...,gr

with r components
Fi (i = 1, 2, ..., r) such that the genus g(Fi) of Fi is gi. The integer g is called the
total genus of F and denoted by g(F ). An F -link L is the ambient isotopy class of a
locally-flatly embedded image of F into S4, and for r = 1 it is also called an F -knot.
The exterior of L is the compact 4-manifold E = S4\intN(L), where N(L) denotes
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the tubular neighborhood of L in S4. Let p : Ẽ → E　 be the infinite cyclic covering
associated with the epimorphism γ : H1(E) → Z sending every oriented meridian of L
in H1(E) to 1 ∈ Z. An F -link L is trivial if L is the boundary of the union of disjoint
handlebodies embedded locally-flatly in S4. A ribbon F -link is an F -link obtained
from a trivial F r

0 -link by surgeries along embedded 1-handles in S4(see [9, p.52]).
When we put the trivial F r

0 -link in the equatorial 3-sphere S3 ⊂ S4, we can replace
the 1-handles by mutually disjoint 1-handles embedded in the 3-sphere S3 without
changing the ambient isotopy class of the ribbon F -link by an argument of [9, Lemma
4.11] using a result of [2, Lemma 1.4]. Thus, every ribbon F -link is described by a
disk-arc presentation consisting of oriented disks and arcs intersecting the interiors of
the disks transversely in S3 (see Fig. 1 for an illustration), where the oriented disks
and the arcs represent the oriented trivial 2-spheres and the 1-handles, respectively.
Let Λ = Z[Z ] = Z[t, t−1] be the integral Laurent polynomial ring. The homology

Figure 1: A ribbon F 2
1,1-link

H∗(Ẽ) is a finitely generated Λ-module. Specially, the first homology H1(Ẽ) is called
the first Alexander Z[Z ]-module, or simply the module of an F -link L and denoted
by M(L). In this paper, we discuss the following problem:

Problem 1.1. Characterize the modules M(L) of F r
g -links L in a topologically

meaningful class.

In §2, we discuss some homological properties of F r
g -links. Fixing r and g, we

shall solve Problem 1.1 for the class of ribbon F r
g -links in §3. We also solve Problem

1.1 for the class of all F r
g -links not fixing g as a collorary of the ribbon case in §3.

In §4, we characterize the first Alexander Z[Z ]-modules of virtual links by using the
characterization of ribbon F r

1,1,...,1-links. In §5, we show a graded structure on the
first Alexander Z[Z ]-modules of all F r

g -links by establishing an estimate of the total
genus g in terms of the first Alexander Z[Z ]-module of an F r

g -link. In fact, we show
that there is the first Alexander Z[Z ]-module of an F r

g+1-link which is not the first
Alexander Z[Z ]-module of any F r

g -link for every r and g. In §6, we show a graded
structure on the first Alexander Z[Z ]-modules of classical links, surface-links and
higher-dimensional manifold-links.

2



This paper is a research announcement of the author’s paper “The first Alexan-
der Z[Z]-modules of surface-links and of virtual links”(cf. http://www.sci.osaka-
cu.ac.jp/ kawauchi/index.html), which will appear elsewhere.

2. Some homological properties on surface-links

The following computation on the homology H∗(E) of the exterior E of an F r
g -link

L is done by using the Alexander duality for (S4, L):

Lemma 2.1.

Hd(E) =




Zr−1 (d = 3)

Z2g (d = 2)

Zr (d = 1)

Z (d = 0)

0 (d �= 0, 1, 2, 3).

For a finitely generated Λ-module M , let TM be the Λ-torsion part, and BM =
M/TM the Λ-torsion-free part. Let

DM = {x ∈ M |∃fi ∈ Λ(i = 1, 2, ..., s(� 2)) with (f1, ..., fs) = 1 and fix = 0},
which is the maximal finite Λ-submodule of M (cf. [4]). Let TM = TorΛM and
TDM = TM/DM. Let EqM = Extq

Λ(M, Λ). The following proposition is more or
less known (see J. Levine [11] for Sn-knot modules and [4] in the general):

Proposition 2.2. We have the following properties (1)-(5) on a finitely generated
Λ-module.
(1) E0M = homΛ(M, Λ) = Λβ(M ),
(2) E1M = E2M = 0 if and only if M is Λ-free,
(3) there are natural Λ-exact sequences 0 → E1BM → E1M → E1TM → 0 and
0 → BM → E0E0BM → E2E1BM → 0,
(4) E1BM = DE1M ,
(5) E1TM = homΛ(TM,Q(Λ)/Λ) and E2M = E2DM = homZ(DM,Q/Z).

Let β(M) be the Λ-rank of the module M , namely the Q(Λ)-dimension of the
Q(Λ)-vector space M ⊗Λ Q(Λ), where Q(Λ) denotes the quotient field of Λ. The
dth Λ-rank of an F r

g -link L is the number βd(L) = β(Hd(Ẽ)). We call the integer
τ (L) = r − 1 − β1(L) the torsion-corank of L, which shown to be non-negative in
Lemma 2.5. We use the following notion:

Definition 2.3. A finitely generated Λ-module M is a cokernel-free Λ-module of
corank n if there is an isomorphism M/(t − 1)M ∼= Zn as abelian groups.
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The corank n of M is denoted by cr(M). We shall show in Corollary 3.3 that
a Λ-module M is a cokernel-free Λ-module of corank n if and only if there is an
F n+1

g -link L for some g such that M(L) = M . The following lemma implies that
the cokernel-free Λ-modules appear naturally in the homology of an infinite cyclic
covering:

Lemma 2.4. Let p : X̃ → X be an infinite cyclic covering over a finite complex
X. If Hd(X) is free abelian, then the Λ-modules Hd(X̃), THd(X̃) and TDHd(X̃) are
cokernel-free Λ-modules.

From Lemmas 2.1 and 2.4, we see that the Λ-modules H∗(Ẽ), TH∗(Ẽ) and
TDH∗(Ẽ) are all cokernel-free Λ-modules for every F r

g -link L. On these Λ-modules,

we make the following calculations by using the dualities on the homology H∗(Ẽ) in
[4]:

Lemma 2.5.
(1) β1(L) = β3(L) � r − 1 and β2(L) = 2(g − τ (L)),

(2) Hd(Ẽ) = 0 for d �= 0, 1, 2, 3, H0(Ẽ) ∼= Λ/(t − 1)Λ and H3(Ẽ) ∼= Λβ1(L),
(3) cr(M(L)) = r − 1 and cr(TM(L)) = cr(TDM(L)) = τ (L),

(4) cr(H2(Ẽ)) = 2g − τ (L) and cr(TH2(Ẽ)) = cr(TDH2(Ẽ)) = τ (L).

The following corollary is direct from Lemma 2.5.

Corollary 2.6. An F r
g -link L has β∗(L) = 0 if and only if β1(L) = 0 and g = r − 1.

3. Characterizing the first Alexander Z[Z]-modules of ribbon surface-links

For a finitely generated Λ-module M , let e(M) be the minimal number of Λ-
generators of M . The following estimate is given by [14] and [6] for the case r = 1
where we have τ (L) = 0:

Lemma 3.1. If L is a ribbon F r
g -link, then we have

g � e(E2M(L)) + τ (L).

For proof, we use a standard Seifert hypersurface for a ribbon F r
g -link in [9]. The

following theorem is our first theorem, showing that the estimate of Lemma 3.1 is
best possible.

Theorem 3.2. A finitely generated Λ-module M is the module M(L) of a ribbon
F r

g -link L if and only if M is a cokernel-free Λ-module of corank r − 1 and g �
e(E2M)+τ (M). Further, if a non-negative partition g = g1 +g2+ ...+gr is arbitrarily
given, then we can take a ribbon F r

g -link L with g(Fi) = gi for all i.
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For proof, we use an algorithm of A. Pizer [12] to produce a Wirtinger presentation
of a group from a given Λ-matrix and T. Yajima’s construction of a ribbon surface-
link in [16] from a given Wirtinger presentation as well as Lemmas 2.5 and 3.1. The
following corollary is direct from Lemmas 2.4, 2.5 and Theorem 3.2.

Corollary 3.3. A finitely generated Λ-module M is a cokernel-free Λ-module of
corank n if and only if there is an F n+1

g -link L with M(L) = M for some g.

The following corollary gives a characterization of the modules M(L) of ribbon
F n+1

g -links L with β∗(L) = 0.

Crollary 3.4. A cokernel-free Λ-module M of corank n is the module M(L) of a
ribbon F n+1

g -link L with β∗(L) = 0 (in this case, we have necessarily g = n) if and
only if β(M) = 0 and DM = 0.

Here are two examples which are not covered by Corollary 3.4.

Example 3.5. For a cokernel-free Λ-module M of corank n with β(M) = 0 (so that
τ (M) = n) and DM = 0, we have the following examples (1) and (2).

(1) Let M ′ = M ⊕ Λ/(t + 1, a) for an odd a � 3. Since E2M ′ ∼= Λ/(t + 1, a) �= 0, the
Λ-module M ′ is not the module M(L) of a ribbon F n+1

g -link L with β∗(L) = 0. On
the other hand, Λ/(t + 1, a) is wel-known to be the module of a non-ribbon F 1

0 -knot
K (for example, the 2-twist-spun knot of the 2-bridge knot of type (a, 1)) and M is
the module M(L) of a ribbon F n+1

n -link L with β∗(L) = 0 by Corollary 3.4. Hence
M ′ is the module M(L′) of a non-ribbon F n+1

n -link L′ (taking a connected sum L#K)
with β∗(L′) = 0.
(2) Let M ′′ = M ⊕ Λ/(2t − 1, a) for an odd a � 5. Although M ′′ is cokernel-
free of corank n and β(M ′′) = 0, we can show that M ′′ is not the module M(L)
of any F n+1

g -link L with β∗(L) = 0 by the second duality of [4]. On the other

hand, there is a ribbon F n+1
n+1 -link L′′ with M(L′′) = M ′′ by Theorem 3.2, because

e(E2M ′′) = e(Λ/(2t − 1, a)) = 1 and hence e(E2M ′′) + τ (M ′′) = 1 + n. In this case,
we have β2(L

′′) = 2 by Lemma 2.5.

4. A characterization of the first Alexander Z[Z]-modules of virtual links

The notion of virtual links was introduced by L. H. Kauffman [3]. A virtual r-
link diagram is a diagram D of immersed oriented r loops in S2 with two kinds of
crossing points given in Fig. 2, where the left or right crossing point is called a real
or virtual crossing point, respectively. A virtual r-link � is the equivalence class of
virtual r-link diagrams D under the local moves given in Fig. 3 which are called R-
moves for the first three local moves and virtual R-moves for the other local moves.
A virtual r-link is called a classical r-link if it is represented by a virtual link diagram
without virtual crossing points. The group π(�) of a virtual r-link � is the group with
finite presentation whose generators consist of the edges of a virtual link diagram D
of � and whose relations are obtained from D as they are indicated in Fig. 4. It is
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Figure 2: A real or virtual crossing point

Figure 3: R-moves and Virtual R-moves

Figure 4: Relations
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easily checked that the Wirtinger group π(�) up to Tietze equivalences is unchanged
under the R-moves and virtual R-moves. Fig. 5 defines a map σ′ from a virtual r-link
diagram to a disk-arc presentation of a ribbon F r

1,1,...,1-link. S. Satoh proved in [13]

Figure 5: Definition of the map σ′

that this map σ′ induces a (non-injective) surjective map σ from the set of virtual
r-links onto the set of ribbon F r

1,1,...,1-links. For example, the map σ sends a nontrivial

virtual knot into a trivial F 1
1 -knot in Fig. 6, where non-triviality of the virtual knot

is shown by the Jones polynomial (see [3]) and triviality of the F 1
1 -knot is shown by

an argument of [2] on deforming a 1-handle. T. Yajima in [16] gives a Wirtinger

Figure 6: A non-trivial virtual knot sent to the trivial F 1
1 -knot

presentation of the group π1(S
4\L) of a ribbon F r

g -link L. From an analogy of the
constructions, we see that the map σ induces the same Wirtinger presentation of a
virtual r-link diagram D and the disk-arc presentation σ′(D). Thus, we have the
following proposition which has been independently observed by S. G. Kim [10], S.
Satoh [13] and D. Silver-S. Williams [15] in the case of virtual knots:

Proposition 4.1. The set of the groups of virtual r-links is the same as the set of
the groups of ribbon F r

1,1,...,1-links.
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For a virtual r-link �, let γ : π(�) → Z be the epimorphism sending every gener-
ator of a Wirtinger presentation to 1, which is independent of a choice of Wirtinger
presentations. The first Alexander Z[Z ]-module, or simply the module of a virtual
r-link � is the Λ-module M(�) = Kerγ/[Kerγ,Kerγ]. The following corollary is direct
from Proposition 4.1.

Corollary 4.2. The set of the modules of virtual r-links is the same as the set of
the modules of ribbon F r

1,1,...,1-links.

The following theorem giving a characterization of the modules of virtual r-links
is direct from Theorem 3.2 and Corollary 4.2.

Theorem 4.3. A finitely generated Λ-module M is the module M(�) of a virtual
r-link � if and only if M is a cokernel-free Λ-module of corank r−1 and has e(E2M) �
1 + β(M).

Figure 7: A virtual 2-link sent to the ribbon F 2
1,1-link in Fig. 1

Here is one example.

Example 4.4. The ribbon F 2
1,1-link in Fig. 1 is the σ-image of a virtual 2-link �

illustrated in Fig. 7 whose group has the Wirtinger presentation

π(�) = (x, y|x = (yx−1y−1)x(yx−1y−1)−1, y = (x−1yx−1)y(x−1yx−1)−1)

and whose module is calculated as M(�) = Λ/((t − 1)2, 2(t − 1)). Since DM(�) =
Λ/((t − 1), 2) �= 0, the virtual 2-link � is not any classical 2-link, because for any
classical r-link �′ with M(�′) a torsion Λ-module, we must have DM(�′) = 0 by the
second duality of [4] (cf. [5]).

We see from Theorem 4.3 that M is the module of a virtual knot (i.e., a virtual
1-link) if and only if M is a cokernel-free Λ-module of corank 0 and has e(E2M) � 1,
for we have β(M) = 0 for every cokernel-free Λ-module of corank 0. For a direct sum
on the modules of virtual knots, we obtain the following observations.
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Corollary 4.5.

(1) For the module M of every virtual knot with e(E2M) = 1, the n(> 1)-fold direct
sum Mn of M is a cokernel-free Λ-module of corank 0, but not the module of any
virtual knot.
(2) For the module M of every virtual knot and the module M ′ with e(E2M ′) = 0,
the direct sum M ⊕ M ′ is the module of a virtual knot.

5. A graded structure on the first Alexander Z[Z ]-modules of surface-links

Let Ar
g be the set of the modules M(L) of all F r

g -links L, and Ar
∗ = ∪+∞

g=0Ar
g. In

this section, we show properness of the inclusions

Ar
0 ⊂ Ar

1 ⊂ Ar
2 ⊂ · · · ⊂ Ar

∗.

To see this, we establish an estimate of the total genus g by the module of a general
F r

g -link. To state this estimate, we need some notions on a finite Λ-module. A finite
Λ-module D is symmetric if there is a t-anti isomorphism D ∼= E2D = homZ(D,Q/Z),
and nearly symmetric if there a Λ-exact sequence

0 → D1 → D → D∗ → D0 → 0

such that Di(i = 0, 1) are finite Λ-modules with (t − 1)Di = 0 and D∗ is a finite
symmetric Λ-module. For a general F r

g -link L, we shall show the following theorem:

Theorem 5.1. If M is the module M(L) of an F r
g -link L, then we have a nearly

symmetric finite Λ-submodule D ⊂ DM such that g � e(E2(M/D))/2 + τ (M).

For proof, we use the second duality in [4]. For an application of this theorem, it
is useful to note that every finite Λ-module D has a unique splitting Dt−1⊕Dc (see[8,
Lemma 2.7]), where Dt−1 is the Λ-submodule consisting of an element annihilated
by the multiplication of some power of t − 1 and Dc is a cokernel-free Λ-submodule
of corank 0. As a direct consequence of this property, we see that if D is nearly
symmetric, then Dc is symmetric. Then we can obtain the following result from
Theorem 5.1.

Corollary 5.2. For every r � 1, we have

Ar
0 � Ar

1 � Ar
2 � Ar

3 � · · · � Ar
∗

and the set Ar
∗ is equal to the set of finitely generated cokernel-free Λ-modules of

corank r − 1, so that Ar
∗ ∩Ar′

∗ = ∅ if r �= r′.

In this corollary, the characterization of Ar
∗ is direct from Corollary 3.3.

6. A graded structure on the first Alexander Z[Z ]-modules of classical
links, surface-links and higher-dimensional manifold-links
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An n-dimensional manifold-link with r components is the ambient isotopy class of

a closed oriented n-manifold with r components embedded in the (n+2)-sphere Sn+2

by a locally-flat embedding. A 1-dimensional manifold-link with r components is the
same as a classical r-link (as a virtual link) by a result of M. Goussarov, M. Polyak and
O. Viro [1]. Let EY = Sn+2\intN(Y ) for a tubular neighborhood N(Y ) of Y in Sn+2.
Since H1(EY ) ∼= Zr has a unique oriented meridian basis, we have a unique infinite
cyclic covering p : ẼY → EY associated with the epimorphism γ : H1(EY ) → Z
sending every oriented meridian to 1. The first Alexander Z[Z ]-module, or simply the
module of the manifold-link Y is Λ-module M(Y ) = H1(ẼY ). Let A(n)r be the set of
the modules of n-dimensional manifold-links with r components. Since A(2)r = Ar

∗, it
is suitable here to denote the set Ar

g by A(2)r
g. For the set A(1)r, we further consider

the subset A(1)r
g = A(1)r ∩ A(2)r

g. We have A(1)r
g ⊂ A(1)r

g+1 ⊂ A(1)r for every
g � 0. Taking a split union of classical knots with non-trivial Alexander polynomials,
we see that the set A(1)r

0 is infinite.
We have the following theorem giving a graded structure on the modules of clas-

sical r-links, F r
∗ -links and higher-dimensional manifold-links with r components:

Theorem 6.1. For every r � 1 and s � 0, we have A(1)r
s ∪A(2)r

s−1 � A(2)r
s where

we take A(2)r
−1 = ∅, and

A(1)r
0 � A(1)r

1 � · · · � A(1)r
r−1 = A(1)r � A(2)r

r−1 � · · · � A(2)r = A(3)r = · · · .

On the inclusion A(1)r ⊂ A(2)r , we note that the invariant κ1(�) in [7] is equal to
the torsion-corank τ (L) for every classical r-link � and every F r

g -link L with M(�) =
M(L).
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