Characterizing the first Alexander $\mathbf{Z}[\mathbf{Z}]$ -modules of surface-links and of virtual links

Akio Kawauchi

Department of Mathematics, Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

We characterize the first Alexander Z[Z]-modules of ribbon surface-links in the 4-sphere fixing the number of components and the total genus, and then the first Alexander Z[Z]-modules of surface-links in the 4-sphere fixing the number of components. Using the result of ribbon torus-links, we also characterize the first Alexander Z[Z]-modules of virtual links fixing the number of components. For a general surface-link, an estimate of the total genus is given in terms of the first Alexander Z[Z]-module. We show a graded structure on the first Alexander Z[Z]-modules of all surface-links and then a graded structure on the first Alexander Z[Z]-modules of classical links, surface-links and higher-dimensional manifold-links.

Mathematical Subject Classification 2000: 57M25, 57Q35, 57Q45

Keywords: Alexander module, Surface-link, Virtual link, Infinite cyclic covering, Cokernel-free module, Symmetric module

1. The first Alexander Z[Z]-module of a surface-link

For every non-negative partition $g=g_1+g_2+...+g_r$ of a non-negative integer g, we consider a closed oriented 2-manifold $F=F_g^r=F_{g_1,g_2,...,g_r}^r$ with r components F_i (i=1,2,...,r) such that the genus $g(F_i)$ of F_i is g_i . The integer g is called the total genus of F and denoted by g(F). An F-link L is the ambient isotopy class of a locally-flatly embedded image of F into S^4 , and for r=1 it is also called an F-knot. The exterior of L is the compact 4-manifold $E=S^4\setminus \operatorname{int} N(L)$, where N(L) denotes

the tubular neighborhood of L in S^4 . Let $p: \tilde{E} \to E$ be the infinite cyclic covering associated with the epimorphism $\gamma: H_1(E) \to Z$ sending every oriented meridian of L in $H_1(E)$ to $1 \in Z$. An F-link L is trivial if L is the boundary of the union of disjoint handlebodies embedded locally-flatly in S^4 . A ribbon F-link is an F-link obtained from a trivial F_0^r -link by surgeries along embedded 1-handles in S^4 (see [9, p.52]). When we put the trivial F_0^r -link in the equatorial 3-sphere $S^3 \subset S^4$, we can replace the 1-handles by mutually disjoint 1-handles embedded in the 3-sphere S^3 without changing the ambient isotopy class of the ribbon F-link by an argument of [9, Lemma 4.11] using a result of [2, Lemma 1.4]. Thus, every ribbon F-link is described by a disk-arc presentation consisting of oriented disks and arcs intersecting the interiors of the disks transversely in S^3 (see Fig. 1 for an illustration), where the oriented disks and the arcs represent the oriented trivial 2-spheres and the 1-handles, respectively. Let $\Lambda = Z[Z] = Z[t, t^{-1}]$ be the integral Laurent polynomial ring. The homology

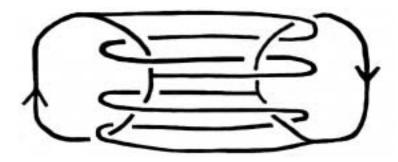


Figure 1: A ribbon $F_{1,1}^2$ -link

 $H_*(\tilde{E})$ is a finitely generated Λ -module. Specially, the first homology $H_1(\tilde{E})$ is called the first Alexander Z[Z]-module, or simply the module of an F-link L and denoted by M(L). In this paper, we discuss the following problem:

Problem 1.1. Characterize the modules M(L) of F_g^r -links L in a topologically meaningful class.

In §2, we discuss some homological properties of F_g^r -links. Fixing r and g, we shall solve Problem 1.1 for the class of ribbon F_g^r -links in §3. We also solve Problem 1.1 for the class of all F_g^r -links not fixing g as a collorary of the ribbon case in §3. In §4, we characterize the first Alexander Z[Z]-modules of virtual links by using the characterization of ribbon $F_{1,1,\dots,1}^r$ -links. In §5, we show a graded structure on the first Alexander Z[Z]-modules of all F_g^r -links by establishing an estimate of the total genus g in terms of the first Alexander Z[Z]-module of an F_g^r -link. In fact, we show that there is the first Alexander Z[Z]-module of an F_{g+1}^r -link which is not the first Alexander Z[Z]-module of any F_g^r -link for every r and g. In §6, we show a graded structure on the first Alexander Z[Z]-modules of classical links, surface-links and higher-dimensional manifold-links.

This paper is a research announcement of the author's paper "The first Alexander Z[Z]-modules of surface-links and of virtual links" (cf. http://www.sci.osaka-cu.ac.jp/kawauchi/index.html), which will appear elsewhere.

2. Some homological properties on surface-links

The following computation on the homology $H_*(E)$ of the exterior E of an F_g^r -link L is done by using the Alexander duality for (S^4, L) :

Lemma 2.1.

$$H_d(E) = \begin{cases} Z^{r-1} & (d=3) \\ Z^{2g} & (d=2) \\ Z^r & (d=1) \\ Z & (d=0) \\ 0 & (d \neq 0, 1, 2, 3). \end{cases}$$

For a finitely generated Λ -module M, let TM be the Λ -torsion part, and BM = M/TM the Λ -torsion-free part. Let

$$DM = \{x \in M | \exists f_i \in \Lambda(i = 1, 2, ..., s(\ge 2)) \text{ with } (f_1, ..., f_s) = 1 \text{ and } f_i x = 0\},$$

which is the maximal finite Λ -submodule of M (cf. [4]). Let $TM = \operatorname{Tor}_{\Lambda} M$ and $T_D M = TM/DM$. Let $E^q M = Ext_{\Lambda}^q(M, \Lambda)$. The following proposition is more or less known (see J. Levine [11] for S^n -knot modules and [4] in the general):

Proposition 2.2. We have the following properties (1)-(5) on a finitely generated Λ -module.

- (1) $E^0M = \text{hom}_{\Lambda}(M, \Lambda) = \Lambda^{\beta(M)},$
- (2) $E^1M = E^2M = 0$ if and only if M is Λ -free,
- (3) there are natural Λ -exact sequences $0 \to E^1 BM \to E^1 M \to E^1 TM \to 0$ and $0 \to BM \to E^0 E^0 BM \to E^2 E^1 BM \to 0$,
- (4) $E^1BM = DE^1M$,
- (5) $E^1TM = \hom_{\Lambda}(TM, Q(\Lambda)/\Lambda)$ and $E^2M = E^2DM = \hom_Z(DM, Q/Z)$.

Let $\beta(M)$ be the Λ -rank of the module M, namely the $Q(\Lambda)$ -dimension of the $Q(\Lambda)$ -vector space $M \otimes_{\Lambda} Q(\Lambda)$, where $Q(\Lambda)$ denotes the quotient field of Λ . The $d^{th} \Lambda$ -rank of an F_g^r -link L is the number $\beta_d(L) = \beta(H_d(\tilde{E}))$. We call the integer $\tau(L) = r - 1 - \beta_1(L)$ the torsion-corank of L, which shown to be non-negative in Lemma 2.5. We use the following notion:

Definition 2.3. A finitely generated Λ -module M is a cokernel-free Λ -module of corank n if there is an isomorphism $M/(t-1)M \cong Z^n$ as abelian groups.

The corank n of M is denoted by cr(M). We shall show in Corollary 3.3 that a Λ -module M is a cokernel-free Λ -module of corank n if and only if there is an F_q^{n+1} -link L for some g such that M(L) = M. The following lemma implies that the cokernel-free Λ -modules appear naturally in the homology of an infinite cyclic covering:

Lemma 2.4. Let $p: \tilde{X} \to X$ be an infinite cyclic covering over a finite complex X. If $H_d(X)$ is free abelian, then the Λ -modules $H_d(X)$, $TH_d(X)$ and $T_DH_d(X)$ are cokernel-free Λ -modules.

From Lemmas 2.1 and 2.4, we see that the Λ -modules $H_*(\tilde{E})$, $TH_*(\tilde{E})$ and $T_DH_*(\tilde{E})$ are all cokernel-free Λ -modules for every F_q^r -link L. On these Λ -modules, we make the following calculations by using the dualities on the homology $H_*(E)$ in [4]:

Lemma 2.5.

- (1) $\beta_1(L) = \beta_3(L) \le r 1$ and $\beta_2(L) = 2(g \tau(L))$,
- (2) $H_d(\tilde{E}) = 0$ for $d \neq 0, 1, 2, 3$, $H_0(\tilde{E}) \cong \Lambda/(t-1)\Lambda$ and $H_3(\tilde{E}) \cong \Lambda^{\beta_1(L)}$, (3) cr(M(L)) = r 1 and $cr(TM(L)) = cr(T_DM(L)) = \tau(L)$,
- (4) $cr(H_2(\tilde{E})) = 2g \tau(L)$ and $cr(TH_2(\tilde{E})) = cr(T_DH_2(\tilde{E})) = \tau(L)$.

The following corollary is direct from Lemma 2.5.

Corollary 2.6. An F_g^r -link L has $\beta_*(L) = 0$ if and only if $\beta_1(L) = 0$ and g = r - 1.

3. Characterizing the first Alexander Z[Z]-modules of ribbon surface-links

For a finitely generated Λ -module M, let e(M) be the minimal number of Λ generators of M. The following estimate is given by [14] and [6] for the case r=1where we have $\tau(L) = 0$:

Lemma 3.1. If L is a ribbon F_q^r -link, then we have

$$g \geqq e(E^2M(L)) + \tau(L).$$

For proof, we use a standard Seifert hypersurface for a ribbon F_q^r -link in [9]. The following theorem is our first theorem, showing that the estimate of Lemma 3.1 is best possible.

Theorem 3.2. A finitely generated Λ -module M is the module M(L) of a ribbon F_q^r -link L if and only if M is a cokernel-free Λ -module of corank r-1 and $g \ge$ $e(E^2M) + \tau(M)$. Further, if a non-negative partition $g = g_1 + g_2 + ... + g_r$ is arbitrarily given, then we can take a ribbon F_q^r -link L with $g(F_i) = g_i$ for all i.

For proof, we use an algorithm of A. Pizer [12] to produce a Wirtinger presentation of a group from a given Λ -matrix and T. Yajima's construction of a ribbon surface-link in [16] from a given Wirtinger presentation as well as Lemmas 2.5 and 3.1. The following corollary is direct from Lemmas 2.4, 2.5 and Theorem 3.2.

Corollary 3.3. A finitely generated Λ -module M is a cokernel-free Λ -module of corank n if and only if there is an F_q^{n+1} -link L with M(L)=M for some g.

The following corollary gives a characterization of the modules M(L) of ribbon F_q^{n+1} -links L with $\beta_*(L) = 0$.

Crollary 3.4. A cokernel-free Λ -module M of corank n is the module M(L) of a ribbon F_g^{n+1} -link L with $\beta_*(L) = 0$ (in this case, we have necessarily g = n) if and only if $\beta(M) = 0$ and DM = 0.

Here are two examples which are not covered by Corollary 3.4.

Example 3.5. For a cokernel-free Λ -module M of corank n with $\beta(M) = 0$ (so that $\tau(M) = n$) and DM = 0, we have the following examples (1) and (2).

- (1) Let $M' = M \oplus \Lambda/(t+1,a)$ for an odd $a \geq 3$. Since $E^2M' \cong \Lambda/(t+1,a) \neq 0$, the Λ -module M' is not the module M(L) of a ribbon F_g^{n+1} -link L with $\beta_*(L) = 0$. On the other hand, $\Lambda/(t+1,a)$ is wel-known to be the module of a non-ribbon F_0^1 -knot K (for example, the 2-twist-spun knot of the 2-bridge knot of type (a,1)) and M is the module M(L) of a ribbon F_n^{n+1} -link L with $\beta_*(L) = 0$ by Corollary 3.4. Hence M' is the module M(L') of a non-ribbon F_n^{n+1} -link L' (taking a connected sum L # K) with $\beta_*(L') = 0$.
- with $\beta_*(L') = 0$. (2) Let $M'' = M \oplus \Lambda/(2t - 1, a)$ for an odd $a \ge 5$. Although M'' is cokernel-free of corank n and $\beta(M'') = 0$, we can show that M'' is not the module M(L) of any F_g^{n+1} -link L with $\beta_*(L) = 0$ by the second duality of [4]. On the other hand, there is a ribbon F_{n+1}^{n+1} -link L'' with M(L'') = M'' by Theorem 3.2, because $e(E^2M'') = e(\Lambda/(2t - 1, a)) = 1$ and hence $e(E^2M'') + \tau(M'') = 1 + n$. In this case, we have $\beta_2(L'') = 2$ by Lemma 2.5.

4. A characterization of the first Alexander Z[Z]-modules of virtual links

The notion of virtual links was introduced by L. H. Kauffman [3]. A virtual r-link diagram is a diagram D of immersed oriented r loops in S^2 with two kinds of crossing points given in Fig. 2, where the left or right crossing point is called a real or virtual crossing point, respectively. A virtual r-link ℓ is the equivalence class of virtual r-link diagrams D under the local moves given in Fig. 3 which are called R-moves for the first three local moves and virtual R-moves for the other local moves. A virtual r-link is called a classical r-link if it is represented by a virtual link diagram without virtual crossing points. The group $\pi(\ell)$ of a virtual r-link ℓ is the group with finite presentation whose generators consist of the edges of a virtual link diagram D of ℓ and whose relations are obtained from D as they are indicated in Fig. 4. It is

Figure 2: A real or virtual crossing point

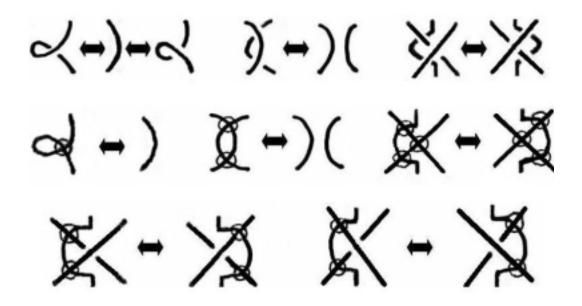


Figure 3: R-moves and Virtual R-moves

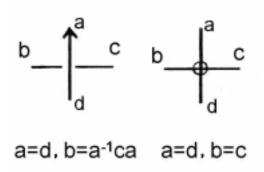


Figure 4: Relations

easily checked that the Wirtinger group $\pi(\ell)$ up to Tietze equivalences is unchanged under the R-moves and virtual R-moves. Fig. 5 defines a map σ' from a virtual r-link diagram to a disk-arc presentation of a ribbon $F_{1,1,\ldots,1}^r$ -link. S. Satoh proved in [13]

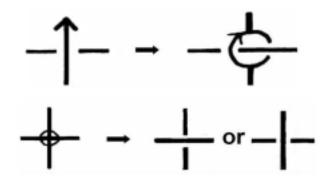


Figure 5: Definition of the map σ'

that this map σ' induces a (non-injective) surjective map σ from the set of virtual r-links onto the set of ribbon $F_{1,1,\ldots,1}^r$ -links. For example, the map σ sends a nontrivial virtual knot into a trivial F_1^1 -knot in Fig. 6, where non-triviality of the virtual knot is shown by the Jones polynomial (see [3]) and triviality of the F_1^1 -knot is shown by an argument of [2] on deforming a 1-handle. T. Yajima in [16] gives a Wirtinger

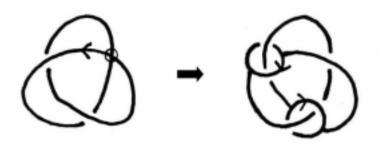


Figure 6: A non-trivial virtual knot sent to the trivial F_1^1 -knot

presentation of the group $\pi_1(S^4\backslash L)$ of a ribbon F_g^r -link L. From an analogy of the constructions, we see that the map σ induces the same Wirtinger presentation of a virtual r-link diagram D and the disk-arc presentation $\sigma'(D)$. Thus, we have the following proposition which has been independently observed by S. G. Kim [10], S. Satoh [13] and D. Silver-S. Williams [15] in the case of virtual knots:

Proposition 4.1. The set of the groups of virtual r-links is the same as the set of the groups of ribbon $F_{1,1,\ldots,1}^r$ -links.

For a virtual r-link ℓ , let $\gamma:\pi(\ell)\to Z$ be the epimorphism sending every generator of a Wirtinger presentation to 1, which is independent of a choice of Wirtinger presentations. The first Alexander Z[Z]-module, or simply the module of a virtual r-link ℓ is the Λ -module $M(\ell)=\mathrm{Ker}\gamma/[\mathrm{Ker}\gamma,\mathrm{Ker}\gamma]$. The following corollary is direct from Proposition 4.1.

Corollary 4.2. The set of the modules of virtual r-links is the same as the set of the modules of ribbon $F_{1,1,\dots,1}^r$ -links.

The following theorem giving a characterization of the modules of virtual r-links is direct from Theorem 3.2 and Corollary 4.2.

Theorem 4.3. A finitely generated Λ -module M is the module $M(\ell)$ of a virtual r-link ℓ if and only if M is a cokernel-free Λ -module of corank r-1 and has $e(E^2M) \leq 1 + \beta(M)$.

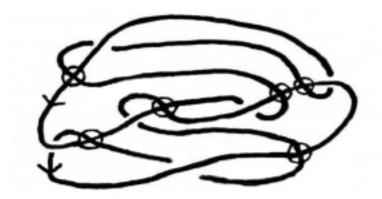


Figure 7: A virtual 2-link sent to the ribbon $F_{1,1}^2$ -link in Fig. 1

Here is one example.

Example 4.4. The ribbon $F_{1,1}^2$ -link in Fig. 1 is the σ -image of a virtual 2-link ℓ illustrated in Fig. 7 whose group has the Wirtinger presentation

$$\pi(\ell) = (x, y | x = (yx^{-1}y^{-1})x(yx^{-1}y^{-1})^{-1}, y = (x^{-1}yx^{-1})y(x^{-1}yx^{-1})^{-1})$$

and whose module is calculated as $M(\ell) = \Lambda/((t-1)^2, 2(t-1))$. Since $DM(\ell) = \Lambda/((t-1), 2) \neq 0$, the virtual 2-link ℓ is not any classical 2-link, because for any classical r-link ℓ' with $M(\ell')$ a torsion Λ -module, we must have $DM(\ell') = 0$ by the second duality of [4] (cf. [5]).

We see from Theorem 4.3 that M is the module of a virtual knot (i.e., a virtual 1-link) if and only if M is a cokernel-free Λ -module of corank 0 and has $e(E^2M) \leq 1$, for we have $\beta(M) = 0$ for every cokernel-free Λ -module of corank 0. For a direct sum on the modules of virtual knots, we obtain the following observations.

Corollary 4.5.

(1) For the module M of every virtual knot with $e(E^2M) = 1$, the n(>1)-fold direct sum M^n of M is a cokernel-free Λ -module of corank 0, but not the module of any virtual knot.

(2) For the module M of every virtual knot and the module M' with $e(E^2M') = 0$,

the direct sum $M \oplus M'$ is the module of a virtual knot.

5. A graded structure on the first Alexander $\mathbb{Z}[\mathbb{Z}]$ -modules of surface-links

Let \mathcal{A}_g^r be the set of the modules M(L) of all F_g^r -links L, and $\mathcal{A}_*^r = \bigcup_{g=0}^{+\infty} \mathcal{A}_g^r$. In this section, we show properness of the inclusions

$$\mathcal{A}_0^r \subset \mathcal{A}_1^r \subset \mathcal{A}_2^r \subset \cdots \subset \mathcal{A}_*^r$$
.

To see this, we establish an estimate of the total genus g by the module of a general F_g^r -link. To state this estimate, we need some notions on a finite Λ -module. A finite Λ -module D is symmetric if there is a t-anti isomorphism $D \cong E^2D = \hom_Z(D, Q/Z)$, and $nearly \ symmetric$ if there a Λ -exact sequence

$$0 \to D_1 \to D \to D^* \to D_0 \to 0$$

such that $D_i(i=0,1)$ are finite Λ -modules with $(t-1)D_i=0$ and D^* is a finite symmetric Λ -module. For a general F_q^r -link L, we shall show the following theorem:

Theorem 5.1. If M is the module M(L) of an F_g^r -link L, then we have a nearly symmetric finite Λ -submodule $D \subset DM$ such that $g \ge e(E^2(M/D))/2 + \tau(M)$.

For proof, we use the second duality in [4]. For an application of this theorem, it is useful to note that every finite Λ -module D has a unique splitting $D_{t-1} \oplus D_c$ (see[8, Lemma 2.7]), where D_{t-1} is the Λ -submodule consisting of an element annihilated by the multiplication of some power of t-1 and D_c is a cokernel-free Λ -submodule of corank 0. As a direct consequence of this property, we see that if D is nearly symmetric, then D_c is symmetric. Then we can obtain the following result from Theorem 5.1.

Corollary 5.2. For every $r \ge 1$, we have

$$\mathcal{A}_0^r \subsetneq \mathcal{A}_1^r \subsetneq \mathcal{A}_2^r \subsetneq \mathcal{A}_3^r \subsetneq \cdots \subsetneq \mathcal{A}_*^r$$

and the set \mathcal{A}_*^r is equal to the set of finitely generated cokernel-free Λ -modules of corank r-1, so that $\mathcal{A}_*^r \cap \mathcal{A}_*^{r'} = \emptyset$ if $r \neq r'$.

In this corollary, the characterization of \mathcal{A}_*^r is direct from Corollary 3.3.

6. A graded structure on the first Alexander $\mathbb{Z}[\mathbb{Z}]$ -modules of classical links, surface-links and higher-dimensional manifold-links

An n-dimensional manifold-link with r components is the ambient isotopy class of a closed oriented n-manifold with r components embedded in the (n+2)-sphere S^{n+2} by a locally-flat embedding. A 1-dimensional manifold-link with r components is the same as a classical r-link (as a virtual link) by a result of M. Goussarov, M. Polyak and O. Viro [1]. Let $E_Y = S^{n+2} \setminus \inf N(Y)$ for a tubular neighborhood N(Y) of Y in S^{n+2} . Since $H_1(E_Y) \cong Z^r$ has a unique oriented meridian basis, we have a unique infinite cyclic covering $p: \tilde{E}_Y \to E_Y$ associated with the epimorphism $\gamma: H_1(E_Y) \to Z$ sending every oriented meridian to 1. The first Alexander Z[Z]-module, or simply the module of the manifold-link Y is Λ -module $M(Y) = H_1(\tilde{E}_Y)$. Let $\mathcal{A}(n)^r$ be the set of the modules of n-dimensional manifold-links with r components. Since $\mathcal{A}(2)^r = \mathcal{A}_*^r$, it is suitable here to denote the set \mathcal{A}_g^r by $\mathcal{A}(2)_g^r$. For the set $\mathcal{A}(1)_{g+1}^r \subset \mathcal{A}(1)^r$ for every $g \geq 0$. Taking a split union of classical knots with non-trivial Alexander polynomials, we see that the set $\mathcal{A}(1)_0^r$ is infinite.

We have the following theorem giving a graded structure on the modules of classical r-links, F_*^r -links and higher-dimensional manifold-links with r components:

Theorem 6.1. For every $r \ge 1$ and $s \ge 0$, we have $\mathcal{A}(1)_s^r \cup \mathcal{A}(2)_{s-1}^r \subsetneq \mathcal{A}(2)_s^r$ where we take $\mathcal{A}(2)_{-1}^r = \emptyset$, and

$$\mathcal{A}(1)_0^r \subsetneq \mathcal{A}(1)_1^r \subsetneq \cdots \subsetneq \mathcal{A}(1)_{r-1}^r = \mathcal{A}(1)^r \subsetneq \mathcal{A}(2)_{r-1}^r \subsetneq \cdots \subsetneq \mathcal{A}(2)^r = \mathcal{A}(3)^r = \cdots.$$

On the inclusion $\mathcal{A}(1)^r \subset \mathcal{A}(2)^r$, we note that the invariant $\kappa_1(\ell)$ in [7] is equal to the torsion-corank $\tau(L)$ for every classical r-link ℓ and every F_g^r -link L with $M(\ell) = M(L)$.

References

- [1] M. Goussarov, M. Polyak and O. Viro, Finite-type invariants of classical and virtual knots, Topology, 39(2000), 1045-1068.
- [2] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math., 16(1979), 233-248.
- [3] L. H. Kauffman, Virtual knot theory, European J. Combin., 20(1999), 663-690.
- [4] A. Kawauchi, Three Dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math., 23(1986), 633-651.
- [5] A. Kawauchi, On the integral homology of infinite cyclic coverings of links, Kobe J. Math. 4(1987),31-41.

- [6] A. Kawauchi, The first Alexander modules of surfaces in 4-sphere, in: Algebra and Topology, Proc. KAIST Math. Workshop, 5(1990), 81-89, Taejon, Korea.
- [7] A. Kawauchi, The quadratic form of a kink, Contemporary Math., 233(1999), 97-116.
- [8] A. Kawauchi, An intrinsic Arf invariant on a link and its surface-link analoque, Topology Appli., 121(2002), 255-274.
- [9] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, II, Math. Sem. Notes Kobe Univ., 11(1983), 31-69.
- [10] S. G. Kim, Virtual knot groups and their peripheral structure, J. Knot Theory Ramifications, 9(2000), 797-812.
- [11] J. Levine, Knot modules. I, Trans. Amer. Math. Soc., 229(1977), 1-50.
- [12] A. Pizer, Matrices over group rings which are Alexander matrices, Osaka J. Math., 21(1984), 461-472.
- [13] S. Satoh, Virtual knot presentations of ribbon torus-knots, J. Knot Theory Ramifications, 9(2000), 531-542.
- [14] M. Sekine, Kawauchi's second duality and knotted surfaces in 4-sphere, Hiroshima J. Math., 19(1989), 641-651.
- [15] D. S. Silver and S. D. Williams, Virtual knot groups, in: Knots in Hellas '98(Delphi), Ser. Knots Everything, 24(2000), 440-451, World Sci. Publishing.
- [16] T. Yajima, On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ., 13(1962), 63-71.