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Abstract. The knotting probability of an arc diagram is defined as the quadru-
plet of four kinds of finner knotting probabilities which are invariant under a

reasonable deformation containing an isomorphism on an arc diagram. In a
separated paper, it is shown that every oriented spatial arc admits four kinds
of unique arc diagrams up to isomorphisms determined from the spatial arc

and the projection, so that the knotting probability of a spatial arc is defined.

The definition of the knotting probability of an arc diagram uses the fact that
every arc diagram induces a unique chord diagram representing a ribbon 2-

knot. Then the knotting probability of an arc diagram is set to measure how
many non-trivial ribbon genus 2 surface-knots occur from the chord diagram

induced from the arc diagram. The conditions for an arc diagram with the

knotting probability 0 and for an arc diagram with the knotting probability 1
are given together with some other properties and some examples.

1. Introduction

A spatial arc L is an oriented polygonal arc in the 3-space R3, which is consid-
ered as a model of a protein or a linear polymer in science. The following question
on science is an interesting question that can be set as a mathematical question:

Question. How a linear scientific object such as a non-circular molecule (e.g. a
non-circular DNA, protein, linear polymer, etc.) is considered as a knot object ?

An arc diagram D is a diagram of a spatial arc in the plane with only crossing
points (i.e., transversely meeting double points with over-under information) and
with the starting point s and the terminal point t as single points. An inbound arc
diagram is an arc diagram such that the points s and t are in the same connected
region of the plane divided by the arc diagram, where the region containing s and t is
called the front region. Two arc diagrams D and D′ in the plane P are isomorphic
if there is an orientation-preserving self-homeomorphism f : P → P sending D
to D′ which preserves the crossing points of D and D′. The map f is called an
isomorphism from D to D′. In an illustration of an arc diagram, it is convenient to
illustrate an arc diagram with smooth edges in the class of isomorphic arc diagrams
instead of a polygonal arc diagram.
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2 A. KAWAUCHI

In this paper, the knotting probability p(D) of an arc diagram D is defined
to be the quadruplet of the knotting probabilities pI(D), pII(D), pIII(D), pIV(D)
of types I, II, III, IV which are determined from D uniquely up to isomorphisms.
The notation p(D) = 0 is used if all of them are 0 and otherwise, p(D) > 0. Also,
the notation p(D) = 1 is used if all of them are 1 and otherwise, p(D) < 1. The
definition of the knotting probability of an arc diagram uses an argument on a
chord diagram derived from a ribbon surface-knot in the 4-space R4. For simple
arc diagrams, the knotting probability are easily calculable.

In the separated paper [10], it is shown that every oriented spatial arc admits
a unique arc diagrams up to isomorphisms determined from the spatial arc and the
projection direction, so that the knotting probability of a spatial arc is defined.

We mention here that a knotting probability of a circular knot is studied by
Deguchi and Tsurusaki [2] (see also E. Uehara and T. Deguchi [2]) from the view-
point of a random knotting, which is independent of our viewpoint. The case of a
spatial arc is also studied by Millett, Dobay and Stasiak in [12] from the random
knotting viewpoint with the same motivation as the present question1. We also note
that a knotting probability of a spatial arc was defined in [4, 6] from a knotting
structure of a spatial graph but with the demerit that it depends on the heights of
the crossing points of a diagram of the spatial arc.

Figure 1. A 2-crossing arc diagram D and its mirror image D∗

In § 2, some resent results in [5, 7, 8, 9] on a chord diagram derived from a
ribbon surface-knot are explained. In § 3, the knotting probability p(D) of an arc
diagram D is defined by an argument transforming an arc diagram into a chord
diagram. From the argument, it will be seen that the knotting probability measures
how a fixed spatial arc tends to be a non-trivial ribbon surface-knot of genus 2. In
Theorem 3.3 which is a main result, it is shown that for an arc diagram D, the
algebraic condition to be p(D) > 0 and the algebraic condition to be p(D) = 1 are
given. Further, it is shown that the mirror image D∗ of an inbound arc diagram
D has the same knotting probability as D. In § 4, several examples are given. For
example, the knotting probability p(D) for the diagram D in Fig. 1 is calculated
to be

p(D) = (
1

2
,
1

2
, 0,

1

2
).

The knotting probability p(D) is independent of a choice of the orientation of
an arc diagram D. However, for the mirror image D∗ of D, the knotting probability
p(D∗) is generally different from p(D). For example, the knotting probability p(D∗)

1Some protein knotting data are listed in “KnotProt”(https://knotprot.cent.uw.edu.pl/).
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of the mirror diagram D∗ of the diagram D of Fig. 1 is calculated to be

p(D∗) = 0.

Figure 2. Move M0: Reidemeister moves R1, R2, R3, gR4, gR5

for trivalent graph diagrams

2. The chord diagram of an arc diagram and its meaning

A chord graph is a trivalent connected graph (o;α) in R3 consisting of a trivial
oriented link o (called a based loop system) and the attaching arcs α (called a
chord system), where some chords of α may meet. A chord diagram is a diagram
C = C(o;α) of a chord graph (o;α) in a plane P which has only double point
singularities with a upper-lower relation by an orthogonal projection. There are
three moves M0, M1 and M2 on the chord diagrams which are explained as follows
(see [5, 7, 8, 9]):

Move M0. This move consists of the Reidemeister moves R1, R2, R3, gR4, gR5 as
spatial trivalent graphs, illustrated in Fig. 2.

Note that any two arcs in the three arcs together with a vertex or any arc in
Fig. 2 can be a part of a based loop although the orientation and the shadow of
the based loop are omitted there.

Figure 3. Fusion-fission M1
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Move M1. This move is the fusion-fission move, illustrated in Fig. 3, where the
fusion operation is done only for a chord between different based loops.

The following lemma is shown in [5].

Figure 4. Elementary fusion-fission M1.0, Chord slide M1.1 and
Chord pass M1.2

Lemma 2.1. Under the use of the move M0, the move M1 is equivalent to the
combination move of the elementary fusion-fission move M1.0, the chord slide move
M1.1 and the chord pass move M1.2 illustrated in Fig. 4. The birth-death move
illustrated in Fig. 5 is obtained from these moves, unless a closed chord is involved.

Figure 5. The birth-death move

As a convention, a closed chord is regarded as a chord with a based loop con-
structed from the birth-death move.

Move M2. This move consists of moves on chords, illustrated in Fig. 6.

A chord diagram C = C(o;α) is regular if the based loops o bound mutually
disjoint disks in the plane P meeting only the chords transversely. A regular chord
diagram is oriented if every chord is attached to the based loops as in Fig. 7. An
orientable chord diagram is a chord diagram D which becomes an oriented regular
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Figure 6. Chord moves M2

chord diagram after applying the moves M0 to D. Unless otherwise mentioned, a
chord diagram means an orientable chord diagram.

Figure 7. A chord in an oriented regular chord diagram

Two chord diagrams C and C ′ in the plane P are isomorphic if there is an
orientation-preserving self-homeomorphism f : P → P sending C to C ′ which
preserves the orientations of the based loops of C and C ′.

To explain how to change an arc diagram into an oriented regular chord di-
agram, let D be an oriented arc diagram with n crossing points. Let C(D) be a
chord diagram with n + 2 based loops obtained from the diagram D by replacing
every crossing point and starting point s and the terminal point t with based loops
as in Fig. fig:trans.

In the transformation on the crossing point, the left diagram in the right-
hand side is taken, but the right diagram is also admitted by the move M0 (the
Reidemeister moves) given later2 In the transformations on the end points s and t,
the orientation on the based loops os and ot corresponding to the end points s and
t, respectively are uniquely chosen so that the chord diagram C(D) is an oriented
regular chord diagram. For example, see Fig. 9 for an actual transformation (see
Example 4.3 later).

If two based loops are connected by a chord not meeting the other chords,
we can replace it by one based loop (which is also called the chord diagram of an
arc diagram) although a carefulness is needed in the calculation of the knotting
probability (see Figs. 19, 21 later).

2Once a left or right diagram is chosen at a crossing, the same choice must be done for the

other crossings to obtain an oriented regular chord diagram.
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Figure 8. Transformation of an oriented arc diagram into a chord diagram

Figure 9. Transformation of an oriented arc diagram into an ori-
ented regular chord diagram

To explain a meaning of a chord diagram and the moves M0, M1 and M2, let

A[a, b] = {(x, t) ∈ R4|x ∈ A, t ∈ [a, b]}
for a subset A ⊂ R3 and an interval [a, b]. A ribbon surface-knot is introduced by
Yanagawa in [16] for a ribbon 2-knot and [11, II] for a general ribbon surface-knot.
From a chord diagram C = C(o;α), we can construct in a unique way a ribbon
surface-knot F (C) = F (o;α) by the following three steps (see Fig. 10 for a ribbon
surface-knot constructed from a chord diagram):

(1) Construct the standard oriented S2-link S2(o) in R4 is constructed from the
based loops o by capping the cylinder o[−1, 1] in the thickened 3-space R3[−1, 1]
with the disks d[1] for a disk d in R3.

(2) Construct the 1-handles h(α) on the trivial oriented S2-link S2(o) with the
chords α as the core arcs.

(3) Let F (o;α) be the ribbon surface-knot obtained from S2(o) by the surgery along
the 1-handles h(α).

The following result is obtained in [5, 7, 9].
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Figure 10. A ribbon surface-knot of genus 2 constructed from a
chord diagram

Lemma 2.2.
(1) Two ribbon surface-knots F (o;α) and F (o′;α′) are equivalent (i.e., sent by an
orientation-preserving diffeomorphism R4 to R4) if and only if a chord diagram
C(o′;α′) is obtained from a chord diagram C(o;α) by a finite number of the moves
M0, M1 and M2.

(2) A ribbon surface-knot F (o;α) is a trivial surface-knot (i.e., a surface-knot
bounding a handlebody in R4) if and only if the fundamental group π1(R

4 \
F (o;α)) ∼= Z.

For an oriented regular chord diagram C = C(o;α), the finitely presented
group π(C) is given as in Fig. 11. This presented group π(C) is isomorphic to
the fundamental group π1(R

4 \ F (o;α)) of a ribbon surface-knot F (o;α), which
is shown by the group presentation and actually obtained by Yajima in [15] for a
ribbon torus-knot. It is noted that all the edges attaching to every based loop of o
have the same collar in the presentation of π(C), so that the set of the based loops
is considered as a generating set of the presented group π(C).

3. Defining the knotting probability

Let D be an oriented n-crossing arc diagram, and C(D) the chord diagram of
D. There are (n+2)2 chord diagrams A obtained from the chord diagram C(D) by
joining the loops os and ot with any based loops of C(D) by two chords not passing
the other based loops. A chord diagram obtained in this way is called an adjoint
chord diagram of C(D) with an additional chord pair. The group π(A) of an adjoint
chord diagram A of the chord diagram C(D) has a group presentation obtained from
the group presentation of π(C(D)) by adding two relations identifying the based
loop generators connected by the additional chords.

Note that the ribbon surface-knot F (C(D)) of the chord diagram C(D) is a
ribbon S2-knot and the ribbon surface-knot F (A) of an adjoint chord diagram
A is a genus 2 ribbon surface-knot. A chord diagram is said to be unknotted or
knotted according to whether it represents a trivial or non-trivial ribbon surface-
knot, respectively. By Lemma 2.2 (2), an adjoint chord diagram A of C(D) is
unknotted if and only if π(A) ∼= Z.
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Figure 11. Group relations

The idea of the knotting probability is to measure how many knotted chord
diagrams there are among the (n + 2)2 adjoint chord diagrams of C(D). Since
there are overlaps among them up to canonical isomorphisms, we consider the
n2 + 2n + 2 adjoint chord diagrams A of C(D) by removing some overlaps. The
n2+2n+2 adjoint chord diagrams A of C(D) are classified by the following 4 types
(see Fig. 12):

Type I. Here are the 2 adjoint chord diagrams of C(D) which are the adjoint chord
diagram with two self-attaching additional chords and the adjoint chord diagram
with a self-attaching additional chord on os and an additional chord joining os with
ot.

Type II. Here are the 2n adjoint chord diagrams A of C(D). The 2n adjoint chord
diagrams of C(D) are given by the additional chord pairs consist of a self-attaching
additional chord on os (or ot, respectively) and an additional chord joining ot (or
os, respectively) with a based loop except for os and ot.

Type III. Here are the n adjoint chord diagrams A of C(D) where the additional
chord pairs consist of an additional chord joining os with ot and an additional chord
joining os with a based loop except for os and ot.

Type IV. Here are the n(n − 1) adjoint chord diagrams A of C(D) where the
additional chord pair joins the pair of os and ot with a distinct based loop pair not
containing os and ot.
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Figure 12. Types I, II, III, IV of adjoint chord diagrams

The following lemma shows the reason why it is justified to reduce the (n+2)2

adjoint chord diagrams to the n2 + 2n+ 2 adjoint chord diagrams.

Lemma 3.1. Every adjoint chord diagram of the chord diagram C(D) of any n
crossing arc diagram D is deformed into one of the adjoint chord diagrams of types
I, II, III and IV of the chord diagram C(D) by the moves M0,M1,M2.

Proof Lemma 3.1. Since (n + 2)2 − (n2 + 2n + 2) = 2n + 2, there are 2n + 2
omissions of adjoint chord diagrams. The omitted 2 adjoint chord diagrams of C(D)
are the adjoint chord diagram of C(D) where both of the additional chords join
os and ot and the adjoint chord diagram with a self-attaching additional chord on
ot and an additional chord joining os with ot which are deformed into the adjoint
chord diagram with a self-attaching additional chord on os and an additional chord
joining os with ot of type I by the moves M0,M1,M2. The omitted n adjoint chord
diagrams of C(D) such that the additional chord pair joins os and ot with the same
based loop except for os and ot are deformed into the n adjoint chord diagrams of
type III by the moves M0,M1,M2. The omitted n adjoint chord diagrams of C(D)
where the additional chord pairs consist of an additional chord joining os with ot
and an additional chord joining ot with a a based loop except for os and ot are also
deformed into the n adjoint chord diagrams of type III by the moves M0,M1,M2.
Thus, the omitted 2n+ 2 adjoint chord diagrams are reduced to the adjoint chord
diagrams of types I and III.

□

In [10], it is shown that every adjoint chord diagram of the chord diagram
C(D) of any n crossing arc diagram D is deformed into one of the adjoint chord
diagrams of type I, II, III and IV of the chord diagram C(D). Thus, it is justified
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to reduce the (n + 2)2 adjoint chord diagrams to the n2 + 2n + 2 adjoint chord
diagrams.

The knotting probability p(D) of an arc diagram D is defined to be the quadru-
plet

p(D) = (pI(D), pII(D), pIII(D), pIV(D))

of the following knotting probabilities pI, pII, pIII(D) of types I, II III, IV.

Definition.
(1) Let A1 and A2 be the adjoint chord diagrams of type I and assume that there
are just k knotted chord diagrams among them. Then the type I knotting probability
of D is

pI(D) =
k

2
.

Thus, pI(D) is 0, 1
2 or 1 for any arc diagram D.

(2) Let Ai (i = 1, 2, . . . , 2n) be the adjoint chord diagrams of type II and assume
that there are just k knotted chord diagrams among them. Then the type II knotting
probability of D is

pII(D) =
k

2n
.

(3) Let Ai (i = 1, 2, . . . , n) be the adjoint chord diagrams of type III and assume
that there are just k knotted chord diagrams among them. Then the type III
knotting probability of D is

pIII(D) =
k

n
.

(4) Let Ai (i = 1, 2, . . . , n(n − 1)) be the adjoint chord diagrams of type IV and
assume that there are just k knotted chord diagrams among them. Then the type
IV knotting probability of D is

pIV(D) =
k

n(n− 1)
.

When the orientation of an arc diagram D is changed, all the orientations of
the based loops of the chord graph C(D) are changed at once. This means that
the knotting probability p(D) does not depend on any choice of orientations of D,
and we can omit the orientation of D in figures. See [10] for actual calculations of
p(D). When one-valued probability is desirable, a suitable average of the knotting
probabilities

pI(D), pII(D), pIII(D), pIV(D)

is considered. The knotting probability p(D) has p(D) = 1 if

pI(D) = pII(D) = pIII(D) = pIV(D) = 1

and otherwise, p(D) < 1. The knotting probability p(D) has p(D) > 0 if

pI(D) + pII(D) + pIII(D) + pIV(D) > 0

and otherwise, p(D) = 0.
When the orientation of D is changed, all the orientations of the based loops

of the chord graph C(D) are changed at once. Thus, the knotting probability p(D)
do not depend on any choice of orientations of D, and we can omit the orientation
of D in figures.
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A chord diagram C is homotopic to a chord diagram C ′ if the based loops of
C and C ′ are unchanged and every chord of C is homotopic to a chord in C ′ by
a plane homotopy relative to the end point of the chord, where a homotopy of a
chord linking with a based loop does not granted in a neighborhood of every based
loop (see Fig. 13).

Figure 13. A chord homotopy

An arc diagrams D is homotopy equivalent to an arc diagram D′ if there is a
sequence of chord diagrams Ci (i = 0, 1, . . . ,m) such that C0 = C(D), Cm = C(D′)
and Ci−1 is isomorphic or homotopic to Ci for every i. The homotopy equivalence
on an arc diagram is an equivalence relation.

The following result is directly obtained from Lemma 2.2 (1).

Lemma 3.2. The knotting probability p(D) is invariant under the homotopy
equivalence of a chord diagram D.

An arc diagram D is closely related to a knotoid which is a planar research
object by Turaev [13]. In fact, the knotting probability p(D) is invariant under
the Reidemeister move R3 by Lemma 3.2 and the group presentations are identical,
but should be distinct from a knotoid since Reidemeister moves R1, R2 make the
crossing number of D change by which the denominator of p(D) changes in general.

As stated in § 1, an arc diagram D is inbound if the points s and t of D are
in the same region in the plane divided by D and the front region of an inbound
arc diagram is this region. Any inbound arc diagram D is homotopy equivalent to
an inbound arc diagram D′ with the infinite front region. Thus, by Lemma 3.2,
for every inbound arc diagram D, there is an inbound arc diagram D′ such that
p(D′) = p(D) and the front region of D′ is the infinite region.

An under-closed knot diagram of an arc diagram D is a knot diagram clu(D)
obtained from D by joining the starting point s and the terminal point t with an
under-crossing arc.

The following theorem is a main result of this paper.

Theorem 3.3. For the knotting probability p(D) of an arc diagram D, we have
the following properties (1)-(4).
(1) The following property (i)-(iv) are mutually equivalent:

(i) p(D) = 0.
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(ii) pI(D) = 0.

(iii) π(C(D)) ∼= Z.

(iv) Any under-closed knot diagram clu(D) of D represents a trivial knot.

(v) An under-closed knot diagram clu(D) of D represents a trivial knot.

(2) The knotting probability p(D) of D has p(D) = 1 if and only if the group π(A)
is not isomorphic to Z for every adjoint chord diagram A of the chord diagram
C(D).

(3) If D is an inbound arc diagram and D∗ is the mirror image of D, then the
knotting probability p(D) has the following properties

pI(D) ̸= 1

2
, pII(D) = pIII(D) and p(D) = p(D∗).

The proof of Theorem 3.3. For (1), the assertion (i) ⇒ (ii) is obvious. To see
the assertion (ii) ⇒ (iii), let A1 be the adjoint chord diagram of C(D) with two
self-attached additional chords chosen which is of type I. Then we have π(A1) ∼=
π(C(D)). If pI(D) = 0, then A1 is unknotted and π(C(D)) ∼= Z. This means
that (ii) ⇒ (iii). To see the assertion (iii) ⇒ (iv), let clu(D)′ be an inbound arc
diagram obtained from the under-closed knot diagram clu(D) by cutting a part
of the additional under-crossing arc. The presented group π(C(D)) is canonically
isomorphic to the presented group π(C(clu(D)′) which is canonically isomorphic
to the group π(clu(D)) of the knot diagram clu(D). This result is known as a
feature of calculating the fundamental group from a knot diagram in [1] and was
observed in a research of a knotoid by [13]. It is well known by Dehn’s lemma that
the under-closed knot diagram clu(D) represents a trivial knot if and only if the
presented group π(clu(D)) is isomorphic to Z (see for example [3]). This means that
(iii) ⇒ (iv). The assertion (iv) ⇒ (v) is obvious. To see the assertion (v) ⇒ (i),
assume that an under-closed knot diagram clu(D) represents a trivial knot. Then
π(C(D)) ∼= π(clu(D)) ∼= Z by the argument on the assertion (iii) ⇒ (iv). Let A be
any adjoint chord diagram of C(D). Since the group π(A) is a quotient group of
π(C(D)), we have π(A) ∼= Z. By Lemma 2.2 (2), the adjoint chord diagram A is
unknotted, meaning that (v) ⇒ (i). This shows (1).

For (2), the group π(A) of an adjoint chord diagram A is the group obtained
from the presented group π(C(D)) by identifying the generator of os with a based
loop generator and the generator of ot with a based loop generator. Thus, there is
an adjoint chord diagram A with π(A) ∼= Z (which is an unknotted chord diagram
by Lemma 2.2 (2)) if and only if p(C(D)) < 1.

For (3), let A1 and A2 be the type I adjoint chord diagrams of C(D). Removing
a self-attached additional chord from A1 or A2 does not change the group π(A1) or
π(A2) up to isomorphisms, respectively. For an inbound arc diagram D, removing
the additional chord joining os with ot from A1 or A2 does not change the group
π(A1) or π(A2) up to isomorphisms, respectively. Thus, both the groups π(A1)
and π(A2) are isomorphic to the group π(C(D)), meaning that p(D) is 0 or 1 and
p(D) ̸= 1

2 .
To see that pII(D) = pIII(D), let A(2)i (i = 1, 2, . . . , 2n) be the type II adjoint

chord diagrams of C(D), and A(3)i (i = 1, 2, . . . , n) the type III adjoint chord
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diagrams of C(D). Let A(2)′i (i = 1, 2, . . . , 2n) be the chord diagrams obtained
from A(2)i (i = 1, 2, . . . , 2n) by removing the self-attached additional chord. Let
A(3)′i (i = 1, 2, . . . , n) be the chord diagrams of C(D) obtained from A(3)i (i =
1, 2, . . . , n) by removing the additional chord joining os with ot. We have π(A(2)i) ∼=
π(A(2)′i) for all i. Since D is inbound, we also have π(A(3)i) ∼= π(A(3)′i) for all
i. The set A(2)′i (i = 1, 2, . . . , 2n) is equal to the double of the set A(3)′i (i =
1, 2, . . . , n), meaning that pII(D) = pIII(D).

To see that p(D) = p(D∗), assume by Lemma 3.2 that the front region of D is
the infinite region. Consider the half plane

R2
≥0 = {(x, 0, z) ∈ R2| z ≥ 0}

in the half 3-space

R3
≥0 = {(x, y, z) ∈ R3| z ≥ 0}.

The arc diagram D is considered as a diagram in the half plane R2
≥0 the points s

and t of D in the boundary line

∂R2
≥0 = {(x, 0, 0) ∈ R2},

which is a diagram of a proper arc L in the upper half 3-space R3
≥0. As it is ex-

plained in [5], Yajima’s construction in [15] says that the ribbon S2-knot F (C(D))
corresponds to a ribbon structure of the spun 2-knot Σ(L) of L in R4 associated
to the spinning construction

(x, y, z) −→ (x, y, z cos θ, z sin θ), 0 ≤ θ ≤ 2π.

Then we see that the based loop system of the chord system C(D) of D naturally
corresponds to the trivial S2-link system of the ribbon structure of S(L). Let L∗

be the mirror image of L in the half 3-space

R3
≤0 = {(x, y, z) ∈ R3| z ≤ 0}

obtained by the π-rotation of L. The additional chord αi of every adjoint chord
diagram Ai of C(D) is regarded as an arc joining s (or t) with an upper crossing
point of D and hence αi is a core of a 1-handle attaching to the spun 2-knot Σ(L).
By a deformation of αi through Σ(L), we obtain a core α′

i of a 1-handle attached
to Σ(L) regarded as an arc joining s (or t) with the corresponding upper crossing
point of D (see Fig. 14).

Figure 14. Deforming a core arc of the 1-handle obtained an
additional chord
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This means that the ribbon surface-knot F (Ai) of every adjoint chord diagram
Ai of C(D) is equivalent to the ribbon surface-knot F (A∗

i ) of the corresponding
adjoint chord diagram A∗

i of C(D∗). Then the type I, II, III or IV of Ai is equal
to the type of A∗

i and F (Ai) is trivial if and only if F (A∗
i ) is trivial, for every i.

Hence we have p(D) = p(D∗). This completes the proof of Theorem 3.3. □

Figure 15. The under-closed knot diagrams clu(D) and clu(D
∗)

obtained from the arc diagrams D and D∗ by adding an under
crossing arc, respectively

For example, for the under-closed knot diagrams clu(D) and clu(D
∗) of an arc

diagram D and the mirror image D∗ in Fig. 15, the diagram clu(D) is a diagram
of the trefoil knot and the diagram clu(D

∗) is a diagram of a trivial knot, so that
p(D) > 0 and p(D∗) = 0 by Theorem 3.3 (1). A precise computation argument of
p(D) and p(D∗) will be done in Example 4.2. This example gives also an example
of an arc diagram with pI(D) = 1

2 and pII(D) ̸= pIII(D). See also Example 4.3 later
for another similar example.

The connected sum D ·D′ of two oriented arc diagrams D and D′ is an oriented
arc diagram obtained by joining the terminal point t of D with the starting point
v′s of the arc diagram D′ embedded in a disk neighborhood of the terminal point t
of D in the plane.

Corollary 3.4. For the connected sums on arc diagrams Di (i = 1, 2, 3), we have
(1) and (2).

(1) p(D1 ·D2) > 0 if and only if p(D1) > 0 or p(D2) > 0.

(2) If p(Di) > 0 (i = 1, 2, 3), then p(D1 ·D2 ·D3) = 1.

The proof of Corollary 3.4. Note that p(D) > 0 if and only if π(C(D)) ̸∼= Z.
(1) is obtained from the fact that π(C(D1 ·D2)) ∼= Z if and only if π(C(D1)) ∼= Z
and π(C(D2)) ∼= Z. For (2), let π(C(Di)) ̸∼= Z (i = 1, 2, 3). Let A be any adjoint
chord diagram of the chord diagram C(D1 ·D2 ·D3). Then we see that there is an
epimorphism from the group π(A) onto the group π(C(Di)) for some i depending
on choices of an additional chord pair. Thus, π(A) ̸∼= Z.



KNOTTING PROBABILITY 15

For the group π(C(D)) of the chord diagram C(D), let π(C(D))′ and π(C(D)′′

be the first and second commutator subgroups of π(C(D)). The quotient group
π(C(D))/π(C(D))′ ∼= Z and the quotient group M(C) = π(C(D)′/π(C(D)′′ forms
a finitely generated Λ-module, called the module of an arc diagram D, where Λ
denotes the integral Laurent polynomial ring Z[t, t−1] identical to the integral group
ring Z[Z]. The following corollary gives a new criterion for an arc diagram D with
p(D) = 1.

Corollary 3.5. If the module M(D) of an arc diagram D cannot be generated by
two elements over Λ, then p(D) = 1.

The proof of Corollary 3.5. Let A be an adjoint chord diagram of C(D). The
Lambda-module π(A)′/π(A)′′ for the group π(A) is a quotient Λ-module of M(D)
by two elements, which is not 0 by assumption. Thus, π(A) ̸∼= Z. □

By Corollary 3.5, we see that p(D) = p(D∗) = 1 for the inbound arc diagram
D obtained from any diagram of any prime knot with Nakanishi index ≥ 3 by
removing any open arc not meeting the crossing points (see [3] for the Nakanishi
index).

4. Some examples

Here are some examples useful in computing the knotting probability of an arc
diagram. For an inbound arc diagram D, note by Theorem 3.3 (3) that pI(D) =
0 or 1, pII(D) = pIII(D) and p(D) = p(D∗).

Figure 16. A chord diagram of 2 based loops with a special chord

Example 4.1.
(i) The chord diagram C(D) of an arc diagram D is deformed into a chord diagram
with just one based loop by a finite number of the moves M0, M1 and M2, then
the knotting probability p(D) = 0 by Theorem 3.3 (1) since π(C(D) ∼= Z.

(ii) A monotone arc diagram is an arc diagram such that a point starting from s
or t meets the upper crossing point first at every crossing. If D is a monotone arc
diagram, then the knotting probability p(D) = 0. In fact, the chord diagram C(D)
is deformed by the moves M0, M1 and M2 into a chord diagram with just one based
loop. Then the result is obtained from (i).

(iii) If the chord diagram C(D) of an arc diagram D is deformed into a chord
diagram of just two based loops o1 and o2 and chords containing one chord α1 in
16 by a finite number of the moves M0, M1 and M2, then the knotting probability
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p(D) = 0. This is because the generators on o1 and o2 are commutative and hence
the group π(C(D)) ∼= Z.

Figure 17. Calculations on the arc diagram D and the mirror
image D∗ in Fig. 1, where “u”= an unknotted chord diagram and
“k”= a knotted chord diagram

Example 4.2. Among all the arc diagram with at most 2 crossings, the arc
diagrams with non-zero knotting probabilities are homotopy equivalent to the non-
inbound arc diagram D with 2 crossings in Fig. 1 which has the the knotting
probability

p(D) = (
1

2
,
1

2
, 0,

1

2
)

with pII(D) = 1
2 and pIII(D) = 0. The calculation on p(D) is done by the adjoint

chord diagrams of C(D) in Fig. 17. The other chord diagrams except for the
chord diagram C(D) of this arc diagram D are checked to be deformed into chord
diagrams without crossing points by the moves M0, M1 and M2. In particular, the
chord diagram C(D∗) of the mirror diagram D∗ of D in Fig. 1 has p(D∗) = 0 which
is seen from Fig. 17.

Example 4.3. The arc diagram D with 3 crossings in Fig. 18 has

p(D) = (
1

2
,
1

3
, 0,

1

6
), p(D∗) = 0.

The calculation on p(D) is done in Fig. 18.

Example 4.4. A reduced alternating arc diagram is an inbound arc diagram ob-
tained from a reduced alternating knot diagram with crossing number ≥ 3 by
removing any open arc not meeting the crossing points (see [3]). If D is a reduced
alternating arc diagram, then the knotting probability p(D) of D has p(D) > 0.
This is obtained from Theorem 3.3 (1) because the reduced alternating knot dia-
gram D̄ is a knot diagram of a non-trivial knot.
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Figure 18. Calculations on the arc diagram D and the mirror
image D∗ in Fig. 18

Example 4.5. Let (a, b) be a coprime integral pair with a, b ≥ 2 Let T (a, b) be
a torus knot diagram obtained by the closure of the braid (σ1σ2 . . . σa−1)

b (see
for example [3]). The torus arc diagram of type (a, b) is the inbound arc diagram
D(a, b) obtained from T (a, b) by removing an open arc in the outer most string
of the closure strings. Then the knotting probability p(D(a, b)) of the torus arc
diagram D(a, b) of type (a, b) has 0 < p(D(a, b)) < 1. For an actual calculation of
p(D(a, b)), it is easier to consider the knotting probability p(D(a, b)∗) of the mirror
image D(a, b)∗ of D(a, b) by Theorem 3.3 (3). For example see Fig. 19 for the
torus arc diagram D(3, q)∗, where an unknotted adjoint chord diagram is shown.
For the general torus arc diagram D(a, b)∗, an unknotted adjoint chord diagram
is constructed by a similar attachment of the additional chords. For example, we
have the following computation results:

p(D(2, 3)) = p(D(2, 3)∗) = (1,
1

3
,
1

3
, 0),

p(D(3, 2)) = p(D(3, 2)∗) = (1,
1

2
,
1

2
,
1

6
),

whose calculations on D(2, 3)∗ and D(3, 2)∗ are made from Fig. 20 and Fig. 21,
respectively.

Example 4.6. An inbound arc diagram with n bridges is an inbound arc diagram
obtained from a knot diagram with n bridges by removing an open upper bridge arc
(see [3]). Then every inbound arc diagram D with at most 3 bridges (see [3]) has
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Figure 19. Attaching the additional chords to the torus arc dia-
gram D(3, q)∗ to obtain an unknotted adjoint chord diagram

the knotting probability p(D) < 1. For this purpose, let D have 3 bridges. Consider
an adjoint chord diagram A of the chord diagram C(D) or the mirror image C(D)∗

obtained by joining os and ot with two based loops near the two bridge chords.
Then the chord diagram A is deformed into a chord diagram with one based loop
by the moves M0,M1,M2, which shows that p(D) < 1 by by Theorem 3.3 (3). For
example, for the figure-eight arc diagram D in Fig. 22, we have

p(D) = p(D∗) = (1,
1

4
,
1

4
, 0).

Example 4.6. The arc diagram D with 6 crossings illustrated in Fig. 23 is an arc
diagram with the knotting probability

p(D) = 1.

However, the mirror image D∗ of D has

p(D∗) = 0.

The arc diagram D with 9 crossings illustrated in Fig. 24 is an inbound arc diagram
with the knotting probability

p(D) = p(D∗) = 1.

These result are obtained as direct applications of Corollary 3.4 (2).
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Figure 20. Calculations on D(2, 3)∗

Figure 21. Calculations on D(3, 2)∗
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Figure 22. A calculation on the figure-eight arc diagram D

Figure 23. A 6 crossing arc diagram D with knotting probability
p(D) = 1 and the mirror image D∗ with p(D∗) = 0.

Figure 24. A 9 crossing arc diagram D with knotting probability
p(D) = p(D∗) = 1.
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