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Abstract

It is known that every surface-link can be presented by a marked graph dia-
gram, and such a diagram presentation is unique up to moves called Yoshikawa
moves. G. Kuperberg introduced a regular isotopy invariant, called the quan-
tum A2 invariant, for tangled trivalent graph diagrams. In this paper, a polyno-
mial for a marked graph diagram is defined by use of the quantum A2 invariant
and it is studied how the polynomial changes under Yoshikawa moves. The
notion of a ribbon marked graph is introduced to show that this polynomial is
useful for an invariant of a ribbon 2-knot.

Mathematics Subject Classification 2000: 57Q45; 57M25.
Key words and phrases: marked graph diagram; ribbon marked graph; surface-link;
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1 Introduction

A marked graph diagram (or ch-diagram) is a link diagram possibly with some 4-

valent vertices equipped with markers;
??

??
??

?

��
��
��
�
. An oriented marked graph diagram

is a marked graph diagram in which every edge has an orientation such that each
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marked vertex looks like
??

??
??

?

��
��
��
�⌞

⌝
⌜

⌟
. It is known that a surface-link is presented by a

marked graph diagram (cf. [17, 21]), and such a presentation diagram is unique
up to Yoshikawa moves (cf. [11, 20]). See Section 2 for details. By using marked
graph diagrams, some properties and invariants of surface-links were studied in
[1, 3, 4, 6, 9, 10, 13, 14, 15, 16, 19, 21].

A tangled trivalent graph diagram is an oriented link diagram possibly with
some trivalent vertices whose incident edges are oriented all inward or all outward.
In [12], G. Kuperberg introduced a regular isotopy invariant ⟨·⟩A2 , called the A2

bracket (polynomial), for tangled trivalent graph diagrams, which is derived from
the Reshetikhin-Turaev quantum invariant (cf. [18]) corresponding to the simple
Lie algebra A2.

In [15], the fourth author introduced a method of constructing invariant for a
surface-link by means of a marked graph diagram and a state-sum model associ-
ated to a classical link invariant as its state evaluation. In this paper, we define
a polynomial in Z[a−1, a, x, y] for an oriented marked graph diagram by using the
A2 bracket ⟨·⟩A2 in the line of [15] and study how the polynomial changes under
Yoshikawa moves. In the process of this argument, the notion of a ribbon marked
graph is introduced to show that this polynomial is useful for an invariant of a
ribbon 2-knot.

This paper is organized as follows. In Section 2, we review marked graphs and
their presenting surface-links. In Section 3, we recall the quantum A2 invariant ⟨·⟩A2

for link diagrams and tangled trivalent graph diagrams. In Section 4, we define a
Laurent polynomial ≪ D ≫ (a, x, y) ∈ Z[a−1, a, x, y] for an oriented marked graph
diagram D. In Section 5, we study how the polynomial ≪ · ≫ changes under
Yoshikawa moves Γ6, Γ′

6, Γ7 and Γ8. In Section 6, we discuss specializations of
the invariant by considering some quotients of the ring Z[a−1, a, x, y]. In Section 7,
the notion of a ribbon marked graph is introduced to derive an invariant of ribbon
2-knots from the polynomial. In Sections 8 and 9, we prove key lemmas used in
Section 5.

2 Marked graphs and surface-links

In this section, we review marked graphs and their presenting surface-links. A
marked graph is a spatial graph G in R3 which satisfies the following:

• G is a finite regular graph with 4-valent vertices, say v1, v2, ..., vn.

• Each vi is a rigid vertex; that is, we fix a rectangular neighborhood Ni home-
omorphic to {(x, y)| − 1 ≤ x, y ≤ 1}, where vi corresponds to the origin and
the edges incident to vi are represented by x2 = y2.

• Each vi has amarker, which is the interval on Ni given by {(x, 0)|−1 ≤ x ≤ 1}.

An orientation of a marked graph G is a choice of an orientation for each edge

of G in such a way that every vertex in G looks like
??

??
??

??
?

��
��
��
��
�⌞

⌝
⌜

⌟
. A marked graph G is

said to be orientable if it admits an orientation. Otherwise, it is said to be non-
orientable. By an oriented marked graph we mean an orientable marked graph with
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a fixed orientation. Two oriented marked graphs are said to be equivalent if they
are ambient isotopic in R3 with keeping the rectangular neighborhoods, markers
and the orientation. As usual, a marked graph can be described by a diagram in
R2, which is a link diagram with some 4-valent vertices equipped with markers (see
Figure 2).

Two marked graph diagrams present equivalent marked graphs if and only if
they are related by a finite sequence of Yoshikawa moves Γ1,Γ

′
1,Γ2,Γ3,Γ4,Γ

′
4 and

Γ5 depicted in Figure 1.

����
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??⌜ ⌝ //

oo ⌝Γ1 :

����
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??⌞ ⌟
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1 :
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⌟
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Figure 1: Yoshikawa moves

By a surface-link we mean a closed 2-manifold smoothly (or piecewise linearly
and locally flatly) embedded in the 4-space R4. Two surface-links are said to be
equivalent if they are ambient isotopic.
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For a given marked graph diagram D, let L−(D) and L+(D) be classical link

diagrams obtained from D by replacing each marked vertex
??

??
??

?

��
��
��
�
with and ,

respectively (see Figure 2). We call L−(D) and L+(D) the negative resolution and
the positive resolution of D, respectively. A marked graph diagram D is said to be
admissible if both resolutions L−(D) and L+(D) are diagrams of trivial links. A
marked graph is called admissible if its diagram is admissible.

D L   (D)_ L   (D)+

Figure 2: A marked graph diagram and its resolutions

For t ∈ R, we denote by R3
t the hyperplane of R4 whose fourth coordinate is

equal to t ∈ R, i.e., R3
t := {(x1, x2, x3, x4) ∈ R4 | x4 = t}. Let p : R4 → R be

the projection given by p(x1, x2, x3, x4) = x4. Any surface-link L can be deformed
into a surface-link L′, called a hyperbolic splitting of L, by an ambient isotopy of
R4 in such a way that the projection p : L′ → R satisfies that all critical points are
non-degenerate, all the index 0 critical points (minimal points) are in R3

−1, all the
index 1 critical points (saddle points) are in R3

0, and all the index 2 critical points
(maximal points) are in R3

1 (cf. [5, 7, 8, 17]).

Let L be a surface-link and let L′ be a hyperbolic splitting of L. The cross-section
L′ ∩R3

0 at t = 0 is a spatial 4-valent regular graph in R3
0. We give a marker at each

4-valent vertex (saddle point) that indicates how the saddle point opens up above
as illustrated in Figure 3.

t =

t = −

t = 0

Figure 3: Marking of a vertex

The resulting marked graph G is called a marked graph presenting L. Let D
be a diagram of G. The diagram D is clearly admissible, which is called a marked
graph diagram (or ch-diagram (cf. [19])) presenting L. Conversely, any admissible
marked graph presents a surface-link.

When L is an oriented surface-link, we choose an orientation for each edge of
L′ ∩ R3

0 that coincides with the induced orientation on the boundary of L′ ∩ R3 ×
(−∞, 0] by the orientation of L′ inherited from the orientation of L. The resulting
oriented marked graph G (or its diagram D) is called an oriented marked graph (or
an oriented marked graph diagram) presenting L.
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It is known that two oriented marked graph diagrams present equivalent oriented
surface-links if and only if they are related by a finite sequence of 11 Yoshikawa moves
shown in Figure 1 (cf. [10, 11, 20]).

3 The A2 bracket polynomial of links and tangled triva-
lent graphs

In this section, we review the A2 bracket ⟨·⟩A2 for regular isotopy of oriented link
diagrams and tangled trivalent graph diagrams derived in [12]. Although the A2

bracket in [12] is defined such that the value for the empty diagram is 1, we here
adapt another initial condition that the value of the trivial knot diagram is 1.

A tangled trivalent graph diagram (or an A2 freeway, cf. [12]) is an oriented
link diagram in S2 possibly with some trivalent vertices whose incident edges are
oriented all inward or all outward as shown in Figure 4. An example of a tangled
trivalent graph diagram is in Figure 5. Throughout this paper we regard classical link
diagrams as tangled trivalent graph diagrams without trivalent vertices otherwise
specified. Two tangled trivalent graph diagrams are said to be regular isotopic if
they are related by a regular isotopy, which is defined to be a sequence of operations
consisting of ambient isotopy of the 2-sphere S2 and the combinatorial moves shown
in Figure 6 with all possible orientations.

Figure 4: Trivalent vertices with orientation

Figure 5: A tangled trivalent graph diagram

In [12], G. Kuperberg derived an inductive, combinatorial definition of a poly-

nomial valued invariant ⟨·⟩A2 with values in the ring Z[q−
1
6 , q

1
6 ] of integral Laurent

polynomials for regular isotopy classes of tangled trivalent graph diagrams. For our
purpose, we present here the definition of ⟨·⟩A2 with q

1
6 = a. Moreover, we change

the initial condition so that the trivial knot diagram has value 1.
We denote by ∧ or by O the trivial knot diagram, by Oµ the trivial link

diagram with µ components, by D ⊔D′ a disjoint union of diagrams D and D′.
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Figure 6: Moves on tangled trivalent graph diagrams

Theorem 3.1. [12, Theorem 1.2] There is an invariant ⟨·⟩A2 with values in the ring
Z[a−1, a] of integral Laurent polynomials for regular isotopy of tangled trivalent
graph diagrams, called the A2 bracket, which is given by the following recursive
rules:

(K0) ⟨O⟩A2 = 1.

(K1) ⟨D ⊔O⟩A2 = (a−6 + 1 + a6)⟨D⟩A2 for any diagram D.

(K2) ⟨
<

<
>> ⟩A2 = (a−3 + a3)⟨ > ⟩A2 .

(K3) ⟨
??

??��

��

⌞
⌝⌟

⌜

<

>
∧ ∨ ⟩A2 = ⟨ ⌝

⌞ ⟩A2 + ⟨ ⌞
⌝ ⟩A2 .

(K4) ⟨
��
��
��
��
�?????__

???
⟩A2 = −a⟨

GG
G

GGGwww

ww
w

⌝

⌝⌜

⌜
∨ ⟩A2 + a−2⟨ ⌜ ⌝ ⟩A2 .

(K5) ⟨
??

??
??

??
?__

���
??

���
⟩A2 = −a−1⟨

GG
G

GGGwww

ww
w

⌝

⌝⌜

⌜
∨ ⟩A2 + a2⟨ ⌜ ⌝ ⟩A2 .

In [18], Reshetikhin and Turaev showed that for any simple Lie algebra g, there
exists an invariant RTg of appropriately colored tangled ribbon graphs. Each edge
is colored by an irreducible representation of g and each vertex is colored by a tensor
of a certain kind. The A2 bracket ⟨·⟩A2 , with ⟨∅⟩A2 = 1, is identically equal to RTg
with g = A2 if all edges of a tangled trivalent graph diagram are colored with the 3-
dimensional representation V1,0 whose dual is V0,1. The colors for the vertices can be
recognized as the determinant, or the usual 3-dimensional cross product. For details,
see [12]. In particular, the A2 bracket ⟨·⟩A2 for oriented link diagrams is essentially a
specialization of the HOMFLY polynomial (cf. [2]) with a normalization that makes
it a regular isotopy invariant rather than an isotopy invariant. Actually, it follows
from (K4) and (K5) that for any skein triple (D+, D−, D0),

a−1⟨D+⟩A2 − a⟨D−⟩A2 = (a−3 − a3)⟨D0⟩A2 . (3.1)

Moreover, it is easy to check that

⟨ �����

???
??⌜ ⌝ ⟩A2 = a−8⟨ ⌜ ⟩A2 = ⟨ �����

???
??⌞ ⌟ ⟩A2 , (3.2)

⟨ }}
��

???
???⌜ ⌝ ⟩A2 = a8⟨ ⌜ ⟩A2 = ⟨ }}

��

???
???⌞ ⌟ ⟩A2 .



Polynomial of an oriented surface-link diagram via quantum A2 invariant 7

4 A polynomial for oriented marked graphs via A2 bracket

In this section, we define a polynomial invariant of oriented marked graphs using
the A2 bracket ⟨·⟩A2 in the line of [15].

Definition 4.1. Let D be an oriented marked graph diagram or a tangled trivalent
graph diagram. Let [[D]] = [[D]](a, x, y) be a polynomial in Z[a−1, a, x, y] defined
by the following two axioms:

(L1) [[D]] = ⟨D⟩A2 if D is a tangled trivalent graph diagram.

(L2) [[ ??
??

??
?

��
��
��
�⌞

⌝
⌜

⌟ ]] = x[[ ⌜
⌟ ]] + y[[ ⌜

⌟ ]],

where
??

??
??

?

��
��
��
�⌞

⌝
⌜

⌟
, ⌜

⌟
and ⌜

⌟
denote the small parts of larger diagrams that are

identical except the local sites indicated by the small parts.

The writhe w(D) of an oriented marked graph diagram D is defined to be the
sum of the signs of all crossings in D defined by sign

(
��
��
�????

??__ )
= 1 and sign

(
??

??
?__
��
��
??)
= −1

analogue to the writhe of a link diagram.

Definition 4.2. Let D be an oriented marked graph diagram. We define ≪
D ≫=≪ D ≫ (a, x, y) to be a polynomial in variables a, x and y with integral
coefficients given by

≪ D ≫= a8w(D)[[D]](a, x, y).

Let D be an oriented marked graph diagram. A state of D is an assignment
of T∞ or T0 to each marked vertex in D. Let S(D) be the set of all states of D.
For each state σ ∈ S(D), let Dσ denote the oriented link diagram obtained from
D by replacing marked vertices of D with two trivial 2-tangles according to the
assignment T∞ or T0 by the state σ as follows:

??
??

??
?

��
��
��
�⌞

⌝
⌜

⌟
T∞

−→ ⌜
⌟ , ??

??
??

?

��
��
��
�⌞

⌝
⌜

⌟
T0

−→ ⌜
⌟ .

Then the skein relation (L2) leads the following state-sum formula for the polyno-
mial ≪ D ≫:

≪ D ≫= a8w(D)
∑

σ∈S(D)

xσ(∞)yσ(0)⟨Dσ⟩A2 ,

where σ(∞) and σ(0) denote the numbers of the assignment T∞ and T0 of the state
σ, respectively. Since w(D) = w(Dσ) for any σ ∈ S(D), we also have the following
formula

≪ D ≫=
∑

σ∈S(D)

xσ(∞)yσ(0) ≪ Dσ ≫ . (4.3)

Theorem 4.3. The polynomial ≪ · ≫ is an invariant for oriented marked graphs,
i.e., for an oriented marked graph diagram D, the polynomial ≪ D ≫ is invari-
ant under Yoshikawa moves Γ1,Γ

′
1,Γ2,Γ3,Γ4,Γ

′
4 and Γ5. Moreover, it satisfies the

following.
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(1) ≪ O ≫= 1.

(2) ≪ D ⊔O ≫= (a−6 + 1 + a6) ≪ D ≫ for any oriented link diagram D.

(3) a−9 ≪ D+ ≫ −a9 ≪ D− ≫= (a−3 − a3) ≪ D0 ≫ for any skein triple
(D+, D−, D0) of link diagrams.

(4) ≪ ??
??

??
?

��
��
��
�⌞

⌝
⌜

⌟ ≫= x≪ ⌜
⌟ ≫ +y ≪ ⌜

⌟ ≫ .

Proof. For Γ1 and Γ′
1, it follows from (3.2) that [[ �����

???
??⌜ ⌝ ]] = a−8[[ ⌜ ]] = [[ �����

???
??⌞ ⌟ ]].

Hence, we have

≪ �����

???
??⌜ ⌝ ≫ = a

8w(
�����

???
??⌜ ⌝ )

[[ �����

???
??⌜ ⌝ ]] = a

8w( ⌜ )+8
(a−8)[[ ⌜ ]]

= a
8w( ⌜ )

[[ ⌜ ]] =≪ ⌜ ≫ .

Similarly, we obtain ≪ �����

???
??⌞ ⌟ ≫=≪ ⌞ ≫ .

Since the A2 bracket ⟨·⟩A2 for oriented link diagrams (and tangled trivalent
graph diagrams) and the writhe w(D) are both regular isotopy invariants, ≪ · ≫ is
invariant under Γ2 and Γ3.

The invariance of [[·]] under the moves Γ4,Γ
′
4 and Γ5 are seen as below, and since

the writhe w(D) is also invariant under these moves, we obtain the invariance of
≪ · ≫ under Γ4,Γ

′
4 and Γ5.

[[
��

������� ::
::

::
:

::⌝
⌞

⌟⌝
⌜ ]]= x[[



 55

⌞

⌟⌝
]]+y[[



 55⌟⌝

⌜
]]

= x[[

��::

⌟
⌟⌜

]]+y[[

��::

⌟
⌟⌜

]]= [[

��

��
��
��
�:::::::

::

⌝
⌞
⌟
⌟⌜

]]

[[

��������� ::
::

::
::

:

⌝
⌞

⌟⌝
⌜ ]]= x[[

⌝ ⌝
⌜ ]]+y[[

⌟⌝
⌜

]]

= x[[
⌞
⌟
⌟

]]+y[[ ⌟
⌟⌜

]]= [[

��
��
��
��
�:::::::::⌝

⌞
⌟
⌟⌜

]]

[[ ����
??
?? ���� ??

??⌞⌟
⌞
⌟ ]]= x[[ ����

??
??⌞⌟

⌞
⌟ ]]+y[[

����
??
??⌞⌟

⌞
⌟ ]]

= x[[ ����
??
??⌞

⌟ ⌞
⌟ ]]+y[[

����
??
??⌞

⌟ ⌞
⌟ ]]= [[ ���� ??

?? ����
??
??⌞

⌟ ⌞
⌟ ]]

The assertions (1) and (2) follow from (K0) and (K1).
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(3) From (3.1) and (L1), we see

a−1[[D+]]− a[[D−]] = (a−3 − a3)[[D0]].

Let λ = w(D0). Then we have

a−1a8λ[[D+]]− aa8λ[[D−]] = (a−3 − a3)a8λ[[D0]],

a−9a8(λ+1)[[D+]]− a9a8(λ−1)[[D−]] = (a−3 − a3)a8λ[[D0]],

a−9 ≪ D+ ≫ −a9 ≪ D− ≫ = (a−3 − a3) ≪ D0 ≫ .

(4) Clearly, w

(
??

??
??

?

��
��
��
�⌞

⌝
⌜

⌟

)
= w

(
⌜

⌟

)
= w

(
⌜

⌟

)
. It follows from (L2) that

≪ ??
??

??
?

��
��
��
�⌞

⌝
⌜

⌟ ≫ = a
8w( ??

??
??

?

��
��
��
�⌞

⌝
⌜

⌟ )

[[ ??
??

??
?

��
��
��
�⌞

⌝
⌜

⌟ ]] = a
8w( ??

??
??

?

��
��
��
�⌞

⌝
⌜

⌟ )(
x[[ ⌜

⌟ ]] + y[[ ⌜
⌟ ]]

)

= xa
8w( ??

??
??

?

��
��
��
�⌞

⌝
⌜

⌟ )

[[ ⌜
⌟ ]] + ya

8w( ??
??

??
?

��
��
��
�⌞

⌝
⌜

⌟ )

[[ ⌜
⌟ ]]

= xa
8w(

⌜
⌟ )

[[ ⌜
⌟ ]] + ya

8w(
⌜

⌟ )
[[ ⌜

⌟ ]]

= x≪ ⌜
⌟ ≫ +y ≪ ⌜

⌟ ≫ .

This completes the proof. □

Example 4.4. Here are examples of the polynomials for oriented links.

(1) ≪ ��
��
????��
��???? ⌝⌜ ≫ = a−18 ≪ O2 ≫ +(a−6 − a−12) ≪ O ≫

= a−18(a−6 + 1 + a6) + (a−6 − a−12) = a−24 + a−18 + a−6.

(2) ≪ ��
��
????��
��???? ⌝⌟ ≫ = a18 ≪ O2 ≫ +(a6 − a12) ≪ O ≫

= a18(a−6 + 1 + a6) + (a6 − a12) = a24 + a18 + a6.

(3) ≪ ��
��
????��
��???? ⌝⌟��

��
???? ≫= a18 ≪ O ≫ +(a6 − a12) ≪ ��

��
????��
��???? ⌝⌟ ≫

= a18 + (a6 − a12)(a24 + a18 + a6) = a12 + a24 − a36.

(4) ≪ ��
��
????��
��???? ⌝⌜��

��
????��????{{ ≫= a−18 ≪ ��

��
????��
��???? ⌝⌜ ≫ +(a−6 − a−12) ≪ O ≫

= a−18(a−24 + a−18 + a−6) + (a−6 − a−12) = a−42 + a−36 + a−24 − a−12 + a−6.

(5) ≪ ��
��
????��
��???? ⌝⌜ ≫= a18 ≪ O ≫ +(a6 − a12) ≪ ��

��
????��
��???? ⌝⌜ ≫

= a18 + (a6 − a12)(a−24 + a−18 + a−6) = a−18 − a−6 + 1− a6 + a18.

(6) ≪ ??��
��

��CC
????
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫= a−18 ≪ O ⊔ ��

��
????��
��???? ⌝⌟��

��
???? ≫ +(a−6 − a−12) ≪ ��

��
????��
��???? ⌝⌟��

��
???? ≫

= (a−18(a−6 + 1 + a6) + a−6 − a−12)(a12 + a24 − a36)
= (a−24 + a−18 + a−6)(a12 + a24 − a36).
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(7) ≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫= a−18 ≪ ��

��
????��
��???? ⌝⌟��

��
???? ≫ +(a−6 − a−12) ≪ ??��

��
��CC

????
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫

= a−18(a12 + a24 − a36) + (a−6 − a−12)(a−24 + a−18 + a−6)(a12 + a24 − a36)
= (a−24 + a−12 − a−36)(a12 + a24 − a36).

Example 4.5. Consider the diagram 81 of a spun 2-knot of the trefoil in Yoshikawa’s
table [21] with the orientation indicated below. From Theorem 4.3, it follows that

≪
??

?? ����

??
??

?

��
��
�
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟

81

≫= x2 ≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫ +xy ≪ ??��

��
��CC

????
??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫

+ yx≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫ +y2 ≪ ??��

��
��CC

????
??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫

=x2 ≪ O2 ≫ +xy ≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫ +yx≪ O3 ≫ +y2 ≪ O2 ≫

=(a−6 + 1 + a6)(x2 + y2) + (a−24 + a−12 − a−36)(a12 + a24 − a36)xy

+ (a−6 + 1 + a6)2xy.

Example 4.6. Consider the diagram 91 of a ribbon 2-knot associated with 61 knot
in Yoshikawa’s table [21] with the orientation indicated below.

≪

??
??
��
��

??
?? ����

??
??

?

��
��
�
��

��CC
????

??����
??
??����

��
��
????��
��????⌞⌞⌟ ⌝⌜

91

≫= x2 ≪

??
??
��
��

??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌞⌞⌟ ⌝⌜ ≫ +xy ≪

??
??
��
��

??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌞⌞⌟ ⌝⌜ ≫

+ yx≪

??
??
��
��

??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌞⌞⌟ ⌝⌜ ≫ +y2 ≪

??
??
��
��

??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌞⌞⌟ ⌝⌜ ≫

=x2 ≪ O2 ≫ +xy

[
a18 ≪ ��

��
????��
��???? ⌝⌜ ≫ +(a6 − a12) ≪ ��

��
????��
��???? ⌝⌜ ≫

]
+ yx≪ O3 ≫ +y2 ≪ O2 ≫

=(a−6 + 1 + a6)(x2 + y2) + (a−6 + 1 + a6)2xy

+

[
a18(a−18 − a−6 + 1− a6 + a18) + (a6 − a12)(a−24 + a−18 + a−6)

]
xy

=(a−6 + 1 + a6)(x2 + y2)

+ (a−18 + a−12 + a−6 + 5 + a6 + a18 − a24 + a36)xy.

Example 4.7. Consider the diagram 102 of a 2-twist spun 2-knot of the trefoil in
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Yoshikawa’s table [21] with the orientation indicated below.

≪
??

??
{{
��

??
??

?

��
��
�

���� ??
??
���

��
;;

??
????

??����
??
??����

��
��
????��
��????

⌜

⌝

⌞⌞⌟ ⌝⌜
⌟

102

≫= x2 ≪
??

??
{{
��

??�� ���

��
;;

??
????

??����
??
??����

��
��
????��
��????

⌜

⌝

⌞⌞⌟ ⌝⌜
⌟ ≫ +xy ≪

??
??
{{
��

??�� ���

��
;;

??
????

??����
??
??����

��
��
????��
��????

⌜

⌝

⌞⌞⌟ ⌝⌜
⌟ ≫

+ yx≪
??

??
{{
��

??�� ���

��
;;

??
????

??����
??
??����

��
��
????��
��????

⌜

⌝

⌞⌞⌟ ⌝⌜
⌟ ≫ + y2 ≪

??
??
{{
��

??�� ���

��
;;

??
????

??����
??
??����

��
��
????��
��????

⌜

⌝

⌞⌞⌟ ⌝⌜
⌟ ≫

=x2 ≪ O2 ≫ +xy

[
a18 ≪ O ≫ +(a6 − a12) ≪ ��

��
????��
��???? ⌝⌜��

��
????��????{{ ≫

]
+ xy

[
a18 ≪ ��

��
????��
��???? ⌝⌜ ≫ +(a6 − a12) ≪ ��

��
????��
��???? ⌝⌜ ≫

]
+ y2

[
a18 ≪ ��

��
????��
��???? ⌝⌜ ≫ +(a6 − a12) ≪ O ≫

]
=x2(a−6 + 1 + a6) + xy

[
a18 + (a6 − a12)(a−42 + a−36 + a−24 − a−12 + a−6)

]
+ xy

[
a18(a−18 − a−6 + 1− a6 + a18) + (a6 − a12)(a−24 + a−18 + a−6)

]
+ y2

[
a18(a−24 + a−18 + a−6) + (a6 − a12)

]
=(a−6 + 1 + a6)(x2 + y2)

+ (a−36 − a−24 + 2a−18 − a−12 − 2a−6 + 4− 2a6 − a12 + 2a18 − a24 + a36)xy.

5 Behaviors under Yoshikawa moves Γ6, Γ
′
6, Γ7 and Γ8

In this section we investigate behaviors of ≪ · ≫ under Yoshikawa moves Γ6, Γ
′
6,

Γ7 and Γ8.

Proposition 5.1. The moves Γ6 and Γ′
6 change the polynomial ≪ · ≫ as follows.

≪ ??
??

?
�����⌝

⌜
⌝

≫=

(
(a−6 + 1 + a6)x+ y

)
≪ ⌜ ≫,

≪ ??
??

?
�����⌝

⌜
⌝

≫=

(
x+ (a−6 + 1 + a6)y

)
≪ ⌜ ≫ .

Proof. For Γ6 and Γ′
6, we have

≪ ??
??

?
�����⌝

⌜
⌝

≫ = x≪ ⌜ ⌟ ≫ +y ≪ ⌜ ≫=

(
(a−6 + 1 + a6)x+ y

)
≪ ⌜ ≫,

≪ ??
??

?
�����⌝

⌜
⌝

≫ = x≪ ⌜ ≫ +y ≪ ⌟⌜ ≫=

(
x+ (a−6 + 1 + a6)y

)
≪ ⌜ ≫ .

This completes the proof. □
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In order to consider behaviors of the polynomial ≪ · ≫ under Yoshikawa moves
Γ7 and Γ8, we prepare lemmas.

By an n-tangle diagram (n ≥ 1) we mean an oriented link diagram or a tangled
trivalent graph diagram T in the rectangle I2 = [0, 1] × [0, 1] in R2 such that T
transversely intersect with (0, 1)× {0} and (0, 1)× {1} in n distinct points, respec-
tively, called the endpoints of T . The boundary of an n-tangle diagram T is defined
to be the boundary of I2 together with the 2n endpoints equipped with inward or
outward pointing normals that coincide with the orientations on intersecting arcs of
T . In Figure 7, (a) is the boundary of a 3-tangle diagram, and (b) is the boundary
of a 4-tangle diagram.

∧

∧

∨

∨

∧

∧
(a)

∧

∧

∨

∨

∧

∧

∨

∨
(b)

Figure 7: Boundaries of 3, 4-tangle diagrams

Lemma 5.2. Let T be a 3-tangle diagram with the boundary (a) in Figure 7 such
that there are no crossings, 2-gons and 4-gons and that there are no connected
components as diagrams in IntD2. Then T is one of the six fundamental 3-tangle
diagrams f0, f1, . . . , f5 shown in Figure 8.

f0 f1 f2 f3 f4 f5

Figure 8: Fundamental 3-tangle diagrams

Lemma 5.3. Let T be a 4-tangle diagram with the boundary (b) in Figure 7 such
that there are no crossings, 2-gons and 4-gons and that there are no connected
components as diagrams in IntD2. Then T is one of the 23 fundamental 4-tangle
diagrams g0, g1, . . . , g22 shown in Figure 9.

Lemmas 5.2 and 5.3 are proved in the end of this paper.
The following proposition gives the behavior of the polynomial ≪ · ≫ under a

Yoshikawa move Γ7.

Proposition 5.4. Let D and D′ be oriented marked graph diagrams such that D′

is obtained from D by a Yoshikawa move Γ7 as depicted in Figure 10. Then

≪ D ≫ − ≪ D′ ≫= ∆(a)xyψ(a, x, y),

where ψ(a, x, y) is a polynomial in Z[a−1, a, x, y] and

∆(a) := (a−6 + 1 + a6)2 − 1 = a−12(a12 + 1)(a6 + 1)2. (5.4)
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g0 g1 g2 g3 g4

g5 g6 g7 g8 g9 g10

g11 g12 g13 g14 g15 g16

g17 g18 g19 g20 g21 g22

Figure 9: Fundamental 4-tangle diagrams

Proof. Applying the axioms (L1) and (L2) in Definition 4.1 and (K1)–(K5) in
Definition 3.1 to the 3-tangle diagram T in D = T7 ◦ T , we can express [[D]]
as a linear combination of polynomials [[T7 ◦ Uk]](1 ≤ k ≤ m) for some integer
m ≥ 1, where each Uk is a 3-tangle diagram satisfying the assumption on T in
Lemma 5.2. By the lemma, we see that Uk is one of the fundamental 3-tangle
diagrams f0, f1, . . . , f5 in Figure 8. Hence we have

[[D]] = [[T7 ◦ T ]] =

5∑
i=0

ψi(a, x, y)[[T7 ◦ fi]],

where ψi(a, x, y) is a polynomial in Z[a, a−1, x, y]. Similarly, we have

[[D′]] = [[T ′
7 ◦ T ]] =

5∑
i=0

ψi(a, x, y)[[T
′
7 ◦ fi]].

This gives

[[D]]− [[D′]] =

5∑
i=0

ψi(a, x, y)

(
[[T7 ◦ fi]]− [[T ′

7 ◦ fi]]
)
. (5.5)

By a straightforward computation, we obtain

[[T7 ◦ fi]] = [[f2 ◦ fi]]x2 + [[f0 ◦ fi]]xy + [[f4 ◦ fi]]yx+ [[f1 ◦ fi]]y2,
[[T ′

7 ◦ fi]] = [[f2 ◦ fi]]x2 + [[f0 ◦ fi]]xy + [[f3 ◦ fi]]yx+ [[f1 ◦ fi]]y2.
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Γ7

D = T7  D = T7    ´´

´T7 T7

Figure 10: Yoshikawa move Γ7

Let A = a−6 + 1 + a6 and B = a−3 + a3. Then it is easily checked that [[f3 ◦ fi]]
and [[f4 ◦ fi]] with 0 ≤ i ≤ 5 are as in Table 1. Hence

[[T7 ◦ fi]]− [[T ′
7 ◦ fi]] = xy

(
[[f4 ◦ fi]]− [[f3 ◦ fi]]

)

=


0, i = 0, 1, 2, 5;
xy(A2 − 1) = xy∆(a), i = 3;
−xy(A2 − 1) = −xy∆(a), i = 4.

Therefore it follows from (5.5) that [[D]]−[[D′]] = ∆(a)xyψ′(a, x, y), where ψ′(a, x, y) =
ψ3(a, x, y)−ψ4(a, x, y). Finally, since w(D) = w(D′), we obtain ≪ D ≫ − ≪ D′ ≫
= ∆(a)xyψ(a, x, y), where ψ(a, x, y) = a8w(D)ψ′(a, x, y). □

◦ f0 f1 f2 f3 f4 f5
f3 1 A A 1 A2 B3

f4 1 A A A2 1 B3

Table 1: [[f3 ◦ fi]] and [[f4 ◦ fi]]

Now we investigate the behavior of ≪ · ≫ under a Yoshikawa move Γ8.

Proposition 5.5. Let D and D′ be oriented marked graph diagrams such that D′

is obtained from D by a Yoshikawa move Γ8 as depicted in Figure 11. Then

≪ D ≫ − ≪ D′ ≫= (a−3 − a3)∆(a)xyφ(a, x, y),

where φ(a, x, y) is a polynomial in Z[a−1, a, x, y] and ∆(a) is the polynomial in (5.4).

Proof. Applying the axioms (L1), (L2) and (K1)–(K5) to the 4-tangle diagram T in
D = T8 ◦T , we can express [[D]] as a linear combination of [[T8 ◦Vk]](1 ≤ k ≤ m) for
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Γ8

D = T8   D = T8    ´´

´T8 T8

Figure 11: Yoshikawa move Γ8

some integer m ≥ 1, where each Vk is a 4-tangle diagram satisfying the assumption
on T in Lemma 5.3. By the lemma, we see that Vk is one of the fundamental 4-tangle
diagrams g0, g1, . . . , g22 in Figure 9. Hence we have

[[D]] = [[T8 ◦ T ]] =
22∑
i=0

φi(a, x, y)[[T8 ◦ gi]],

where φi(a, x, y) ∈ Z[a−1, a, x, y]. Similarly, we obtain

[[D′]] = [[T ′
8 ◦ T ]] =

22∑
i=0

φi(a, x, y)[[T
′
8 ◦ gi]].

This gives

[[D]]− [[D′]] =
22∑
i=0

φi(a, x, y)

(
[[T8 ◦ gi]]− [[T ′

8 ◦ gi]]
)
. (5.6)

By a straightforward computation, we obtain

[[T8 ◦ gi]] = [[g5 ◦ gi]]x2 + [[g14 ◦ gi]]xy + [[g ◦ gi]]yx+ [[g6 ◦ gi]]y2,
[[T ′

8 ◦ gi]] = [[g5 ◦ gi]]x2 + [[g14 ◦ gi]]xy + [[g∗ ◦ gi]]yx+ [[g6 ◦ gi]]y2,

where g and g∗ are 4-tangle diagrams shown in Figure 12.

99
9

99

99
99

::
::

::
99

���������

�����������

⌜
⌞

⌝

⌟
g

��
�

��

��
��

��
��

��
��

:::::::::

99999999999

⌜

⌞

⌝

⌟
g∗

Figure 12: 4-tangle diagrams g and g∗
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Using (L1) and (K2)–(K5), we obtain

[[g ◦ gi]] = a−6[[g0 ◦ gi]] + [[g2 ◦ gi]] + [[g4 ◦ gi]] + [[g7 ◦ gi]] + [[g8 ◦ gi]]
+ [[g9 ◦ gi]] + [[g10 ◦ gi]] + a6[[g11 ◦ gi]]− a−3[[g15 ◦ gi]]
− a−3[[g16 ◦ gi]]− a3[[g17 ◦ gi]]− a3[[g18 ◦ gi]].

Since g∗ is the mirror image of g, it is seen from (K4) and (K5) that

[[g∗ ◦ gi]] = a6[[g0 ◦ gi]] + [[g2 ◦ gi]] + [[g4 ◦ gi]] + [[g7 ◦ gi]] + [[g8 ◦ gi]]
+ [[g9 ◦ gi]] + [[g10 ◦ gi]] + a−6[[g11 ◦ gi]]− a3[[g15 ◦ gi]]
− a3[[g16 ◦ gi]]− a−3[[g17 ◦ gi]]− a−3[[g18 ◦ gi]].

This gives that

[[g ◦ gi]]− [[g∗ ◦ gi]] = (a−3 − a3)

[
(a−3 + a3)

(
[[g0 ◦ gi]]− [[g11 ◦ gi]]

)
− [[g15 ◦ gi]]− [[g16 ◦ gi]] + [[g17 ◦ gi]] + [[g18 ◦ gi]]

]
.

By simple, but tedious calculations, we obtain Table 2 for [[gk ◦ gi]] with k =
0, 11, 15, 16, 17, 18 and 0 ≤ i ≤ 22.

◦ g0 g11 g15 g16 g17 g18
g0 A3 A AB3 AB3 B3 B3

g1 A2 1 B3 AB3 B3 B3

g2 A2 A2 AB3 AB3 AB3 AB3

g3 A2 1 AB3 B3 B3 B3

g4 B4 B4 2B3 +B5 2B3 +B5 2B3 +B5 2B3 +B5

g5 1 1 B3 B3 B3 B3

g6 1 1 B3 B3 B3 B3

g7 A A AB3 B3 B3 AB3

g8 A A AB3 B3 AB3 B3

g9 A A B3 AB3 AB3 B3

g10 A A B3 AB3 B3 AB3

g11 A A3 B3 B3 AB3 AB3

g12 1 A2 B3 B3 B3 AB3

g13 1 A2 B3 B3 AB3 B3

g14 A A B3 B3 B3 B3

g15 AB3 B3 2AB2 +AB4 2B4 2B4 2B4

g16 AB3 B3 2B4 2AB2 +AB4 2B4 2B4

g17 B3 AB3 2B4 2B4 2B4 2AB2 +AB4

g18 B3 AB3 2B4 2B4 2AB2 +AB4 2B4

g19 B3 B3 2B4 2B2 +B4 2B4 2B2 +B4

g20 B3 B3 2B2 +B4 2B4 2B4 2B2 +B4

g21 B3 B3 2B4 2B2 +B4 2B2 +B4 2B4

g22 B3 B3 2B2 +B4 2B4 2B2 +B4 2B4

Table 2: [[gk ◦ gi]]
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Thus it follows from (5.6) and the identity B2 = A+ 1 that

[[T8 ◦ gi]]− [[T ′
8 ◦ gi]] = ([[g ◦ gi]]− [[g∗ ◦ gi]])xy

=


(a−6 − a6)(A− 2)(A− 1)(A+ 1)xy, i = 0;

−(a−6 − a6)(A− 2)(A− 1)(A+ 1)xy, i = 11;
−(a−3 − a3)(A− 1)(A+ 1)xy, i = 15, 16;
(a−3 − a3)(A− 1)(A+ 1)xy, i = 17, 18;
0 otherwise.

=


(a−3 + a3)(a−6 − 1 + a6)(a−3 − a3)∆(a)xy, i = 0;

−(a−3 + a3)(a−6 − 1 + a6)(a−3 − a3)∆(a)xy, i = 11;
−(a−3 − a3)∆(a)xy, i = 15, 16;
(a−3 − a3)∆(a)xy, i = 17, 18;
0 otherwise.

Therefore it follows from (5.6) that

[[D]]− [[D′]] = (a−3 − a3)∆(a)xyφ′(a, x, y),

for a polynomial φ′(a, x, y) in Z[a−1, a, x, y]. Since w(D) = w(D′), we obtain

≪ D ≫ − ≪ D′ ≫= (a−3 − a3)∆(a)xyφ(a, x, y),

where φ(a, x, y) = a8w(D)φ′(a, x, y). □

Theorem 5.6. Let L be an oriented surface-link and let D be an oriented marked
graph diagram presenting L. Then the polynomial ≪ D ≫∈ Z[a−1, a, x, y], modulo
the ideal generated by ∆(a), is an invariant of L up to multiplication by powers of
(a−6 + 1 + a6)x+ y and x+ (a−6 + 1 + a6)y.

Proof. It follows from Theorem 4.3 and Propositions 5.1, 5.4 and 5.5. □

6 Specializations of the polynomial ≪ · ≫
Here we consider some specializations of the polynomial ≪ · ≫.

Letm be a non-negative integer and let I(am+1) be the ideal (am+1)Z[a−1, a, x, y]
of Z[a−1, a, x, y] generated by am + 1. We abbreviate f + I(am + 1) as f for
f ∈ Z[a−1, a, x, y] unless it makes confusion.

For an oriented marked graph diagram D, we denote by ≪ D ≫am+1 the poly-
nomial ≪ D ≫ modulo the ideal I(am + 1), i.e.,

≪ D ≫am+1 = ≪ D ≫ +I(am + 1) = ≪ D ≫ ∈ Z[a−1, a, x, y]/I(am + 1).

It follows from Theorem 4.3 that ≪ · ≫am+1 is an invariant for oriented marked
graphs satisfying the same conditions with (1)–(4) in Theorem 4.3. In particular,
for any positive integer µ and for any skein triple (D+, D−, D0) of link diagrams,

≪ Oµ ≫am+1= (a−6 + 1 + a6)µ−1 (6.7)

and

a−9 ≪ D+ ≫am+1 −a9 ≪ D− ≫am+1= (a−3 − a3) ≪ D0 ≫am+1 . (6.8)
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First we are interested in a case that m = 6 or m = 12, since if a6 + 1 = 0 or
a12 + 1 = 0 then ∆(a) = 0, where ∆(a) is the polynomial in (5.4).

Suppose m = 6. Then, (6.7) implies that for any positive integer µ,

≪ Oµ ≫a6+1= (−1)µ−1. (6.9)

Since a3 is a unit in Z[a−1, a, x, y]/I(a6 + 1), (6.8) implies that for any skein triple
(D+, D−, D0) of link diagrams,

≪ D+ ≫a6+1 + ≪ D− ≫a6+1= −2 ≪ D0 ≫a6+1 . (6.10)

Lemma 6.1. Let D be an oriented link diagram and let #D denote the number of
components of the link presented by D. Then ≪ D ≫a6+1 is 1 if #D is odd, or −1
if #D is even, i.e., ≪ D ≫a6+1= (−1)#D−1.

Proof. When we restrict ≪ · ≫a6+1 to the family of oriented link diagrams, it is an
oriented link invariant satisfying (6.9) and (6.10). On the other hand, (−1)#D−1 is
also such an invariant. We see that ≪ D ≫a6+1= (−1)#D−1 for any link diagram
D by considering a skein tree. □

Example 6.2. Consider the diagram 81 of a spun trefoil in Yoshikawa’s table [21].
From Lemma 6.1, it follows that

≪
??

?? ����

??
??

?

��
��
�
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟

81

≫a6+1

= x2 ≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫a6+1 +xy ≪ ??��

��
��CC

????
??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫a6+1

+ yx≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫a6+1 +y

2 ≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫a6+1

= x2 ≪ O2 ≫a6+1 +xy ≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫a6+1

+ yx≪ O3 ≫a6+1 +y
2 ≪ O2 ≫a6+1

= −x2 + xy + yx− y2 = −(x− y)2.

Theorem 6.3. Let D be an oriented marked graph diagram with h marked vertices,
and let L+(D) be the positive resolution of D. Then

≪ D ≫a6+1= ϵ(x− y)h,

where ϵ = (−1)#L+(D)−1.
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Proof. By (4.3),

≪ D ≫a6+1=
∑

σ∈S(D)

xσ(∞)yσ(0) ≪ Dσ ≫a6+1 . (6.11)

Let σ∗ be the state assigning T∞ to every marked vertex of D. Then Dσ∗ = L+(D).
By Lemma 6.1, ≪ Dσ∗ ≫a6+1= (−1)#L+(D)−1 = ϵ. Since σ∗(∞) = h and σ∗(0) = 0,
the state σ∗ contributes ϵxh in the right hand side of (6.11). Let σ be a state of
D, which is obtained from σ∗ by switching T∞ and T0 on k marked vertices. Then
#Dσ − #L+(D) ≡ k mod 2, and by Lemma 6.1, ≪ Dσ ≫a6+1= (−1)#Dσ−1 =
(−1)#L+(D)−1+k = ϵ(−1)k. Since σ(∞) = h − k and σ(0) = k, the contribution
xσ(∞)yσ(0) ≪ Dσ ≫a6+1 of σ is ϵ(−1)kxh−kyk. Since every state σ is obtained from
σ∗ by choosing each subset of the marked vertices of D and switching T∞ and T0
there, we see that ≪ D ≫a6+1= ϵ(x− y)h. □

Remark 6.4. From Theorem 6.3, we see that all information the invariant ≪
D ≫a6+1 has is the number of marked vertices of D and the parity of #L+(D). By
this reason or by Propositions 5.4 and 5.5 with ∆(a) = 0, we see that ≪ D ≫a6+1

is invariant under Yoshikawa moves Γ7 and Γ8. In order to make it invariant under
Yoshikawa move Γ6, we may consider it up to multiplication by powers of −x + y
and x− y. However, this makes ≪ D ≫a6+1 the same value for all D.

Suppose m = 12. Then for any positive integer µ,

≪ Oµ ≫a12+1= 1 (6.12)

and for any skein triple (D+, D−, D0) of link diagrams,

−a3 ≪ D+ ≫a12+1 +a
−3 ≪ D− ≫a12+1= (a−3 − a3) ≪ D0 ≫a12+1 . (6.13)

Lemma 6.5. For any link diagram D, ≪ D ≫a12+1= 1.

Proof. When we restrict ≪ · ≫a12+1 to the family of oriented link diagrams, it is an
oriented link invariant satisfying (6.12) and (6.13). On the other hand, the constant
function 1 is also such an invariant. Since the coefficients −a3 and a−3 in the left
hand side of (6.13) are units in Z[a−1, a, x, y]/I(a12 + 1), we have ≪ D ≫a12+1= 1
for any link diagram D. □

Theorem 6.6. Let D be an oriented marked graph diagram with h marked vertices.
Then

≪ D ≫a12+1= (x+ y)h.

Proof. By (4.3),

≪ D ≫a12+1=
∑

σ∈S(D)

xσ(∞)yσ(0) ≪ Dσ ≫a12+1 .

By Lemma 6.5, for any σ, ≪ Dσ ≫a12+1= 1. Since every state σ is obtained by
choosing each subset of the marked vertices of D for assignment of T∞, we see that
≪ D ≫a12+1= (x+ y)h. □
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Remark 6.7. By Theorem 6.6, the invariant ≪ D ≫a12+1 is determined by the
number of marked vertices. It is invariant under Yoshikawa moves Γ7 and Γ8. In
order to make it invariant under Yoshikawa move Γ6, we may consider it up to
multiplication by powers of x+y. However, this makes ≪ D ≫a12+1 the same value
for all D.

Now we consider another case that m = 9.
Suppose m = 9. Then for any positive integer µ,

≪ Oµ ≫a9+1= (a−6 + 1 + a6)µ−1 =

{
1 (µ = 1)
3µ−2(a−6 + 1 + a6) (µ ≥ 2)

and for any skein triple (D+, D−, D0) of link diagrams,

≪ D+ ≫a9+1 − ≪ D− ≫a9+1= (a3 − a−3) ≪ D0 ≫a9+1 .

Instead of studying ≪ D+ ≫a9+1, we here discuss a weaker version as follows.
Consider the ideal I(a9 + 1, a−6 + 1 + a6) of Z[a−1, a, x, y] generated by a9 + 1

and a−6 + 1 + a6. We denote by ≪ D+ ≫∗
a9+1 the polynomial ≪ D ≫ modulo the

ideal I(a9 + 1, a−6 + 1 + a6), i.e.,

≪ D ≫∗
a9+1 = ≪ D ≫ +I(a9+1, a−6+1+a6) ∈ Z[a−1, a, x, y]/I(a9+1, a−6+1+a6).

Note that the ideal I(a9 + 1, a−6 + 1 + a6) is equal to the ideal I(a6 − a3 + 1).
Then ≪ · ≫∗

a9+1 is an invariant of oriented marked graphs satisfying that for
any positive integer µ,

≪ Oµ ≫∗
a9+1=

{
1 (µ = 1)
0 (µ ≥ 2)

(6.14)

and for any skein triple (D+, D−, D0) of link diagrams,

≪ D+ ≫∗
a9+1 − ≪ D− ≫∗

a9+1= (a3 − a−3) ≪ D0 ≫∗
a9+1 . (6.15)

Lemma 6.8. Let D be an oriented link diagram and let ∇[D](z) be the Conway
polynomial. Then ≪ D ≫∗

a9+1= ∇[D](a3 − a−3).

Proof. When we restrict ≪ · ≫∗
a9+1 to the family of oriented link diagrams, it is an

oriented link invariant satisfying (6.14) and (6.15). On the other hand, ∇[·](a3−a−3)
is also such an invariant. Thus we have ≪ D ≫∗

a9+1= ∇[D](a3 − a−3). □

Theorem 6.9. Let D be an oriented marked graph diagram. Then

≪ D ≫∗
a9+1=

∑
σ∈S(D)

xσ(∞)yσ(0)∇[Dσ](a
3 − a−3).

Proof. By (4.3),

≪ D ≫∗
a9+1=

∑
σ∈S(D)

xσ(∞)yσ(0) ≪ Dσ ≫∗
a9+1 .

By Lemma 6.8, we have the result. □
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Example 6.10. Consider the diagram 81 of a spun trefoil in Yoshikawa’s table [21].

≪
??

?? ����

??
??

?

��
��
�
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟

81

≫∗
a9+1

= x2 ≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫∗

a9+1 +xy ≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫∗

a9+1

+ yx≪ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫∗

a9+1 +y
2 ≪ ??��

��
��CC

????
??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫∗

a9+1

= x2 ≪ O2 ≫∗
a9+1 +xy ≪ ??��

��
��CC

????
??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ≫∗

a9+1

+ yx≪ O3 ≫∗
a9+1 +y

2 ≪ O2 ≫∗
a9+1

= xy∇[ ??��
��

��CC
????

??����
??
??����

��
��
????��
��????⌝⌟ ⌝⌟ ](a3 − a−3)

= 9xy.

Remark 6.11. The polynomial≪ D ≫∗
a9+1 (∈ Z[a−1, a, x, y]/I(a9+1, a−6+1+a6))

is not invariant under Yoshikawa moves Γ6,Γ
′
6,Γ7 and Γ8. When we evaluate it with

x = 1 and y = 1, it becomes invariant under Γ6 and Γ′
6. In Section 7 we will observe

that ≪ D ≫∗
a9+1 (∈ Z[a−1, a, x, y]/I(a9 + 1, a−6 + 1 + a6)) is an invariant when we

restrict to “ribbon marked graphs”.

7 Ribbon marked graphs

Let D be a marked graph diagram. We call a pair of marked vertices of D a ribbon
pair if they are the vertices of a bigon in D and the markers are not parallel.

Definition 7.1. A marked graph diagram is called ribbon if the marked vertices
are divided into ribbon pairs. A marked graph is called ribbon if there is a ribbon
marked graph diagram presenting the marked graph.

For example, the marked graph diagrams 81 and 91 in Examples 4.5 and 4.6 are
ribbon.

A surface-link is called ribbon if it is obtained from a trivial 2-link by surgery
along some 1-handles attaching it. It is known that for any admissible ribbon marked
graph diagram D, the surface-link L(D) presented by D is a ribbon surface-link, and
conversely that for any ribbon surface-link L there is an admissible ribbon marked
graph diagram D such that L(D) is equivalent to L.

When D is ribbon, the positive resolution L+(D) and the negative resolution
L−(D) are isotopic diagrams.

Let D be an oriented ribbon marked graph diagram presenting a ribbon 2-knot.
Let n be the number of ribbon pairs of marked vertices. The number of marked
vertices is 2n, and L+(D) and L−(D) are diagrams of a trivial link with n + 1
components.
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Theorem 7.2. Let D be an admissible oriented ribbon marked graph diagram with
2n marked vertices. If L(D) is a 2-knot, then ≪ D ≫∗

a9+1 is a multiple of (xy)n, and
(xy)−n ≪ D ≫∗

a9+1 is determined from the equivalence class of the ribbon 2-knot.
Thus, the restriction of the invariant ≪ · ≫∗

a9+1 of marked graphs to ribbon
marked graphs presenting 2-knots is an invariant of ribbon 2-knots, up to multipli-
cation by powers of xy.

Proof. (1) Assume that n ≥ 1. Let σ∗ (or σ∗∗, resp.) be the state of D assigning
T (∞) (or T (0), resp.) to every marked vertex. There is a unique state, say σ0,
in S(D) − {σ∗, σ∗∗} such that Dσ0 is a diagram of a knot. For any state σ in
S(D) − {σ∗, σ∗∗, σ0}, Dσ is a disjoint union Dσ0 ⊔ Oµ for some µ = µ(σ) ≥ 1. By
Proposition 6.9,

≪ D ≫∗
a9+1=

∑
σ∈S(D)

xσ(∞)yσ(0)∇[Dσ](a
3 − a−3) = xσ0(∞)yσ0(0)∇[Dσ0 ](a

3 − a−3).

Since σ0 assigns T (∞) to one marked vertex and T (0) to another marked vertex for
each ribbon pair of marked vertices, we have σ0(∞) = σ0(0) = n. Thus

≪ D ≫∗
a9+1= (xy)n∇[Dσ0 ](a

3 − a−3).

Let K be the knot presented by the knot diagram Dσ0 . Then

(xy)−n ≪ D ≫∗
a9+1= ∇[K](a3 − a−3). (7.16)

(2) When n = 0, D is a diagram of a trivial knot and ≪ D ≫∗
a9+1= 1. The

2-knot L(D) is a trivial 2-knot. Let K be the trivial knot. Then the same equality
with (7.16) holds.

In either case (1) or (2), the ribbon 2-knot L(D) is equivalent to a 2-knot in a
normal form in the sense of [8] such that it is symmetric with respect to R3

0 and the
cross-sectional knot appearing at R3

0 is K. For such a knot K it is known that the
Conway polynomial ∇[K](z) is determined from the equivalence class of the ribbon
2-knot. In particular, when the 2-knot is trivial, ∇[K](z) = 1. Thus we see that
(xy)−n ≪ D ≫∗

a9+1 is determined from the equivalence class of the ribbon 2-knot
L(D). □

Let ϖ = exp(2π
√
−1

18 ) ∈ C, a primitive 18th root of unity. Since ϖ9 + 1 =
ϖ−6 + 1 + ϖ6 = 0, evaluation of ≪ D ≫∗

a9+1 with a = ϖ is well-defined. Define
P ∗
9 (D) by

P ∗
9 (D) =≪ D ≫∗

a9+1 |a=ϖ ∈ C[x, y].

Since ϖ−3 = ϖ3 =
√
−3, it follows from Theorem 6.9 that

P ∗
9 (D) =

∑
σ∈S(D)

xσ(∞)yσ(0)∇[Dσ](
√
−3).

From Theorem 7.2 and its proof, we obtain the following.

Theorem 7.3. Let D be an admissible oriented ribbon marked graph diagram with
2n marked vertices. If L(D) is a 2-knot, then P ∗

9 (D) is a monomial c(xy)n and the
coefficient c ∈ C is determined from the equivalence class of the ribbon 2-knot.
When the 2-knot is a trivial 2-knot, then c = 1.

For example, for the marked graph diagram 81 in Example 4.5, the complex
number c is 9. Thus we see that the 2-knot is not equivalent to a trivial 2-knot.
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8 Proof of Lemma 5.2

Let G be an oriented tangled trivalent graph diagram in a 2-disk D2 with the end
points s1, . . . , s6 as shown in Figure 13 such that there are no connected components
as diagrams in IntD2. If G has no crossings, then G forms a tiling, say G∗, of D2,
where we regard {s1, . . . , s6} and {sisi+1|1 ≤ i ≤ 6} as trivalent vertices and edges
of the tiling G∗. Here sisi+1 means an edge on ∂D2 whose end points are si and
si+1, and we assume s7 = s1.

G

1s

2s

3s

4s

5s

6
s

Figure 13: An oriented tangled trivalent graph diagram G in D2

Let V,E and F be the numbers of the vertices, edges and faces of the tiling
G∗ of D2, respectively, i.e., V and E are the number of vertices and edges of G∗,
and F is the number of regions of D2\G∗. For each integer a ≥ 1, let Fa denote
the number of faces of the tiling G∗ that are a-gons. By the definition of oriented
tangled trivalent graph diagram, there are only 2i-gons (i ≥ 1). Then

F = F2 + F4 + F6 + F8 + F10 + F12 + · · · ,

E =
1

2
(6 + 2F2 + 4F4 + 6F6 + 8F8 + 10F10 + 12F12 + · · · ) = 3 + T,

V =
2

3
E =

2

3
(3 + T ) = 2 +

2

3
T, where T :=

∞∑
i=1

iF2i.

Considering the Euler characteristic of the tiling G∗ of D2, we have

1 = V −E + F = 2 +
2

3
T − (3 + T ) + F = −1− 1

3
T + F

= −1 +
1

3
(2F2 + F4 − F8 − 2F10 − 3F12 − · · · ).

This gives

2F2 + F4 − 6 = F8 + 2F10 + 3F12 + · · · . (8.17)

For each i with 1 ≤ i ≤ 6, we denote by sisi+1 a proper simple arc in D2 whose
end points are si and si+1. Note that when G has no 2-gons in IntD2, any 2-gon in
G∗, if there exists, is sisi+1 ∪ sisi+1 for some i.

Lemma 8.1. Let G be an oriented tangled trivalent graph diagram in D2 with
the end points s1, . . . , s6 as shown in Figure 13 such that there are no connected
components as diagrams in IntD2. Suppose that G has no crossings, 2-gons and
4-gons in IntD2. Then the tiling G∗ of D2 is one of the tilings in Figure 14.



24 Y. Joung, S. Kamada, A. Kawauchi & S. Y. Lee

2

6

6

4

4

4 4

4

4

2

2

1s

1s

2s

6s 4s

3s

5s

2s

3s

4s
6s

5s

1s

2s

6s 4s

3s

5s

4

4

2

2

1s

2s

3s

4s
6s

5s

1s

2s

3s

4s

5s

2

2

2

22

2

2

44
4

4

6

6s

3s

2s

1s

6s

5s

4s

T1 T2 T3

T4 T0 T5

>

>

>

>

>

>

>

>

>

>

>

> >

>>

> >

>

>

>

>

Figure 14: Tilings G∗ of D2 by G

Proof. It follows from (8.17) that

2F2 + F4 − 6 ≥ 0. (8.18)

Since there are no 2-gons in IntD2, we see that one of two edges of any 2-gon in
G lies in the boundary ∂D2. Since G has only trivalent vertices, any two distinct
2-gones cannot share a vertex si(1 ≤ i ≤ 6) in common. This gives that 0 ≤ F2 ≤ 3.

Case I. Suppose F2 = 3. The tiling G∗ is T1 or T2 in Figure 14.

Case II. Suppose F2 = 2. It follows from (8.18) that F4 ≥ 2.
(i) Suppose that the 2-gons are {s1s2∪s1s2, s3s4∪s3s4} or they are in a position

obtained by rotating {s1s2∪s1s2, s3s4∪s3s4}. Consider the case of {s1s2∪s1s2, s3s4∪
s3s4}. Then edges s6s1, s1s2, s2s3, s3s4, s4s5 are edges of the same n-gon for some
n > 6. Since any 4-gon of G∗ must have s5s6 as an edge, we have F4 ≤ 1. This
yields a contradiction. Similarly, when the 2-gons are in a position that is obtained
by rotating {s1s2 ∪ s1s2, s3s4 ∪ s3s4}, we have a contradiction. Thus case (i) does
not occur.

(ii) Suppose that the 2-gons are {s1s2∪s1s2, s4s5∪s4s5} or they are in a position
obtained by rotating {s1s2∪s1s2, s4s5∪s4s5}. Consider the case of {s1s2∪s1s2, s4s5∪
s4s5}. Let A be a 4-gon in this tiling. Since there are no 4-gons in IntD2, one of
the four edges of A have to be s2s3, s3s4, s5s6 or s1s6. If s2s3 or s6s1 is an edge of
A, then A = s6s1 ∪ s1s2 ∪ s2s3 ∪ s3s6. Then the tiling is T3 in Figure 14. If s3s4
or s5s6 is an edge of A, then by the same reason, the tiling is T3. Thus we have T3
in case this case. For the other cases, the tilings are obtained by rotating T3, which
are T4 and T0.

Case III. Suppose F2 = 1. It follows from (8.18) that F4 ≥ 4.
Consider a case where the 2-gon is s1s2 ∪ s1s2.
(i) If s2s3 or s6s1 is an edge of a 4-gon A in G∗, then A = s6s1 ∪ s1s2 ∪ s2s3 ∪

s3s6. Since F4 ≥ 4, there are three 4-gons besides A. Each of them has edge
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G

p1 1s
2s

3s

4s

5s
6s

p2 p3

p6 p5 p4

φ

Figure 15: A homeomorphism ϕ : I2 → D2

s3, s4, s4s5, s5s6. However, a 4-gon having s3s4 or s5s6 is a 4-gon s5s6∪s6s3∪s3s4∪
s4s5. Then the tiling is T3, and this contradicts to the assumption F2 = 1. Thus
this is not the case.

(ii) If neither s2s3 nor s6s1 is an edge of a 4-gon in G∗, then F4 ≤ 3. This
contradicts to F4 ≥ 4. Thus this is not the case.

Case IV. Suppose F2 = 0. It follows from (8.18) that F4 ≥ 6. Since each 4-gon
has an edge in ∂D2, we have T5. □

Proof of Lemma 5.2. Let T be a 3-tangle diagram with the boundary (a) in
Figure 7 such that there are no crossings, 2-gons and 4-gons and there are no con-
nected components as diagrams in IntD2. Let p1, . . . , p6 be the end points of T and
let ϕ : I2 → D2 be a homeomorphism from I2 onto a 2-disk D2 with ϕ(pi) = si
(1 ≤ i ≤ 6). See Figure 15. PuttingG = ϕ(T ), we obtain the result from Lemma 8.1.
□

9 Proof of Lemma 5.3

Let G be an oriented tangled trivalent graph diagram in a 2-disk D2 with the end
points t1, . . . , t8 as shown in Figure 16 such that there are no connected components
as diagrams in IntD2. If G has no crossings, then G forms a tiling, say G∗, of D2,
where we regard {t1, . . . , t8} and {titi+1 | 1 ≤ i ≤ 8} as trivalent vertices and edges
of the tiling G, respectively. Here titi+1 means an edge of ∂D2 whose end points are
ti and ti+1, and we assume t9 = t1.

G

t 1

t 8

t 4

t5

t 2

t 7

t 3

t6

Figure 16: A 4-tangle of trivalent graph diagram
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Let V,E and F be the numbers of the vertices, edges and faces of the tiling G∗,
respectively. Then

F = F2 + F4 + F6 + F8 + F10 + F12 + F14 + · · · ,

E =
1

2
(8 + 2F2 + 4F4 + 6F6 + 8F8 + 10F10 + 12F12 + 14F14 + · · · ) = 4 + T,

V =
2

3
E =

2

3
(4 + T ) =

8

3
+

2

3
T, where T =

∞∑
i=1

iF2i.

Considering the Euler characteristic of the tiling G∗ of D2, we have

1 = V −E + F =
8

3
+

2

3
T − (4 + T ) + F = −4

3
− 1

3
T + F.

This gives
2F2 + F4 − 7 = F8 + 2F10 + 3F12 + 4F14 + · · · . (9.19)

For each i with 1 ≤ i ≤ 8, we denote by titi+1 a proper simple arc in D2 whose
end points are ti and ti+1. Note that when G has no 2-gons in IntD2, any 2-gon in
G∗, if there exists, is titi+1 ∪ titi+1 for some i.

Lemma 9.1. Let G be an oriented tangled trivalent graph diagram in D2 with
the end points t1, . . . , t8 as shown in Figure 16 such that there are no connected
components as diagrams in IntD2. Suppose that G has no crossings, 2-gons and
4-gons in IntD2. Then the tiling G∗ is one of the tilings in Figures 17, 18, 19, 20
and 21.

Proof. Since there are no 2-gons in IntD2, one of two edges of any 2-gon in G lies
in ∂D2. Since G∗ has only trivalent vertices, any two distinct 2-gons cannot share
a vertex ti (1 ≤ i ≤ 8) in common. This gives that 0 ≤ F2 ≤ 4.

Case I. Suppose F2 = 4. Then G∗ is one of the tilings shown in Figure 17.

2 2

2 2

8

1t 4t

5t8t

2t 3t

7t 6t

2

2

2
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1t 4t

5t8t

2t 3t

7t 6t

Figure 17: F2 = 4

Case II. Suppose F2 = 3. It follows from (9.19) that 0 ≤ F8 ≤ F4 − 1. So
F4 ≥ 1.

(i) Suppose that the three 2-gons are {t1t2 ∪ t1t2, t3t4 ∪ t3t4, t5t6 ∪ t5t6} or they
are in a position obtained by rotating {t1t2 ∪ t1t2, t3t4 ∪ t3t4, t5t6 ∪ t5t6}.

Consider the case of {t1t2∪ t1t2, t3t4∪ t3t4, t5t6∪ t5t6}. Edges t8t1, t1t2, t2t3, t3t4,
t4t5, t5t6, t6t7 are edges of the same n-gon for some n ≥ 8. Thus by (9.19), we have
F4 ≥ 2. On the other hand, any 4-gon of G∗ has t7t8 as an edge. Thus F4 ≤ 1. This
is a contradiction. In the other cases of (i), we have a contradiction. Thus the case
(i) does not occur.
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(ii) Suppose that the three 2-gons are {t1t2 ∪ t1t2, t3t4 ∪ t3t4, t6t7 ∪ t6t7} or they
are in a position obtained by rotating {t1t2 ∪ t1t2, t3t4 ∪ t3t4, t6t7 ∪ t6t7}.

Consider the case of {t1t2∪ t1t2, t3t4∪ t3t4, t6t7∪ t6t7}. Edges t8t1, t1t2, t2t3, t3t4,
t4t5 are edges of the same n-gon for some n ≥ 6. Since F4 ≥ 1, there is a 4-gon A in
G∗. Since A has t5t6 or t7t8 as an edge, we have A = t5t6 ∪ t6t7 ∪ t7t8 ∪ t8t5. Then
G∗ is one of the tilings in Figure 18. In the other cases of (ii), we have the other
tilings in Figure 18.
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Figure 18: F2 = 3

Case III. F2 = 2. It follows from (9.19) that 0 ≤ F8 ≤ F4 − 3 and so F4 ≥ 3.

(i) Suppose that the 2-gons are {t1t2 ∪ t1t2, t3t4 ∪ t3t4} or in a position ob-
tained by rotating them. Consider the case of {t1t2 ∪ t1t2, t3t4 ∪ t3t4}. Edges
t8t1, t1t2, t2t3, t3t4, t4t5 are edges of the same n-gon for some n ≥ 6. It implies
F4 ≤ 1 as before. This contradicts to F4 ≥ 3. We have a contradiction in other
cases of (i). Thus the case (i) does not occur.

(ii) Suppose that the 2-gons are {t1t2∪ t1t2, t4t5∪ t4t5} or in a position obtained
by rotating them. Consider the case of {t1t2 ∪ t1t2, t4t5 ∪ t4t5}.

(a) If t2t3 or t8t1 is an edge of a 4-gon, then the 4-gon is t8t1 ∪ t1t2 ∪ t2t3 ∪ t3t8.
Edges t7t8, t8t3, t3t4, t4t5, t5t6 are edges of the same n-gon for some n ≥ 6. Then
another 4-gon, if there exists, must have t6t7 as an edge. Thus F4 ≤ 2, which
contradicts to F4 ≥ 3.

(b) If t3t4 or t5t6 is an edge of a 4-gon, then by the same argument with (a), we
have a contradiction.

By (a) and (b), if there is a 4-gon then it has t6t7 or t7t8. Thus F4 ≤ 2, which
contradicts to F4 ≥ 3. Therefore we see that (ii) does not occur.

(iii) Suppose that the 2-gons are {t1t2∪ t1t2, t5t6∪ t5t6} or in a position obtained
by rotating them. Consider the case of {t1t2 ∪ t1t2, t5t6 ∪ t5t6}.

If none of t2t3, t4t5, t6t7, t8t1 is an edge of a 4-gon, then F4 ≤ 2, which contradicts
to F4 ≥ 3. Thus, at least one of them is an edge of a 4-gon. Assume that t2t3 is so.
Then t8t1∪ t1t2∪ t2t3∪ t3t8 is a 4-gon. Beside of this 4-gon, there are at least two 4-
gons. Since one of them has t4t5 or t6t7 as an edge, it is the 4-gon t4t5∪t5t6∪t6t7∪t7t4.
Then we have a tiling in Figure 19. When one of t4t5, t6t7, t8t1 is an edge of a 4-gon,



28 Y. Joung, S. Kamada, A. Kawauchi & S. Y. Lee

we have the same tiling. For the other cases of (iii), we have a tiling by rotation.
Thus the possible tilings are shown in the figure.
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Figure 19: F2 = 2

Case IV. Suppose F2 = 1. It follows from (9.19) that F4 ≥ 5. Consider the
case that the 2-gon is t1t2 ∪ t1t2. Edges t8t1, t1t2, t2t3 are edges of the same n-gon,
say A, for some n ≥ 4.

(i) Suppose that A is a 4-gon. Namely, A = t8t1 ∪ t1t2 ∪ t2t3 ∪ t3t8 is a 4-gon in
G∗. Besides A, there must be at least four 4-gons in G∗. Since each of which has
one of t3t4, t4t5, t5t6, t6t7, t7t8 as an edge. Thus at least one of t3t4, t7t8 is an edge
of a 4-gon. Then A′ := t3t4 ∪ t4t7 ∪ t7t8 ∪ t8t3 is a 4-gon in G∗. Besides A,A′, there
must be at least four 3-gons in G∗. Since each of which has one of t4t5, t5t6, t6t7 as
an edge. Then A′′ := t4t5 ∪ t5t6 ∪ t6t7 ∪ t7t4 is a 4-gon in G∗. Then t5t6 is an edge
of a 2-gon and we have F4 = 3. This contradicts to F4 ≥ 5.

(ii) Suppose that A is a 6-gon. Since F4 ≥ 5 and since each 4-gon has one
of t3t4, t4t5, t5t6, t6t7, t7t8 as an edge, the tiling G∗ must be one of the tilings in
Figure 20.
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Figure 20: F2 = 1

(iii) Suppose that A is an n-gon with n ≥ 8. Then by (9.19) we have F4 ≥ 6.
On the other hand, since each 4-gon has one of t3t4, t4t5, t5t6, t6t7, t7t8 as an edge,
F4 ≤ 5. This is a contradiction. Thus (iii) does not occur.

Case V. Suppose F2 = 0.
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(i) Suppose Fk = 0 for all k ≥ 8. It follows from (9.19) that F4 = 7. The seven
4-gons consecutively appear along ∂D2. There are seven edges that are edges of the
seven 4-gons and they are disjoint from ∂D2. The seven edges are edges of the same
n-gon for some n ≥ 8. This contradicts the hypothesis.

(ii) Suppose Fk ̸= 0 for some k ≥ 8. It follows from (9.19) that F4 ≥ 8. Since
each 4-gon has an edge in ∂D2, the tiling G is as in Figure 21. □
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Figure 21: F2 = 0

Now we are in a position to complete the proof of Lemma 5.3.

Proof of Lemma 5.3. Let T be a 4-tangle diagram with the boundary (a) in
Figure 7 such that there are no crossings, 2-gons and 4-gons cut that there are
no connected components as diagrams in IntD2. Let q1, . . . , q8 be the end points
of T and let ϕ : I2 → D2 be a homeomorphism from I2 onto a 2-disk D2 with
ϕ(qi) = ti(1 ≤ i ≤ 8). See Figure 22. Putting G = ϕ(T ), we obtain the result from
Lemma 9.1. □
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Figure 22: A homeomorphism ϕ : I2 → D2
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