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Abstract

On previous works, we enumerated the prime links with lengths up to 10 and the
prime link exteriors with lengths up to 9. In this paper, we make an enumeration
of the first 133 closed 3-manifolds which are the 3-manifolds with lengths up to 9
by using the enumeration of the prime link exteriors.
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1 Introduction

In [4] we suggested a method of enumerating the prime links, the prime link
exteriors and the closed connected orientable 3-manifolds. The idea is to in-
troduce a well-order on the set of links by embedding it into a well-ordered set
of lattice points. The set of these lattice points is further embedded in a set of
positive rational numbers in [5]. This well-order also naturally induces a well-
order on the set of prime link exteriors and eventually induces a well-order on
the set of closed connected orientable 3-manifolds. By using this method, the
first 28, 26 and 26 lattice points of lengths up to 7 corresponding to the prime
links, the prime link exteriors and the closed connected orientable 3-manifolds
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are respectively tabulated without any computer aid in [4]. We enlarged the
table of the first 28 lattice points of lengths up to 7 corresponding to the prime
links into that of the first 443 lattice points of lengths up to 10 in [7] and en-
larged the table of the first 26 lattice points of lengths up to 7 corresponding
to the prime link exteriors into that of the first 142 lattice points of lengths
up to 9. A tentative goal of this project is to enumerate the lattice points of
lengths up to 10 corresponding to the closed connected orientable 3-manifolds
by hand to know which invariant is useful in handcalculations. In this paper,
we enumerate the first 133 lattice points of lengths up to 9 corresponding to
the closed connected orientable 3-manifolds.

2 Definition of a well-order on the set of links

Let Z be the set of integers, and Zn the product of n copies of Z. We put

X =
∞∐

n=1
Zn = {(x1, x2, . . . , xn) | xi ∈ Z, n = 1, 2, . . . }.

We call elements of X lattice points. For a lattice point x = (x1, x2, . . . , xn) ∈
X, we put ℓ(x) = n and call it the length of x. Let |x| and |x|N be the lattice
points determined from x by the following formulas:

|x| = (|x1|, |x2|, . . . , |xn|) and |x|N = (|xj1 |, |xj2 |, . . . , |xjn|),
where |xj1 | 5 |xj2 | 5 · · · 5 |xjn| and {j1, j2, . . . , jn} = {1, 2, . . . , n}.

We define a well-order (called a canonical order [4]) on X as follows:

Definition 2.1. We define a well-order on Z by 0 < 1 < −1 < 2 < −2 < 3 <
−3 < · · · , and for x,y ∈ X we define x < y if we have one of the following
conditions (1)-(4):

(1) ℓ(x) < ℓ(y).
(2) ℓ(x) = ℓ(y) and |x|N < |y|N by the lexicographic order on the natural
number order.
(3) |x|N = |y|N and |x| < |y| by the lexicographic order on the natural number
order.
(4) |x| = |y| and x < y by the lexicographic order on the well-order of Z
defined above.

For x = (x1, x2, . . . , xn) ∈ X, we put

min|x| = min15i5n|xi| and max|x| = max15i5n|xi|.
Let β(x) be the (max|x|+ 1)-string braid determined from x by the identity

β(x) = σ
sign(x1)
|x1| σ

sign(x2)
|x2| · · · σsign(xn)

|xn| ,

where we define σ
sign(0)
|0| = 1. We note that max|x| + 1 is the minimum string

number of the braid indicated by the right-hand side of the identity. Let
clβ(x) be the closure of the braid β(x). Let L be the set of all links modulo
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equivalence, where two links are equivalent if there is a (possibly orientation-
reversing) homeomorphism sending one to the other. Then we have a map

clβ : X → L

sending x to clβ(x). By Alexander’s braiding theorem, the map clβ is surjec-
tive. For L ∈ L, we define a map

σ : L → X

by σ(L) = min{x ∈ X | clβ(x) = L}. Then σ is a right inverse of clβ and
hence is injective. Now we have a well-order on L by the following definition:

Definition 2.2. For L,L′ ∈ L, we define L < L′ if σ(L) < σ(L′).

For a link L ∈ L, we call ℓ(σ(L)) the length of L.

3 A method of a tabulation of prime links and prime link exteriors

Let Lp be the subset of L consisting of the prime links, where we consider
that the 2-component trivial link is not prime. We use the injection σ for our
method of a tabulation of Lp. For k ∈ Z, let kn and −kn be the lattice points
determined by

kn = (k, k, . . . , k︸ ︷︷ ︸
n

) and − kn = (−k)n,

respectively.
For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , ym) ∈ X, let xT , −x, (x, y) and

δ(x) be the lattice points determined by the following formulas:

xT = (xn, . . . , x2, x1), −x = (−x1,−x2, . . . ,−xn),

(x, y) = (x1, . . . , xn, y1, . . . , ym), δ(x) = (x′
1, x

′
2, . . . , x

′
n),

where x′
i =

 sign(xi)(max|x| + 1 − |xi|) (xi ̸= 0)

0 (xi = 0).

A point of our argument on a tabulation of prime links is to define some
transformations between lattice points. We make this definition as follows:

Definition 3.1. Let x, y, z, w ∈ X, k, l, n ∈ Z with n > 0 and ε = ±1. An
elementary transformation on lattice points is one of the following operations
(1)-(12) and their inverses (1)−-(12)−.

(1) (x, k, −k, y) → (x, y)
(2) (x, k, y) → (x, y), where |k| > max|x|, max|y|.
(3) (x, k, l, y) → (x, l, k, y), where |k| > |l| + 1 or |l| > |k| + 1.
(4) (x, εkn, k + 1, k, y) → (x, k + 1, k, ε(k + 1)n, y), where k(k + 1) ̸= 0.
(5) (x, k, ε(k+1)n, −k, y) → (x, −(k+1), εkn, k+1, y), where k(k+1) ̸= 0.
(6) (x, y) → (y, x)
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(7) x → xT

(8) x → −x
(9) x → δ(x)
(10) (1n, x, ε, y) → (1n, y, ε, x), where min|x| = 2 and min|y| = 2.
(11) (k2, x, y, −k2, z, w) → (−k2, x, wT , k2, z, yT ), where max|x| < k <
min|y|, max|z| < k < min|w| and x,y, z or w may be empty.
(12) (x, k, (k + 1)2, k, y) → (x, −k, −(k + 1)2, −k, yT ), where max|x| <
k < min|y| and x or y may be empty.

A meaning of the transformations of Definition 3.1 is given by the following
lemma (See [4,7]):

Lemma 3.2. If a lattice point x is transformed into a lattice point y by an el-
ementary transformation, then we have clβ(x) = clβ(y) (modulo a split union
of a trivial link for (1), (2), (9)).

The outline of a tabulation of prime links is the following (See [4,7]
for the details): Let ∆ be the subset of X consisting of 0, 1m for m = 2
and (x1, x2, . . . , xn), where n = 4, x1 = 1, 1 5 |xi| 5 n

2
, |xn| = 2 and

{|x1|, |x2|, . . . , |xn|} = {1, 2, . . . , max|x|}. Then we have ♯{y ∈ ∆|y < x} < ∞
for every x ∈ ∆ and have σ(Lp) ⊂ ∆. First, we enumerate the lattice points
of ∆ under the canonical order and then we omit x ∈ ∆ from the sequence if
clβ(x) is a non-prime link or a link which has already appeared in the table
of prime links. By using Lemma 3.2, we see that if x is transformed into a
smaller one, then x must be removed from the sequence. We can find most of
the omittable lattice points in this way. In [7], we show a table of prime links
with lengths up to 10.

Next we enumerate the prime link exteriors with lengths up to 9. Since a
knot is determined by its exterior by the Gordon-Luecke Theorem [2], we clas-
sify the exteriors of two or more component links. We obtain a table of prime
link exteriors, by omitting 72

7, 7
2
8, 8

3
7, 8

3
8, 82

16, 8
2
15, 9

2
43, 92

44, 9
2
49, 9

3
13, 9

3
14, 9

3
19, 9

3
18, 9

3
17

from the table in [7] and replacing the rest of the links with their exteriors
because the exteriors of the above 14 links have already appeared (See [8]).
So we have the following table of prime link exteriors:

O < 22
1 < 31 < 42

1 < 41 < 51 < 52
1 < 62

1 < 52 < 62 < 63
3 < 63

1 < 63 < 63
2 < 62

3 <
71 < 62

2 < 72
1 < 72

4 < 72
2 < 72

5 < 72
6 < 61 < 76 < 77 < 73

1 < 82
1 < 73 < 82 < 83

1 <
819 < 820 < 85 < 75 < 87 < 821 < 810 < 83

9 < 83
5 < 816 < 89 < 83

2 < 817 < 83
6 <

83
10 < 83

4 < 818 < 72
3 < 82

5 < 82
9 < 82

8 < 82
12 < 82

13 < 82
7 < 82

10 < 82
11 < 84

3 < 84
2 <

84
1 < 82

14 < 812 < 91 < 82
2 < 92

1 < 92
13 < 92

51 < 92
19 < 92

50 < 82
3 < 92

2 < 92
52 <

92
20 < 92

55 < 92
31 < 92

53 < 92
54 < 82

4 < 92
23 < 92

57 < 92
35 < 92

40 < 92
5 < 92

14 < 92
21 <

92
34 < 92

37 < 92
59 < 92

29 < 92
39 < 92

61 < 92
41 < 92

42 < 86 < 911 < 943 < 944 < 936 <
942 < 72 < 814 < 926 < 84 < 83

3 < 93
6 < 93

2 < 93
8 < 945 < 932 < 93

11 < 88 <
920 < 93

1 < 74 < 811 < 927 < 813 < 815 < 924 < 930 < 93
16 < 93

15 < 93
4 < 93

10 <
93

20 < 93
12 < 93

21 < 933 < 946 < 934 < 947 < 931 < 928 < 940 < 92
11 < 917 < 922 <

93
5 < 93

9 < 929 < 92
12 < 82

6 < 92
25.
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Table 1

4 A method of a tabulation of 3-manifolds

The exteriors of the prime links in Table 1 are all simple manifolds and hence
are hyperbolic or special Seifert manifolds. Thus, the fundamental groups of
these prime link exteriors are mutually non-isomorphic (cf. Proposition (4.6) of
[4]), so that the prime links in Table 1 are π-minimal links, where a π-minimal
link means a prime link whose fundamental group is the first appearing group
up to isomorphisms in the canonical ordered set of prime links. We make a
list of closed connected orientable 3-manifolds by constructing a sequence of
3-manifolds obtained by the 0-surgery of the links in Table 1 and removing
the manifolds which have already appeared (See [4]). Let χ(L, 0) denote the
manifold obtained by the 0-surgery of a link L. We classify χ(L, 0) for L in Ta-
ble 1 according to the first homology group H1(χ(L, 0)). There are 10 types of
groups 0, Z, Z⊕Z, Z⊕Z⊕Z, Z⊕Z2⊕Z2, Z2, Z2⊕Z2, Z3⊕Z3, Z4, Z4⊕Z4

and we have respectively 16, 62, 16, 4, 5, 7, 15, 7, 5, 5 links with these
types of groups.

Case 1. H1(χ(L, 0)) ∼= 0.

We enumerate the manifolds with H1(χ(L, 0)) ∼= 0. The links with this
condition are the following:

22
1 < 72

1 < 72
2 < 82

8 < 82
7 < 92

19 < 92
50 < 92

52 < 92
54 < 92

35 < 92
21 < 92

34 < 92
39 <

92
42 < 92

11 < 92
12.

For each link L, we calculate τ5(χ(L, 0)), the 3-manifold invariant of Witten
and Reshetikhin-Turaev in Kirby and Melvin’s paper [9]:

τ5(χ(22
1, 0)) = C(1 + (s−2 + 2 + s2) · 1),

τ5(χ(72
1, 0)) = C(1 + (s−2 + 2 + s2)(2 + 3s − 2s2 + s3)),

τ5(χ(72
2, 0)) = C(1 + (s−2 + 2 + s2)(2s + 2s2 − s3)),

τ5(χ(82
8, 0)) = C(1 + (s−2 + 2 + s2)(1 + 5s2 − 5s3)),

τ5(χ(82
7, 0)) = C(1 + (s−2 + 2 + s2)(1 + 5s − 5s2)),

τ5(χ(92
19, 0)) = C(1 + (s−2 + 2 + s2)(3 − 4s + s2 + 2s3)),

τ5(χ(92
50, 0)) = C(1 + (s−2 + 2 + s2)(2s − 3s2 − s3)),

τ5(χ(92
52, 0)) = C(1 + (s−2 + 2 + s2)(−3 + 3s − 2s2 + s3)),

τ5(χ(92
54, 0)) = C(1 + (s−2 + 2 + s2)(−3s + 2s2 − s3)),

τ5(χ(92
35, 0)) = C(1 + (s−2 + 2 + s2)(7s − 8s2 + 4s3)),

τ5(χ(92
21, 0)) = C(1 + (s−2 + 2 + s2)(−2 + 6s − 4s2 + 2s3)),

τ5(χ(92
34, 0)) = C(1 + (s−2 + 2 + s2)(−3 + 3s + 3s2 − 4s3)),

τ5(χ(92
39, 0)) = C(1 + (s−2 + 2 + s2)(−3 + 8s − 7s2 + s3)),

τ5(χ(92
42, 0)) = C(1 + (s−2 + 2 + s2)(−4 + 5s + 5s2 − 5s3)),

τ5(χ(92
11, 0)) = C(1 + (s−2 + 2 + s2)(−3 + 8s − 7s2 + s3)),
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τ5(χ(92
12, 0)) = C(1 + (s−2 + 2 + s2)(−3s + 7s2 − 6s3)),

where C = 4
5
sin2 π

5
, s = e

πi
5 , and we conclude that the manifolds are different

from each other except the following three cases:

τ5(χ(92
52, 0)) ≡ τ5(χ(92

54, 0)), τ5(χ(92
34, 0)) ≡ τ5(χ(92

12, 0)),
τ5(χ(92

39, 0)) ≡ τ5(χ(92
11, 0)),

where α ≡ β means α = β or α = β̄ for complex values α, β and we say α is
equivalent to β. For these manifolds, we compute τ7(χ(L, 0)) in [9]:

τ7(χ(92
52, 0)) = C(1 − 2[3] + [3]2 + [2](−3 + s − 2s2 + s3 + 2s4)),

τ7(χ(92
54, 0)) = C(1 − 2[3] + [3]2 + [2](5 − s + 8s2 − 3s3 − 6s5)),

τ7(χ(92
34, 0)) = C(1− 2[3] + [3]2 + [2](−3 + 8s + 5s2 − 6s3 + 9s4 − 14s5)),

τ7(χ(92
12, 0)) = C(1− 2[3] + [3]2 + [2](−2− 8s + 15s2 − 17s3 + 7s4 − 6s5)),

τ7(χ(92
39, 0)) = C(1−2[3]+ [3]2 +[2](−3+8s− 16s2 +15s3 −12s4 +7s5)),

τ7(χ(92
11, 0)) = C(1 − 2[3] + [3]2 + [2](4 + 8s − 9s2 + 15s3 − 5s4)),

where C = 4
7
sin2 π

7
, [2] = s−1 + s, [3] = s−2 + 1 + s2, s = e

πi
7 . Since the values

for the above three pairs are not equivalent to each other, we have the enu-
meration of 3-manifolds in Case 1.

Case 2. H1(χ(L, 0)) ∼= Z.

We enumerate the manifolds with H1(χ(L, 0)) ∼= Z. The links with this
condition are the following:

O < 31 < 41 < 51 < 52 < 62 < 63 < 71 < 61 < 76 < 77 < 73 < 82 < 819 <
820 < 85 < 75 < 87 < 821 < 810 < 83

5 < 816 < 89 < 817 < 83
6 < 818 < 812 <

91 < 86 < 911 < 943 < 944 < 936 < 942 < 72 < 814 < 926 < 84 < 93
2 < 945 <

932 < 88 < 920 < 93
1 < 74 < 811 < 927 < 813 < 815 < 924 < 930 < 93

10 < 933 <
946 < 934 < 947 < 931 < 928 < 940 < 917 < 922 < 929.

We see that χ(63, 0) ∼= χ(93
2, 0), χ(62, 0) ∼= χ(93

1, 0) and χ(83
5, 0) ∼= χ(946, 0).

So we omit χ(93
2, 0), χ(93

1, 0) and χ(946, 0) from the sequence. For the rest of
the links, we can see, by calculating the Alexander polynomials or Alexander
modules, that the manifolds are different from each other except the following
two cases:

∆(χ(O, 0)) = ∆(χ(93
10, 0)), ∆(χ(928, 0)) = ∆(χ(929, 0)).

However, we have
χ(O, 0) ̸∼= χ(93

10, 0), χ(928, 0) ̸∼= χ(929, 0)

by the following discussion. For the first case, we transform the framed link
93

10 with coefficient 0 into a framed knot K with coefficient 0 by the Kirby
calculus on handle slides. We see that K is a non-trivial knot by c0(K; x) =
1 + (x − 1)2(x2 + 2x − 3), where c0(K; x) is a coefficient polynomial of the
HOMFLY polynomial P (K; ℓ,m) and is easily computed (See the section 1 of
[3]). Then we have χ(93

10, 0) ∼= χ(K, 0) ̸∼= χ(O, 0) by Gabai’s positive answer
to the Property R conjecture [1]. For the second case, we substitute the fifth
roots of unity for the Jones polynomials of 928 and 929 and we have
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J928(ω) = −5 − 10ω + 3ω2 − 12ω3, J929(ω) = −3 + 9ω − 6ω2 + 6ω3,

where ω is any one of the fifth roots of unity. We see that J928(ω) ̸= J929(ω
′)

for any of the fifth roots of unity ω, ω′ and we have χ(928, 0) ̸∼= χ(929, 0) by
Kirby and Melvin’s theorem [9],p.530. This completes the enumeration of 3-
manifolds in Case 2.

Case 3. H1(χ(L, 0)) ∼= Z ⊕ Z.

We enumerate the manifolds with H1(χ(L, 0)) ∼= Z⊕Z. The links with this
condition are the following:

52
1 < 72

4 < 72
6 < 72

3 < 82
12 < 82

13 < 82
10 < 84

3 < 84
1 < 92

13 < 92
55 < 92

31 < 92
5 <

92
37 < 92

41 < 92
25.

We see that χ(52
1, 0) ∼= χ(84

1, 0) and χ(82
12, 0) ∼= χ(82

10, 0), so we omit χ(84
1, 0)

and χ(82
10, 0) from the sequence. The latter homeomorphism can be shown as

follows: for L = 82
12 or 82

10, we have S2 × S1 as the 0-surgery space of one
component of L and we can move the other 0-framed component of 82

12 to
that of 82

10 within S2 × S1, so we have the homeomorphism. For the rest of
the links, we compute the two-variable Alexander polynomials:

∆(χ(52
1, 0)) = 1, ∆(χ(72

4, 0)) = 1 + t21,
∆(χ(72

6, 0)) = 1 − t1 + t21, ∆(χ(72
3, 0)) = 2,

∆(χ(82
12, 0)) = (1 − t1)

2, ∆(χ(82
13, 0)) = 1 − 3t2 + t22,

∆(χ(84
3, 0)) = 0, ∆(χ(92

13, 0)) = 1 + t21 + t41,
∆(χ(92

55, 0)) = 1−t1+t21, ∆(χ(92
31, 0)) = 1−t1+t21−t31+t41,

∆(χ(92
5, 0)) = (1+t1t2)

2, ∆(χ(92
37, 0)) = (1+t21)(1−t1+t21),

∆(χ(92
41, 0)) = 1 − t2 + 3t1t2 − t21t2 + t21t

2
2, ∆(χ(92

25, 0)) = 1 − 4t1 + t21,

and conclude that the manifolds are different from each other except the case
∆(χ(72

6, 0)) = ∆(χ(92
55, 0)),

by using the following lemma [4,8].

Lemma 4.1. Let M, M ′ be closed connected orientable 3-manifolds with
H1(M) ∼= H1(M

′) ∼= Zr and ∆M(t1, t2, . . . , tr), ∆M ′(t1, t2, . . . , tr) their Alexan-
der polynomials. If there is a homeomorphism h : M → M ′, then there is an
automorphism ψ of the multiplicative free abelian group ⟨t1, t2, . . . , tr⟩ with
basis ti (i = 1, 2, . . . , r) such that

∆M(t1, t2, . . . , tr) = ±ts1
1 ts2

2 · · · tsr
r ∆M ′(ψ(t1), ψ(t2), . . . , ψ(tr))

for some integers si (i = 1, 2, . . . , r).

By computing τ5(χ(L, 0)) for L = 72
6, 92

55, we have χ(72
6, 0) ̸∼= χ(92

55, 0). In
fact

τ5(χ(72
6, 0)) = C (1 + (q−1 + 2 + q)(7 + 3q + q2 + 5q3)) ,

τ5(χ(92
55, 0)) = C (1 + (q−1 + 2 + q)(−1 + 2q − 3q2 + 3q3)) ,

where C = 8
5
sin2 π

5
, q = e

2πi
5 . We note here that some double covering spaces of

χ(72
6, 0) and χ(92

55, 0) associated with the monodromy homomorphisms sending
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the meridians of trivial components of 72
6 and 92

55 to 1 ∈ Z2 and the meridians
of the other components of 72

6 and 92
55 to 0 ∈ Z2 are homeomorphic.

Case 4. H1(χ(L, 0)) ∼= Z ⊕ Z ⊕ Z.

The links with this condition are the following:

63
2 < 93

12 < 93
21 < 93

9.

Their three-variable Alexander polynomials are

∆(χ(63
2, 0)) = 1, ∆(χ(93

12, 0)) = (1 − t1)
2,

∆(χ(93
21, 0)) = 0, ∆(χ(93

9, 0)) = 1 − t1 + t21,

and we see that the manifolds are different from each other by using Lemma
4.1.

Case 5. H1(χ(L, 0)) ∼= Z ⊕ Z2 ⊕ Z2.

The links with this condition are the following:

83
9 < 83

10 < 83
4 < 93

8 < 93
20.

We see that χ(83
4, 0) ∼= χ(93

20, 0) and remove χ(93
20, 0) from the sequence. This

can be shown as follows. We write 83
4 = K1 ∪ K2 ∪ K3, where K1 ∪ K2 is

trivial and |lk(K1, K3)| = |lk(K2, K3)| = 2. First we transform the framed
link 93

20 with coefficient 0 into a 3-component framed link L′ = K ′
1 ∪ K ′

2 ∪ K ′
3

with coefficient 0 by the Kirby calculus on a handle slide so that K ′
1 ∪ K ′

2 is
trivial and |lk(K ′

1, K
′
3)| = |lk(K ′

2, K
′
3)| = 2. We can move K3 to K ′

3 within
(S2 × S1)♯(S2 × S1) ∼= χ(K1 ∪ K2, 0) ∼= χ(K ′

1 ∪ K ′
2, 0) and have χ(83

4, 0) ∼=
χ(93

20, 0).
For each link L except 93

20, we compute the first homology groups of the
seven double covering spaces of χ(L, 0) and we distinguish the manifolds.

Case 6. H1(χ(L, 0)) ∼= Z2

There are 7 links with this condition:

63
3 < 63

1 < 73
1 < 83

3 < 93
16 < 93

15 < 93
4.

We see that χ(83
3, 0) ∼= χ(93

16, 0) and χ(93
16, 0) is omitted from our sequence. For

the rest of the manifolds, we compute the first homology groups of the double
covering spaces and we have the manifolds except χ(73

1, 0) and χ(93
15, 0) are

mutually distinct. We, however, see χ(73
1, 0) ∼= χ(41, 2), χ(93

15, 0) ∼= χ(51, 2)
and the linkings of the first homology groups of the double covering spaces of
χ(41, 2) and χ(51, 2) are ±2

5
and ±1

5
respectively, which are non-isomorphic

by [6], so we distinguish χ(73
1, 0) from χ(93

15, 0).

Case 7. H1(χ(L, 0)) ∼= Z2 ⊕ Z2

There are 15 links with this condition:

42
1 < 62

3 < 72
5 < 82

9 < 82
11 < 84

2 < 82
14 < 92

1 < 92
2 < 92

23 < 92
57 < 92

14 < 92
59 <

92
29 < 82

6.

8



We see that χ(42
1, 0) ∼= χ(84

2, 0) and we omit χ(84
2, 0) from our sequence. For

each link L except 84
2, we compute the first homology groups of the three dou-

ble covering spaces of χ(L, 0), and we conclude that the manifolds are different
from each other.

Case 8. H1(χ(L, 0)) ∼= Z3 ⊕ Z3

There are 7 links with this condition:

62
1 < 62

2 < 82
5 < 92

51 < 82
3 < 92

20 < 92
40.

M. Shimozawa proves that χ(62
1, 0) ∼= χ(92

51, 0) by using the Kirby-Rolfsen
moves, so we omit χ(92

51, 0) from our sequence. We show his proof in Ap-
pendix. For each link L except 92

51, we compute the first homology groups of
four Z3-covering spaces of χ(L, 0) and we distinguish the manifolds.

Case 9. H1(χ(L, 0)) ∼= Z4.

We have 5 links with this condition:

83
1 < 83

2 < 93
6 < 93

11 < 93
5.

By computing the first homology groups of the double covering spaces of the
manifolds, we see that the manifolds are different from each other.

Case 10. H1(χ(L, 0)) ∼= Z4 ⊕ Z4.

82
1 < 82

2 < 92
53 < 82

4 < 92
61

hold this condition and we see that they are mutually distinct by computing
the first homology groups of the three double covering spaces.

We unify the cases 1 to 10 and show an enumeration of the closed connected
orientable 3-manifolds with lengths up to 9 in Table 2. In the table, the M -line
denotes the order of the manifold χ(L, 0) given by the link L with σ(L) = x
(See Section 2 for the definition of σ).
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Appendix

We show M. Shimozawa’s proof of the fact that χ(62
1, 0) ∼= χ(92

51, 0). In the
figure, α̇ and β−→ (or β←−) for a rational number α and an integer β mean the β

right-hand twists about the component labeled α̇.
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M x L M x L M x L

1 0 O 46 (12, −22, 12, −22) 83
4 91 (13, 2, 12, −3, 2, −3) 943

2 12 22
1 47 (1, −2, 1, −2, 1, −2, 1, −2) 818 92 (13, 2, −12, −3, 2, −3) 944

3 13 31 48 (13, 2, −1, −3, 2, −3) 72
3 93 (13, −2, 12, 3, −2, 3) 936

4 14 42
1 49 (13, −2, 1, 3, −2, 3) 82

5 94 (13, −2, −12, 3, −2, 3) 942

5 (1, −2, 1, −2) 41 50 (12, −2, 12, 3, −2, 3) 82
9 95 (13, 2, −1, 2, 3, −2, 3) 72

6 15 51 51 (12, −2, 1, −2, 3, −2, 3) 82
8 96 (13, 2, −1, 2, −3, 2, −3) 814

7 (12, −2, 1, −2) 52
1 52 (12, −2, 1, 3, −22, 3) 82

12 97 (13, −2, 1, −2, 3, −2, 3) 926

8 16 62
1 53 (1, −2, 1, −2, 1, 3, −2, 3) 82

13 98 (13, −2, 1, −2, −3, 2, −3) 84

9 (13, 2, −1, 2) 52 54 (12, −2, 1, 3, −2, 32) 82
7 99 (13, 2, −1, −3, 22, −3) 83

3

10 (13, −2, 1, −2) 62 55 (1, −2, 1, 3, −23, 3) 82
11 100 (13, −2, 1, 3, −22, 3) 93

6

11 (12, 2, 12, 2) 63
3 56 (1, 22, 1, 3, 22, 3) 84

3 101 (12, −2, 12, 3, −22, 3) 93
8

12 (12, −2, 12, −2) 63
1 57 (1, −2, 3, −2, 1, −2, 3, −2) 82

14 102 (12, 2, −1, 2, 1, 3, −2, 3) 945

13 (12, −2, 1, −22) 63 58 (1, −2, 1, 3, −2, −4, 3, −4) 812 103 (12, −2, 1, −2, 1, 3, −2, 3) 932

14 (1, −2, 1, −2, 1, −2) 63
2 59 19 91 104 (12, −2, 1, 3, −2, 1, 3, −2) 93

11

15 (1, −2, 1, 3, −2, 3) 62
3 60 (16, 2, −1, 2) 82

2 105 (13, 2, −1, −3, 2, −32) 88

16 17 71 61 (16, −2, 1, −2) 92
1 106 (13, −2, 1, 3, −2, 32) 920

17 (14, 2, −1, 2) 62
2 62 (15, −2, 12, −2) 92

13 107 (12, 2, −1, 22, 3, −2, 3) 74

18 (14, −2, 1, −2) 72
1 63 (14, −2, 13, −2) 92

19 108 (12, 2, −1, 22, −3, 2, −3) 811

19 (13, −2, 12, −2) 72
4 64 (14, −2, −13, −2) 92

50 109 (12, −2, 1, −22, 3, −2, 3) 927

20 (13, −2, 1, −22) 72
2 65 (15, 2, −1, 22) 82

3 110 (12, −2, 1, −22, −3, 2, −3) 813

21 (12, −2, 12, −22) 72
5 66 (15, −2, 1, −22) 92

2 111 (12, −2, 1, 3, 23, 3) 815

22 (12, −2, 1, −2, 1, −2) 72
6 67 (14, 2, −12, 22) 92

52 112 (12, −2, 1, 3, −23, 3) 924

23 (12, 2, −1, −3, 2, −3) 61 68 (14, −2, 12, −22) 92
20 113 (12, −22, 1, −2, 3, −2, 3) 930

24 (12, −2, 1, 3, −2, 3) 76 69 (14, 2, −1, 2, −1, 2) 92
55 114 (12, 22, 1, −3, 22, −3) 93

15

25 (1, −2, 1, −2, 3, −2, 3) 77 70 (14, −2, 1, −2, 1, −2) 92
31 115 (12, −22, 1, 3, −22, 3) 93

4

26 (1, −2, 1, 3, −22, 3) 73
1 71 (13, 2, 13, 22) 92

53 116 (1, −2, 1, −2, 1, −2, 3, −2, 3) 93
10

27 18 82
1 72 (13, 2, −13, 22) 92

54 117 (1, −2, 1, −2, 1, 3, −22, 3) 93
12

28 (15, 2, −1, 2) 73 73 (13, −2, 13, 22) 82
4 118 (1, −2, 1, −2, 1, −3, 22, −3) 93

21

29 (15, −2, 1, −2) 82 74 (13, −2, 13, −22) 92
23 119 (1, −2, 1, −22, 1, 3, −2, 3) 933

30 (14, −2, 12, −2) 83
1 75 (13, 2, −12, 2, −1, 2) 92

57 120 (1, −2, 1, −2, 3, −2, 1, −2, 3) 934

31 (13, 2, 13, 2) 819 76 (13, −2, 12, −2, 1, −2) 92
35 121 (1, −2, 1, −2, −3, −2, 1, −2, −3) 947

32 (13, 2, −13, 2) 820 77 (12, −2, 12, −2, 12, −2) 92
40 122 (12, −2, 1, −2, 3, −2, 32) 931

33 (13, −2, 13, −2) 85 78 (14, −2, 1, −23) 92
5 123 (12, −2, 1, 3, −22, 32) 928

34 (14, 2, −1, 22) 75 79 (14, −22, 1, −22) 92
14 124 (1, −2, 1, 3, −2, 1, 3, −2, 3) 940

35 (14, −2, 1, −22) 87 80 (13, −2, 12, −23) 92
21 125 (12, −2, 1, 3, −2, −4, 3, −4) 92

11

36 (13, 2, −12, 22) 821 81 (13, −2, 1, −2, 1, −22) 92
34 126 (1, −2, 1, −23, 3, −2, 3) 917

37 (13, −2, 12, −22) 810 82 (13, −2, 1, −22, 1, −2) 92
37 127 (1, −2, 1, −2, 3, −23, 3) 922

38 (13, 2, −1, 2, −1, 2) 83
9 83 (13, 22, 12, 22) 92

59 128 (1, −2, 1, 3, −24, 3) 93
5

39 (13, −2, 1, −2, 1, −2) 83
5 84 (13, −22, 12, −22) 92

29 129 (1, −22, 1, −2, 3, −22, 3) 93
9

40 (12, −2, 12, −2, 1, −2) 816 85 (12, −2, 12, −2, 1, −22) 92
39 130 (1, −22, 3, −2, 1, −2, 3, −2) 929

41 (13, −2, 1, −23) 89 86 (12, 2, −1, 2, 12, 22) 92
61 131 (1, −2, 1, −2, 3, −2, −4, 3, −4) 92

12

42 (13, −22, 1, −22) 83
2 87 (12, −2, 1, −2, 12, −22) 92

41 132 (1, −2, 1, −2, −3, 2, 4, −3, 4) 82
6

43 (12, −2, 1, −2, 1, −22) 817 88 (12, −2, 1, −2, 1, −2, 1, −2) 92
42 133 (1, −2, 1, 3, −22, −4, 3, −4) 92

25

44 (12, −2, 1, −22, 1, −2) 83
6 89 (14, 2, −1, −3, 2, −3) 86

45 (12, 22, 12, 22) 83
10 90 (14, −2, 1, 3, −2, 3) 911

Table2
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