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Abstract

An oriented monotone knot diagram is a knot diagram such that
one meets each crossing as an over-crossing first as one travels the
diagram with the orientation by starting at a point on the diagram.
In this paper, unoriented knot projections which are monotone with an
orientation and any over/under information are characterized. Also,
monotone diagrams which are monotone with exactly one orientation
and unique basepoint are characterized. As an application, a necessary
condition for a knot projection with reductiviy four is given.

1 Introduction

A knot is an embedded circle in S®. A knot K is said to be oriented if
K has a one-way orientation. For an oriented knot K, the inverse of K,
denoted by — K, is the oriented knot which is K with orientation reversed.
Oriented knots K and K’ are equivalent if there is an orientation-preserving
homeomorphism £ : S* — 52 such that h(K) = K'. A knot K is invertible
if K and —K are equivalent. The invertibility of knots is one of the most
important studies in knot theory and has a long history (see, for example,
[9]). Looking toward the study of invetibility, this paper attempts to study
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canonical orientations of knot diagrams and knot projections on S? in a sense
of monotonicity. Note that it is shown in [11] by the authors that every knot
projection on R? with even crossing points has two independent canonical
orientations and every based knot projection on R? with odd crossing points
has two independent canonical orientations due to warping degree.

A knot projection P on S? is an image of a regular projection of a knot
on S? with double point singularities. Each double point is called a crossing.
A knot diagram on S? is a knot projection with over/under information at
each crossing. For a knot projection and a knot diagram, an edge is a path
bounded by two crossings which has no crossings in the interior. A knot
diagram is said to be oriented if the diagram has a one-way orientation. An
orientation of a knot diagram is shown by an arrow as depicted in Figure 1.
Let D be an oriented knot diagram. The inverse of D, denoted by —D, is
the oriented knot diagram D with orientation reversed. The unoriented knot
diagram D without orientation is denoted by | D|, and the knot projection D
without over/under information is denoted by D (see Figure 1). For D and
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Figure 1: Knot diagrams and projections.

D, it is said that D is constructed from D. In this paper, assume that every
knot diagram and knot projection has at least one crossing. An oriented
knot diagram D is monotone if one can travel D starting at a point in the
interior of an edge of D with the orientation so that one goes through each
crossing as an over-crossing at the first time. An unoriented knot diagram
|D| is monotone if it is monotone with an orientation. It is well-known that
any knot projection D (and also |D|) can be monotone with some suitable
over/under information. In this paper, the following is shown:

Theorem 1.1. Any unoriented knot diagram constructed from a knot pro-
jection P is monotone if and only if P is one of the five knot projections
Wllustrated in Figure 2.



P P, Py P; g Py
Figure 2: The knot projections Py, Ps, P, P3 and Py’

In particular, the following holds:

Theorem 1.2. Any knot diagram constructed from a knot projection P is
monotone with exactly one orientation if and only if P is Py or Py’ in Figure

2.

Theorem 1.2 implies that any knot diagram constructed from P; or P3’ is
monotone, and a unique orientation is determined such that it is monotone.
Hence, for Py and Ps’, there exists the unique orientation for each over /under
information. The following theorem characterizes unoriented monotone dia-
grams such that the basepoint and orientation are determined uniquely with
respect to monotonicity.

Theorem 1.3. Let |D| be an unoriented monotone knot diagram. Then |D)|
is monotone with the unique orientation and basepoint if and only if |D| is
neither a one-bridge diagram nor a diagram obtained by connecting two or
more monotone 1-tangles with crossings.

The definitions of a one-bridge diagram and a monotone 1-tangle are given
in Section 4. See also Figure 3 for a knot diagram which is obtained by
connecting monotone 1-tangles.

The rest of the paper is organized as follows: In Section 2, the review
of warping degree and warping degree labeling are provided. In Section 3,
proofs of Theorems 1.1 and 1.2 are given. In Section 4, a proof of Theorem 1.3
is given. In Section 5, the relation between reductivity and warping degree
labeling is discussed as an application.



Figure 3: A knot diagram obtained by connecting monotone 1-tangles.

2 Warping degree

In this section, the review of the warping degree of knot diagrams and related
topics are presented. Let D be an oriented knot diagram and b a basepoint
of D which is not on any crossing. The pair of D and b is denoted by Dj,.
A crossing p of D is a warping crossing point of D, if one meets p as an
under-crossing first when one travels D from b with the orientation. The
warping degree d(Dy) of a based oriented knot diagram D, is the number
of warping crossing points of D,. The warping degree d(D) of an oriented
knot diagram D is the minimal d(Dy) for all basepoints b of D (see Figure
4). Remark that the choice of a basepoint of D is finite; it depends only on
0
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Figure 4: The warping degree of D, is two, and the warping degree of D is
zero. The warping degree labeling is given on the right-hand side.

which edge one takes a basepoint on. In this paper, two basepoints on the
same edge are assumed as the same basepoint. By definition, an oriented
knot diagram D is monotone if and only if d(D) = 0. Hence it is also said
that the warping degree represents how far from a monotone diagram. Note
that warping degree was defined for oriented knot and link diagrams in [10]
and the similar notions and their expansions are also studied ([8], [12], [14],
[17], etc.).

Let D be an oriented knot diagram. The warping degree labeling for D is
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the labeling such that each edge has the integer which is the warping degree
with a basepoint at the edge as depicted in Figure 4. By the definition,
warping degree labeling has the rule shown in Figure 5 (Lemma 2.5 in [16]).

i |l ] i-1

Figure 5: The labeling of the warping degree labeling increases by one by
passing an over-crossing because the crossing becomes to be counted as a
warping crossing point. Similarly, the labeling decreases by one by passing
an under-crossing.

The chord diagram of an oriented knot projection P is a preimage of P
with each pair of points corresponding to the same double point connected
by a segment when P is assumed as an image of an immersion of a circle
to S2. A chord diagram represents the cyclic order of crossings which one
passes as one travels along a knot projection with the orientation. By giving
an orientation to each segment from over-crossing to under-crossing, a chord
diagram is enhanced with respect to over/under information, and is called
the chord diagram of an oriented knot diagram. Moreover, by giving the
sign of the corresponding crossing to each segment, a chord diagram is still
enhanced and called the Gauss diagram. For more details, see [4] and [7].

A connected sum of two oriented knot projections P and @ is a knot
projection obtained from P and ) by deleting a subarc of an edge of each
projection and connecting them so that the orientation is preserved (see Fig-
ure 6). Note that it depends on the choice of edges to connect. A prime knot

p Q
C@} ﬁ }
Figure 6: A connected sum of P and Q.

projection is a knot projection which is not any connected sum of (nontriv-
ial) knot projections. Remark that any prime knot diagram can be restored
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from its chord diagram (see, for example, [3]), and any knot diagram can be
restored from its Gauss diagram ([4, 7]). In [2], all the chord diagrams of the
prime knot projections up to ten crossings are listed.

3 Proofs of Theorems 1.1 and 1.2

In this section Theorems 1.1 and 1.2 are proved. For knot projections with
four crossings, the following lemma holds:

Lemma 3.1. Any unoriented knot projection with four crossings can be non-
monotone with an over/under information.

Proof. All the chord diagrams of knot projections with four crossings are
listed in Figure 7, and they can be non-monotone with some suitable over /under
information as shown in Figure 8.

HOLLE

Figure 7: All the chord diagrams of knot projections with four crossings.

For knot projections with five crossings, the following holds:

Lemma 3.2. Any unoriented knot projection with five crossings can be non-
monotone with an over/under information.

Proof. All the knot projections with five crossings are the two prime knot
projections which have the chord diagrams depicted in Figure 9 and the knot
projections which are obtained from a knot projection with four crossings



Figure 8: Non-monotone chord diagrams. The digits represent the warping

degree labeling.

&
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Figure 9: All the two chord diagrams of prime knot projections with five
crossings.

by a single RI+ move (see Figure 10). The knot projections which have
the chord diagrams in Figure 9 can be non-monotone with the over/under
information shown in Figure 11.

Next, let P be a knot projection which is obtained from a knot projection
P’ with four crossings by an RI+. Let D’ be a knot diagram constructed
from P’ such that D’ is not monotone. Remark that such a diagram D’
exists by Lemma 3.1. Let D be a knot diagram constructed from P such
that the crossings of D which correspond to the crossings of D’ have the
same over/under information as D’. Since D’ is non-monotone, D’ has a
warping crossing point with every basepoint and orientation, and so does D.
Hence D is also a non-monotone diagram. ]

For knot projections with four or more crossings, the following holds:

Lemma 3.3. Any unoriented knot projection with four or more crossings
can be non-monotone with an over/under information.
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Figure 10: The moves RI+, RI-, RII4 and RII-.

Figure 11: Non-monotone chord diagrams. The digits represent the warping
degree labeling.

Proof. The proof is an induction on the crossing number ¢ of an unoriented
knot projection. When ¢ =4 or 5, it holds by Lemmas 3.1 and 3.2. Assume
the lemma holds for ¢ < k for an integer £ > 5. Let P be a knot projection
with £ + 1 crossings, and Cp the chord diagram of P.

According to [6], if Cp does not include the three segments depicted in
the left-hand side of Figure 12, then P must have a 1-gon or 2-gon (a 1-gon
and 2-gon are shown in Figure 13). If P has the three segments in Figure 12

2@

Figure 12: If a knot projection P does not have the three segments as the
left-hand side in the chord diagram, P has a 1-gon or 2-gon.



I-gon 2-gon

Figure 13: 1-gon and 2-gon.

in the chord diagram, then by giving the over /under information as depicted
in the right-hand side of Figure 12, a knot diagram such that it has a warping
crossing point with any basepoint and any orientation can be constructed.

If P has a 1-gon, apply an RI- at a 1-gon. Then a knot projection P’ with
k crossings is obtained. By assumption, there exists a non-monotone knot
diagram D’ constructed from P’. Let D be a knot diagram constructed from
P such that the crossings corresponding to D’ have the same over/under
information as D’. Since D’ is non-monotone, D’ has a warping crossing
point with every basepoint and orientation, and so does D. Hence D is
non-monotone, too.

If P has a 2-gon, apply an RII- at a 2-gon. Then a knot projection P”
with & — 1 crossings is obtained, and P” has a non-monotone diagram D"
by assumption. Let D be a knot diagram constructed from P such that the
crossings corresponding to D" have the same over/under information as D”.
Then D" has a warping crossing point with every basepoint and orientation,
so does D. Hence D is non-monotone. Therefore, the lemma holds for all
c>4. O

Furthermore, the following holds:

Lemma 3.4. Any unoriented knot projection P except for the five knot pro-
jections illustrated in Figure 2 can be non-monotone with an over/under in-
formation.

Proof. As Lemma 3.3 has been shown, it is sufficient to check the knot pro-
jections with three or less crossings. There are exactly five chord diagrams
of knot projections with three or less crossings as depicted in Figure 14. The
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Figure 14: All the chord diagrams of knot projections with three or less
crossings.

left two chord diagrams is the chord diagrams of P, and P, and P’ in Figure
2. The next two chord diagrams can be non-monotone with the over/under
information depicted in Figure 15. The chord diagram on the right-hand side

2 1
1 L, 2
2 2 1 1
1 2
1 2
P 2 1 1
1 12 2
2 1

Figure 15: Non-monotone chord diagrams. The digits represent the warping
degree labeling.

in Figure 14 is the chord diagram of P; and P’ in Figure 2. O]

Now the proof of Theorem 1.1 is given.

Proof of Theorem 1.1. By Lemma 3.4, it is sufficient to check that the
knot projections in Figure 2 are monotone with any over/under information.
Figure 16 shows that P, P, and P’ are monotone with any over/under
information. For P; and Ps’, which have the chord diagram at the right-hand
side in Figure 14, the chord diagrams with all the over/under information
are listed in Figure 17, and they are monotone.

O
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Figure 16: The left chord diagram corresponds to P;, and the other ones
correspond to P, and P,’. A monotone diagram is obtained from them with
any over/under information. In particular, the left three chord diagrams
correspond to a monotone diagram with both orientations.

0 1 1 2 1 2 2 3
1 12 22 03 10 21 31 12 2
0 01 11 12 21 1 22 23 3
1 0 2 1 2 1 3 2
3 2 2 1 2 1 1 0
2 21 11 30 23 12 02 21 1
3 32 2 2 21 12 21 11 10 0
2 3 1 2 1 2 0 1

Figure 17: Chord diagrams of Py and P’ with all the over/under information
and orientations.

Next the proof of Theorem 1.2 is given:

Proof of Theorem 1.2. By Theorem 1.1, the five knot projections P, Ps,
Py, Py and P3" are monotone with any over/under information. The knot
projections Py, P» and P’ have knot diagrams which are monotone with both
orientations as shown in Figure 16. On the other hand, P; and P’ do not

have any knot diagram which is monotone with both orientations as shown
in Figure 17. U

From the proof of Theorem 1.2, the following corollary is obtained:

Corollary 3.5. Any oriented knot diagram constructed from a knot projec-
tion P is monotone if and only if P is P, in Figure 2.
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4 Proof of Theorem 1.3

In this section, the uniqueness of the orientation and basepoint for some
monotone diagrams is discussed. A knot diagram is said to be a one-bridge
diagram if the circle S* of the chord diagram can be divided into two sides S* .
and S*_ such that S*, US!_ = S, there are no segments on the boundaries
of S', and S'_, and every segment belongs to the two sides of S*, and S*_
with the orientation from S', to S'_. In other words, a knot diagram D
is a one-bridge diagram if D has an arc which has all the over-crossings as
depicted in Figure 18, where an arc of a knot diagram D is a path of D
which has under- crossings at the endpoints and has no under-crossings in
the interior. In [18], it is shown that a knot diagram D with ¢ crossings is

5 &%

Figure 18: One-bridge diagrams.

a one-bridge diagram if and only if there are exactly one “0” and “¢” and
two “¢"s for i = 1,2,...,c—1 on the warping degree labeling of D. Remark
that there are knot projections which has no one-bridge diagram with any
over/under information. See, for example, the knot projections in Figure 19
and P3 and P’ in Figure 2. By definition, the following lemma holds:

S S

Figure 19: Knot projections such that any knot diagram constructed from
the knot projection is not one-bridge.
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Lemma 4.1. If the chord diagram of a knot projection P includes the three
segments illustrated in Figure 20, then P can not be a one-bridge diagram
with any over/under information.

N

RN

Figure 20: If a knot projection P has the three segments in its chord diagram,
then P can not be a one-bridge diagram with any over/under information.

For monotonicity, the following holds:

Lemma 4.2. An oriented knot diagram D and its inverse —D are both mono-
tone if and only if D is a one-bridge diagram.

Proof. Let D be an oriented knot diagram with ¢ crossings such that D and
—D are monotone. Then D and —D have d(D,) = 0 and d(—D;) = 0
with some basepoints a and b, respectively. Since d(Dy) + d(—D,) = ¢ by
the definition of warping degree, D has d(D,) = ¢ — d(—D,) = ¢ with the
basepoint b. Hence both “0” and “c” appear in the warping degree labeling
of D. This means all the ¢ over-crossings are placed in a row by the rule of
Figure 5. Hence D is a one-bridge diagram.

On the other hand, if D is a one-bridge diagram, D and —D are monotone
by taking basepoints near the end points on the arc which has all the over-
crossings.

]

An oriented 1-tangle is a tangle obtained from an oriented knot diagram by
deleting a subarc of an edge. An oriented 1-tangle is said to be monotone
if one goes through each crossing as an over-crossing at the first time when
one travels the 1-tangle from the initial point to the terminal point. Also,
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the warping degree and warping degree labeling of 1-tangles are defined in
the same way ([11]). An e-connected sum of two split 1-tangles T and U is
a l-tangle obtained from 7" and U by connecting the terminal point of T’
and the initial point of U. Remark that it depends on an order of T" and
U. A 1-tangle is said to be e-prime if it is not any e-connected sum of 1-
tangles which have crossing points. The closure of a 1-tangle T is a knot
diagram which is obtained from 7" by closing the terminal point and initial
point of T" in S? without introducing a crossing point. Remark that it does
not necessary hold that the closure of an e-prime 1-tangle is a prime knot
diagram (see Figure 21) whereas it holds that a non-prime knot diagram is
a closure of an e-connected sum of some two 1-tangles.

\
e

Figure 21: The closure of an e-prime 1-tangle is not always prime.

The following lemma holds:

Lemma 4.3. A monotone I-tangle T is not e-prime if and only if there are
three or more “07s on the warping degree labeling of T

Note that the warping degree labeling at the initial and terminal edges of a
monotone 1-tangle are always 0. Hence Lemma 4.3 implies that a monotone
1-tangle is e-prime if and only if there are no “0”s on the warping degree
labeling except at the initial and terminal points.

Proof of Lemma 4.3. If a monotone 1-tangle T is an e-connected sum of
1-tangles T} and T, which have crossings, then T and 75 are also monotone
because T" has no warping crossing points with a basepoint at the initial edge.
Then the warping degree of T' with the base point at the connecting point is
zero. Hence T' has three or more “0”s.
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Next, let T" be a monotone 1-tangle which has the warping degree zero
with a basepoint c on an edge which is neither the initial edge nor the terminal
edge. Let a and b be basepoints on the initial and terminal edges, respectively.
Since d(T,) = 0, all the crossings one meets from a to ¢ are over-crossing at
the first time one meets. Since d(7,) = d(7,.), there are under-crossings as
many as over-crossings from a to ¢. Hence one meets each crossing from a
to ¢ twice. Therefore the part from a to ¢ is a monotone 1-tangle which has
a crossing point. Similarly, the part from ¢ to b is also a monotone 1-tangle
which has a crossing point. Hence 7T is not e-prime.

OJ

More precisely, the following holds:

Lemma 4.4. A monotone 1-tangle T is an e-connected sum of n e-prime
1-tangles with crossings if and only if there are n +1 “0”s on the warping
degree labeling of T .

Proof. 1f T' is a monotone 1-tangle which is an e-connected sum of n e-prime
1-tangles, i.e., T"is an e-connected sum of n e-prime monotone 1-tangles, only
connecting points have the warping degree zero because the warping degree
labeling is preserved by connecting monotone 1-tangles, and they have “0” at
just their initial and terminal edges by Lemma 4.3. Hence there are exactly
n+1 “0”s in the warping degree labeling of T'.

Next, let T be a monotone 1-tangle which has n + 1 “0”s in the warping
degree labeling of T'. Take the basepoints by, by, bs, ..., b, at the different
edges such that d(7,,) =0 (: = 0,1,2,...,n), where the order is due to the
orientation and hence by is on the initial edge and b,, is on the terminal edge.
As discussed in Lemma 4.3, each parts from b; to b;11 (1 =0,1,2,...,n—1)
is a monotone 1-tangle. Moreover, since the monotone 1-tangles do not have
the warping degree zero except at the initial and terminal edges, they are all
e-prime. ]

For oriented knot diagrams, the following lemma holds:

Lemma 4.5. Let D be an oriented knot diagram, and n be a positive integer.
Then D has exactly n edges with warping degree zero if and only if D is a
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closure of a 1-tangle which is an e-connected sum of n e-prime monotone
1-tangles with crossings.

Proof. Let by, bs, ..., b, be the basepoints of D on the different edges such
that d(Dy,) = 0 for i« = 1,2,...,n with the cyclic order according to the
orientation. As discussed in Lemma 4.4, each part from b; to b1 (i =
1,2,...,n — 1) and from b, to b; is an e-prime monotone 1-tangle with a
crossing point.

On the other hand, when n e-prime monotone 1-tangles are connected
to obtain a knot diagram, the warping degree labeling is preserved and “0”
appears only at the n connecting points. O

For example, the knot diagram in Figure 3 that is a closure of a 1-tangle which
is an e-connected sum of three e-prime monotone 1-tangles has exactly three
edges with warping degree zero. Since every prime knot diagram is a closure
of a single e-prime 1-tangle, the following corollary is obtained from Lemma
4.5:

Corollary 4.6. Fvery oriented prime knot diagram has at most one edge
such that the warping degree is zero with a basepoint.

Now the proof of Theorem 1.3 is given:

Proof of Theorem 1.3. 1t follows from Lemmas 4.2 and 4.5.

5 Application to reductivity

In this section, the studies of monotone diagrams and warping degree labeling
are applied to reductivity. Let P be an unoriented knot projection, and p a
crossing of P. An inverse-half-twisted splice, denoted by HS™!, at p is defined
in [5] (see also [1]) to be a splice at p so that one obtains another knot (not
link) projection. The reductivity r(P) of P is the minimal number of HS™'s
needed to obtain a reducible knot projection from P (see Figure 22), where
a reducible knot projection is a knot projection such that one can put a circle
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on S? so that it intersects only one crossing of P transversely (see Figure 23).
In [15], it is shown that every knot projection has the reductivity four or

P | 1
HS HS

—> —>

Figure 22: The reductivity of the knot projection P is two.

Figure 23: A reducible knot projection, where p and g are 1-tangles.

less. However, at the moment it is unknown if there exists a knot projection
with reductivity four. Trigons are divided into the four types with respect
to outer connections as shown in Figure 24. It is also shown in [15] that if

Lemmem s RN -
N ' N
. N \ _ .
Sl N . L= RN , |
/ !
\ ' \
I \ ! /
\ ' N /
\ / NN .
~ P . N V4 - -
' \ . ~
' 1 il
K . [N o v , . <o)
\ ’ \ N s . . - ~-
. NP R
~ Seo>To-
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Figure 24: The trigons of type A, B, C and D. The broken curves represent
the outer connection.

a knot projection P with r(P) = 4 exists, then P has a trigon of type D.
More detailed necessary conditions are discussed in [13]. From Lemma 4.1,
the following corollary is obtained:

Corollary 5.1. Let P be a knot projection. If r(P) =4, then P can not be
one-bridge with any over/under information.
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From the contraposition of Corollary 5.1 and the proof of Lemma 4.2, the
following corollary is obtained:

Corollary 5.2. Let P be a knot projection with ¢ crossings. If P has a knot
diagram which has both “0” and “c” on the warping degree labeling with an
over/under information, then r(P) is three or less.

Corollary 5.2 would be helpful to detect reductivity. Note that a knot pro-
jection P with c crossings has 2¢ knot diagrams, and all the warping degree
labelings of the 2¢ diagrams with an orientation can be seen from the “warp-
ing matrix” defined in [17].
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