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ABSTRACT

We first introduce the null-homotopically peripheral quadratic function of a surface-link to

obtain a lot of pseudo-ribbon, non-ribbon surface-links, generalizing a known property of the

turned spun torus-knot of a non-trivial knot. Next, we study the torsion linking of a surface-link

to show that the torsion linking of every pseudo-ribbon surface-link is the zero form, generalizing

a known property of a ribbon surface-link. Further, we introduce and algebraically estimate the

triple point cancelling number of a surface-link.

Keywords : Surface-knot, Surface-link, Pseudo-ribbon, Ribbon, Torsion linking, Triple point can-
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0. Introduction

A surface-knot in the 4-space R4 is a closed connected oriented surface embedded

in R4 by a locally flat PL embedding. A surface-link F in R4 (with components Fi

(i = 1, 2, . . . , r)) is the union ∪r
i=1Fi where Fi (i = 1, 2, . . . , r) are mutually disjoint

surface-knots in R4. Let ρ : R4 → R3 be the projection sending every point (x, t)

(where x ∈ R3 and t ∈ R) to the point x. The singularity of a surface-link F in R4

is the set

S(F ) = {x ∈ F | | F ∩ ρ−1(ρ(x)) |≥ 2}.

A surface-link F in R4 is generic if for every point x ∈ S(F ), we have either

(1) ρ(x) is a double point, that is, there is a 3-ball neighborhood Vρ(x) of ρ(x)

in R3 such that F ∩ ρ−1(Vρ(x)) consists of two disjoint disks whose images

by ρ meet transversely in a line containing ρ(x), or

(2) ρ(x) is a triple point, that is, there is a 3-ball neighborhood Vρ(x) of ρ(x)

in R3 such that F ∩ ρ−1(Vρ(x)) consists of three disjoint disks every pair of

whose images by ρ meet transversely in a line and the resulting three lines

meet transversely only at ρ(x).

1Dedicating this paper to Professor Jerome Levine on his 65th birthday.
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It is known that every surface-link in R4 is ambient isotopic to a generic surface-

link. In this paper, we concern the following type of surface-link:

Definition 0.1. A surface-link F in R4 is a pseudo-ribbon surface-link if F is

ambient isotopic to a generic surface-link F ′ in R4 such that ρ(F ′) has no triple

points, namely |F ′ ∩ ρ−1(ρ(x))| = 2 for every point x ∈ S(F ′).

In Definition 0.1, we can see further that F ′ is ambient isotopic to a generic

surface F ′′ such that S(F ′′) is ∅ or a closed 1-manifold, namely the singular surface

ρ(F ′′) has no triple points and no branch points (see J. S. Carter-M. Saito [3], D.

Roseman [15]). A ribbon surface-link is a surface-link in R4 obtained from a trivial

S2-link by a surgery along some embedded 1-handles. Every ribbon surface-link is a

pseudo-ribbon surface-link, and conversely every pseudo-ribbon S2-link is a ribbon

S2-link (see T. Yajima [22]). On the other hand, the turned spun T 2-knot T (k) of

a non-trivial knot k (see J. Boyle [1], Z. Iwase [4], C. Livingston [13]) is pseudo-

ribbon and non-ribbon (see A. Shima [19]), although the spun T 2-knot T 0(k) is

ribbon. In §1, we introduce the null-homotopically peripheral quadratic function

of a surface-link which is useful in identifying a non-ribbon surface-link. Using this

invariant, we can show in §1 that any connected sum of the turned spun T 2-knot of a

non-trivial knot and any ribbon (or more generally, any pseudo-ribbon) surface-link

is a pseudo-ribbon, non-ribbon surface-link. Next, we discuss the torsion linking `F

of a surface-link F , which is a generalization of the Farber-Levine pairing on S2-

knots as it is mentioned in [7] (see also [8,9,10]). We show that the torsion linking

`F of every pseudo-ribbon surface-link F in S4 = R4 ∪ {∞} vanishes by studying

a canonical Seifert hypersurface of F which is constructed by a method analogous

to Seifert’s algorithm on constructing a Seifert surface of a knot. This result is

stated in §2 together with an explanation of the torsion linking `F and proved in

§3. We note that if F is a ribbon surface-link, then this result is known. In fact,

the ribbon surface-link F bounds a Seifert hypersurface V such that the torsion

part tH1(V ;Z) = 0 (see [11]). Then the vanishing `F = 0 follows from a result

of M. Sekine [18] showing that the torsion linking `F is induced from a singular

sublinking of the linking `V : tH1(V, ∂V ;Z) × tH1(V ;Z) → Q/Z defined by the

Poincaré duality for every Seifert hypersurface V of F . In §4, we introduce the triple

point cancellation number T (F ) of a surface-link F which measures a distance to the

pseudo-ribbon surface-links. Using the vanishing of the torsion linking of a pseudo-

ribbon surface-knot, we shall make an algebraic estimate of T (F ). This method

is similar to S. Kamada’s argument in [5]. As an application of this estimate, we

shall show in §4 that every surface-link F is concordant to a surface-link F∗ with

T (F∗) = n for every previously given integer n > T (F ).

1. The null-homotopically peripheral quadratic function of a surface-link

By a 2-chain, we mean a simplicial 2-chain C with Z2-coefficients in a 4-manifold

W . This 2-chain C is regular if |∂C | is a closed 1-manifold. The support of C ,
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denoted by |C | is the union of all simplices in C with non-zero coefficients. For

a 2- or 3-submanifold Y of a 4-manifold W , the 2-chain C in W is Y -proper if

|C | ∩ Y = |∂C |. A disk-chain is a 2-chain which is obtained from a simplicial

map f : B2 → W where B2 is a triangulated disk. Let F be a surface-link in

S4 = R4 ∪{∞} with components Fi(i = 1, 2, . . . , r). Let K(F ;Z2) be the subgroup

of H1(F ;Z2) consisting of an element represented by the boundary of an F -proper

2-chain in S4. We note that every element of K(F ;Z2) is represented by the

boundary of an F -proper regular 2-chain in S4. The peripheral quadratic function

of a surface-link F is the function

Ξ : K(F ;Z2)→ Z2

defined by putting Ξ(x) to be the Z2-intersection number IntS4 (C, C̃)2 in S4 where

C and C̃ are F -proper regular 2-chains in S4 with x = [∂C ] = [∂C̃] and |∂C |∩|∂C̃| =
∅ such that C̃ is obtained from C by sliding ∂C along F . The function Ξ is

well-defined and is a quadratic function with respect to the Z2-intersection form

IntF ( , )2 on F , that is, Ξ has the identity

Ξ(x + y) = Ξ(x) + Ξ(y) + IntF (x, y)2

for all x, y ∈ K(F ;Z2). We note that Ξ may be a singular quadratic function for a

general surface-link F , although it is always non-singular when F is a surface-knot.

Let ∆(F ;Z2) be the subgroup of K(F ;Z2) generated by the elements represented by

the boundaries of all F -proper disk-chains in S4. For our purpose, we are interested

in the restricted quadratic function

ξ = Ξ|∆(F ;Z2) : ∆(F ;Z2)→ Z2,

which we call the null-homotopically peripheral quadratic function of the surface-

link F . For a surface-link F in S4, let N be a tubular neighborhood of F in S4, and

E = cl(S4 −N) be the link-exterior of F . Let D2 be the unit disk in the complex

plane. A canonical trivialization of N is an identification (N,F ) = (F ×D2, F × 0)

such that the natural injection F ×1 ⊂ F ×S1 = ∂N = ∂E ⊂ E induces the trivial

composite homomorphism

H1(F × 1; Z)→ H1(∂E;Z)→ H1(E;Z)
γ→ Z,

where γ ∈ hom(H1(E;Z), Z) = H1(E;Z) is the epimorphism sending every ori-

ented meridian to 1 ∈ Z. The γ-structure on the link-exterior E of a surface-link F

is the subset of H1(E;Z) consisting of the γ’s under all orientation changes of com-

ponents of F , whose cardinal number is seen to be 2r for the component number r

of F .

Let ∆E(∂E;Z2) be the subgroup of H1(∂E;Z2) generated by the elements

represented by the boundaries of all ∂E-proper disk-chains in E. Similarly, let
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∆E(F × 1; Z2) be the subgroup of H1(F × 1; Z2) generated the elements repre-

sented by the boundaries of all F × 1-proper disk-chains in E. The quadratic

function

ξE : ∆E(F × 1; Z2)→ Z2

is defined by a method analogous to the definition of ξ, namely by

ξE(x) = IntE(C, C̃)2

where C and C̃ are F × 1-proper regular 2-chains in E with x = [∂C ] = [∂C̃]

and |∂C | ∩ |∂C̃| = ∅ such that C̃ is obtained from C by sliding ∂C along F × 1.

The following lemma concerns the arguments of J. Boyle [1] and Z. Iwase [4] on

T 2-knots.

Lemma 1.1.

(1) The natural composite map

k∗ : H1(F × 1; Z2)→ H1(∂E;Z2)→ H1(N ;Z2)
∼=← H1(F × 0; Z2) = H1(F ;Z2)

induces an isomorphism

k∗ : ∆E(F × 1; Z2)
∼=→ ∆E(∂E;Z2)

∼=← ∆(F ;Z2).

(2) The isomorphism k∗ induces an isomorphism from the quadratic function

ξE : ∆E(F × 1; Z2)→ Z2 to the quadratic function ξ : ∆(F ;Z2)→ Z2.

(3) The quadratic function ξE : ∆E(F × 1; Z2) → Z2 is invariant (up to iso-

morphisms) under any γ-structure-preserving homeomorphism between the

link-exteriors E for all surface-links F . In particular, ξE is invariant (up

to isomorphisms) under any homeomorphism between the knot-exteriors E

for all surface-knots F .

Proof. To see (1), we take a simplicial map f : B2 → S4 giving an F -proper

disk-chain C in S4. By a general position argument on f and the uniqueness of a

regular neighborhood, we may consider that the regular neighborhood N = F ×D2

of F in S4 meets |f(B2)| in a singular annulus A such that L = (∂N) ∩ |f(D2)| is
a simple loop bounding a singular disk cl(|f(B2)| −A) in E. For the infinite cyclic

covering p : Ẽ → E associated with γ, the boundary ∂E = F × S1 of E lifts to

∂Ẽ = F×R and the loop L lifts to F×R trivially. Since any component of p−1(L) is

homotopic in ∂Ẽ to a loop in F×1 ⊂ F×R = ∂Ẽ, we see that L is homotopic in ∂E

to a loop L′ in F ×1 ⊂ F ×S1 = ∂E. Since the inclusion F ×1 ⊂ N is a homotopy

equivalence, we see that L′ is homotopic to the loop |∂C | × 1 in F × 1. Thus, we

have a simplicial map f ′ : B2 → E giving an F × 1-proper disk-chain C ′ in E such

that ∂C ′ = ∂C× 1 in F × 1. Conversely, if we are given an F × 1-proper disk-chain

C ′ in E, then we can construct an F -proper disk-chain C in S4 with ∂C ′ = ∂C× 1
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by sliding ∂C ′ along F × [0, 1] ⊂ F ×D2 = N . This implies that the map k∗ is an

isomorphism from ∆E(F × 1; Z2) onto ∆(F ;Z2) proving (1), and further that k∗ is

an isomorphism from ξE to ξ proving (2). To see (3), let E′ = cl(S4 −N ′) be the

exterior of a surface-link F ′ in S4 where N ′ = F ′ ×D2 is a tubular neighborhood

of F ′ in S4 with the specified trivialization. Let γ′ ∈ H1(E′;Z) be the cohomology

class sending each oriented meridian of F ′ to 1. Assume that there is a γ-structure

preserving homeomorphism h : E′ ∼= E. Since by definition, ξ is invariant under

all the choices of the oriantations on S4 and the components of F , we can assume

from (2) that h is orientation-preserving and h∗(γ) = γ′.

We need the following sublemma:

Sublemma 1.1.1. Let F∗ be a closed oriented surface of a positive genus. Let

h be an orientation-preserving auto-homeomorphism of F∗×S1 such that h∗(γ) = γ

for the Poincaré dual γ ∈ H1(F∗×S1;Z) of the homology class [F∗× 1] ∈ H2(F∗×
S1;Z). Then h is isotopic to an auto-homeomorphism h′ with h′(F∗× 1) = F∗× 1.

Let F ′
∗ and F∗ be any positive genus surface components of F ′ and F respectively

such that h(F ′
∗×S1) = F∗×S1. Then we see from Sublemma 1.1.1 and a property

of γ′, γ that the homeomorphism h is isotopic to a homeomorphism h′ : E′ ∼= E

such that h′(F ′
∗ × 1) = F∗ × 1 for all F ′

∗ and F∗ with h(F ′
∗ × S1) = F∗ × S1.

The homeomorphism h′ induces an isomorphism from the quadratic function ξE′ :

∆E′(F ′× 1; Z2)→ Z2 to the quadratic function ξE : ∆E(F × 1; Z2)→ Z2. we have

(3) except the proof of Sublemma 1.1.1. �

Proof of Sublemma 1.1.1. Using that the intersection number of F∗× 1 and

every 1-cycle in F∗×1 in F∗×S1 is 0, we see that γ|F∗×1 = 0. For a point x ∈ F∗, we

assume that h(x, 1) = (x,1) by an isotopic deformation of h. Since h∗(γ) = γ, the

automorphism h# of π1(F∗ × S1, (x,1)) preserves the subgroup π1(F∗ × 1, (x,1)).

Let f be an auto-homeomorphism of (F∗ × 1, (x,1)) inducing the automorphism

h#|π1(F∗×1,(x,1)) up to an conjugation. Then the auto-homeomorphism h′ = f × 1

of F∗ × S1 is homotopic to h since F∗ × S1 is a Haken manifold and h′
# coincides

with h# up to a conjugation. By F. Waldhausen’s result in [21], h is isotopic to h′

and h′(F∗ × 1) = F∗ × 1. �

Let ς(F ) be the Gauss sum

GS(ξ) =
∑

x∈∆(F ;Z2)

exp(2π
√
−1

ξ(x)

2
).

The following theorem is useful to obtain a pseudo-ribbon non-ribbon surface-link:

Theorem 1.2.

(1) For every surface-link F of total genus g, the invariant ς(F ) is 0, 1 or ±2s

for an integer s with 1 ≤ s ≤ g.
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(2) If F is a ribbon surface-link of total genus g, then we have ς(F ) = 2g .

(3) For any connected sum F = F1#F2 of any surface-links F1 and F2, we have

ς(F ) = ς(F1)ς(F2).

It appears unknown whether there is a surface-link F with ς(F ) = −2s.

Proof. If ∆(F ;Z2) = 0, then we have ς(F ) = 1 since ξ(0) = 0. Assume

∆(F ;Z2) 6= 0. Let xi (i = 1, 2, . . . , s) and yj (j = 1, 2, . . . , u) be a Z2-basis for

∆(F ;Z2) with 0 ≤ u ≤ s ≤ g such that Int2(xi, xi′) = Int2(yj , yj′ ) = 0 and

Int2(xi, yj) = δij for all i, i′, j, j ′. Let ∆i (i = 1, 2, . . . , s) be the direct summand of

∆(F ;Z2) with basis xi, yi for i ≤ u or xi for i > u. Let ξi be the restriction of ξ

to ∆i. For every i ≤ u, we have either ξi(xi) = 0 and ξi(xi + yi) = ξi(yi) + 1 or

ξi(xi) = ξi(yi) = ξi(xi + yi) = 1, so that GS(ξi) = ±2 by noting exp(π
√
−1) = −1.

For every i > s, it is direct to see that GS(ξi) is 2 or 0 according to whether ξi(xi)

is 0 or 1. Since ∆(F ;Z2) splits into ∆i (i = 1, 2, . . . , s) orthogonally with respect

to the Z2-intersection form on F , we have

ς(F ) = GS(ξ) = GS(ξ1)GS(ξ2) · · ·GS(ξs) = 0, 1 or ± 2s,

showing (1). To show (2), let F be a ribbon surface-link of total genus g. By [11],

F admits a Seifert hypersurface V which is homeomorphic to the connected sum of

handlebodies Vi (i = 1, 2, . . . , r) of total genus g and some copies of S1 × S2. Let

O(F ;Z2) be the subgroup of ∆(F ;Z2) generated by a half Z2-basis of H1(F ;Z2)

which are represented by meridian loops of Vi (i = 1, 2, . . . , r). It is direct to see

that ξ(x) = 0 for all x ∈ O(F ;Z2). We take a Z2-basis xi (i = 1, 2, . . . , g), yj

(j = 1, 2, . . . , u) of ∆(F ;Z2) with 0 ≤ u ≤ g such that xi (i = 1, 2, . . . , g) are a

Z2-basis of O, and Int2(yj , yj′ ) = 0 and Int2(xi, yj) = δij for all i, j, j ′. As in the

argument of the first half, we denote by ξi (i = 1, 2, . . . , g) the restriction of ξ to

the direct summand with basis xi, yi for i ≤ u or xi for i > u. For every i ≤ u, the

identity ξi(xi) = 0 implies ξi(xi + yj) = ξi(yi) + 1, so that GS(ξi) = 2. For every

i > u, it is direct to see that GS(ξi) = 2 since ξi(xi) = 0. Thus, we have

ς(F ) = GS(ξ) = GS(ξ1)GS(ξ2) · · ·GS(ξg) = 2g,

showing (2). To show (3), we first show that ∆(F ;Z2) = ∆(F1;Z2) ⊕ ∆(F2;Z2)

under the identification H1(F ;Z2) = H1(F1;Z2) ⊕H1(F2;Z2). Since ∆(F ;Z2) ⊃
∆(F1;Z2) ⊕∆(F2;Z2) is obvious, it suffices to show that ∆(F ;Z2) ⊂ ∆(F1;Z2) ⊕
∆(F2;Z2). For the infinite cyclic covering p : Ẽ → E associated with γ, we consider

an embedding

e : F = F × 1
⊂→ F ×R1 = ∂Ẽ

⊂→ Ẽ.

For Fi (i = 1, 2) instead of F , we have a similar embedding

ei : Fi → Ẽi.
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We regard F as the union F 0
1 ∪ F 0

2 where F 0
i is a compact punctured surface of Fi

with ∂F 0
1 = ∂F 0

2 . We note that every (possibly singular) loop L ⊂ F is homotopic

in F to a bouquet

BL = L1
1 ∨ L1

2 ∨ · · · ∨ Lr
1 ∨ Lr

2

such that Lj
i is a (possibly singular) loop in F 0

i and the base point is sent to a point

b ∈ e(∂F 0
1 ) = e(∂F 0

1 ) by e. Since π1(Ẽ, b) is the free product π1(Ẽ1, b) ∗ π1(Ẽ2, b)

and each loop Lj
i represents an element of π1(Ẽi, b), we see from a result of W.

Magnus-A. Karrass-D. Solitar [14;p.182] that if L is null-homotopic in Ẽ, then

some loop Lj
i represents a trivial element of π1(Ẽi, b). The bouquet obtained from

BL by removing this loop Lj
i is homotopic in F to a bouquet

BL′ = (L′)11 ∨ (L′)12 ∨ · · · ∨ (L′)r−1
1 ∨ (L′)r−1

2

such that (L′)j
i is a loop in F 0

i and the base point is sent to the point b by e. Then

we note that L is homologous to Lj
i + BL′ in F . Since BL′ is null-homotopic in Ẽ,

we can conclude by induction on r that L is homologous in F to the sum L1 + L2

where Li is the sum of loops in F 0
i which are null-homotopic in Ẽi. This implies

that

∆(F ;Z2) ⊂ ∆(F1;Z2)⊕∆(F2;Z2)

and hence

∆(F ;Z2) = ∆(F1;Z2)⊕∆(F2;Z2).

For every element xi ∈ ∆(Fi;Z2) (i = 1, 2), we have Int2(x1, x2) = 0, so that

ξ(x1 + x2) = ξ(x1) + ξ(x2).

By this identity, we have

exp(2π
√
−1

ξ(x1 + x2)

2
) = exp(2π

√
−1

ξ(x1)

2
) exp(2π

√
−1

ξ(x2)

2
),

which implies the identity ς(F ) = ς(F1)ς(F2). �

Let D2 be the disk, and ρD : D2 × [0, 1]→ D2 the projection to the first factor.

Let k be a knot in D2 × [0, 1] such that ρD(k) be a transversely immersed loop in

D2. We consider an unknotted embedding f1 : D2 × S1 → R3 with +1-framing.

Let

f̄1 : (D2 × S1)× [0, 1]
f1

×id−→ R3 × [0, 1] ⊂ R4

be the associated embedding. Under the identification

(D2 × [0, 1])× S1 = (D2 × S1)× [0, 1],

we obtain the torus k × S1 in (D2 × S1) × [0, 1]. The turned spun T 2-knot of the

knot k is the T 2-knot T (k) = f̄1(k × S1) in R4 ⊂ R4 ∪ {∞} = S4 (see J. Boyle
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[1]). From construction, ρS(T (k)) is a closed 1-manifold which is the product of the

double point set of ρD(k) by S1. Hence T (k) is a pseudo-ribbon T 2-knot. When we

use an unknotted embedding f0 : D2 × S1 → R3 with 0-framing instead of f1, we

obtain the spun T 2-knot T 0(k) of the knot k, which is directly seen to be a ribbon

T 2-knot. We have the following corollary to Theorem 1.2, generalizing a result of

A. Shima [19]:

Corollary 1.3. Any connected sum F#T (k) of a surface-link F and the turned

spun T 2-knot T (k) of a non-trivial knot k is a non-ribbon surface-link.

Proof. First, we show the Gauss sum invariant ς(T (k)) = 0. By the unknotted

embedding f1 with +1-framing, we have an embedded disk B in S4 with B∩T (k) =

∂B which is an essential loop in T (k) and IntS4(B, B̃)2 = 1. Hence the element

x = [∂B] ∈ ∆(T (k);Z2) has ξ(x) = 1. Since H1(T (k);Z2) has a Z2-basis consisting

of x and the longitude element y of k and the longitude of k represents an infinite

order element of π1(R
3−k) ∼= π1(S

4−T (k)), we see that ∆(T (k);Z2) = {0, x} ∼= Z2.

Thus, we have ς(T (k)) = 1−1 = 0. By Theorem 1.2, ς(F#T (k)) = ς(F )ς(T (k)) = 0

and hence F#T (k) is a non-ribbon surface-link. �

For any integer sequence g1 ≥ g2 ≥ · · · ≥ gr ≥ 0 with g1 > 0, we take any pseudo-

ribbon (e.g. trivial or ribbon) surface-link with components Fi (i = 1, 2, . . . , r) such

that genus(F1) = g1 − 1 and genus(Fi) = gi (i = 2, 3, . . . , r). Then we see from

Corollary 1.3 that the connected sum F1#T (k) ∪ F2 ∪ . . . Fr is a pseudo-ribbon,

non-ribbon surface-link of genera gi (i = 1, 2, . . . , r). For a surface-knot, we have a

result on the knot-exterior as follows:

Example 1.4 Let F be a surface-knot F with ς(F ) 6= 0. Since the spun T 2-knot

T 0(k) of a non-trivial knot k is a ribbon T 2-knot, we see from Theorem 1.2 that

ς(F#T 0(k)) = 2ς(F ) 6= 0.

On the other hand, we have ς(F#T (k)) = 0, for ς(T (k)) = 0 by Corollary 1.3. By

an observation due to F. González-Acuña found in J. Boyle’s paper [1], the knot-

exteriors of T (k) and T 0(k) are homotopy equivalent. Examining it carefully, we

can see also that the knot-exteriors of F#T 0(k) and F#T (k) are homotopy equiva-

lent. However, from Lemma 1.1(3), we see that the knot-exteriors of F#T 0(k) and

F#T (k) are not homeomorphic, generalizing the property between the T 2-knots

T (k) and T 0(k) known by J. Boyle [1] and Z. Iwase [4] .

2. The torsion linking of a pseudo-ribbon surface-link

Let p : W̃ → W be the infinite cyclic covering of a compact oriented 4-manifold

W belonging to an element γ ∈ H1(W ;Z). Let A and A′ be ∅ or compact 3-

submanifolds of ∂W such that A′ = cl(∂W−A). Let Ã = p−1(A) and Ã′ = p−1(A′).

We briefly explain the torsion linking of (W̃ , Ã, Ã′) which has been done in [7]. For
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a Λ-module H, let TH be the Λ-torsion part of H, and BH = H/TH. (Unless

otherwise stated, abelian groups are regarded as Λ-modules on which t operates

as the identity.) Let tH be the Z-torsion part of H, and bH = H/tH. Let

Eq(H) = ExtqΛ(H,Λ). For a finitely generated Λ-module H, we have a unique

maximal finite Λ-submodule DH of H. Then we have a t-anti epimorphism

θA,A′ : DH1(W̃ , Ã;Z)→ E1(BH2(W̃ , Ã′;Z))

which is an invariant of (W̃ , Ã, Ã′) or (W,A,A′, γ). We denote the kernels of

θA,A′ and θA′,A by DH1(W̃ , Ã;Z)θ and DH1(W̃ , Ã′;Z)θ, respectively. Let µ ∈
TH3(W̃ , ∂W ;Z) be the fundamental class of the covering p : W̃ → W , which is

characterized by tµ = µ and p∗(µ) = γ ∩ [W ] for the fundamental class [W ] of W .

Let τH2(W̃ , Ã;Z) be the image of the Bockstein coboundary map

δQ/Z : H1(W̃ , Ã;Z)→ H2(W̃ , Ã;Z).

The second duality in [7] is equivalent to the following lemma (see [7; Theorem

6.5]):

Lemma 2.1. The cap product map ∩µ : τH2(W̃ , Ã;Z) → tH1(W̃ , Ã′;Z) in-

duces an isomorphism

∩µ : hom(DH1(W̃ , Ã;Z)θ, Q/Z) ∼= DH1(W̃ , Ã′;Z)θ.

In fact, by Lemma 2.1 we have a t-isometric non-singular bilinear form

` : DH1(W̃ , Ã;Z)θ ×DH1(W̃ , Ã′;Z)θ −→ Q/Z

by taking `(x, y) = fy(x) ∈ Q/Z for x ∈ DH1(W̃ , Ã;Z)θ, y ∈ DH1(W̃ , Ã′;Z)θ,

fy ∈ hom(DH1(W̃ , Ã;Z)θ, Q/Z) with fy ∩ µ = y. This bilinear form ` is an

invariant of (W̃ , Ã, Ã′) or (W,A,A′, γ) and called the torsion linking of (W̃ , Ã, Ã′)

or (W,A,A′, γ). Let F be a surface-link in S4 = R4 ∪ {∞}, and E the compact

exterior cl(S4 − N) where N denotes a normal disk bundle of F in S4. Taking

W = E, A = ∂E, A′ = ∅ and the element γ ∈ H1(E;Z) = hom(H1(E;Z), Z)

sending each oriented meridian of F to 1 ∈ Z, we have, as a surface-link type

invariant, the torsion linking

` = `F : DH1(Ẽ, ∂Ẽ;Z)θ ×DH1(Ẽ;Z)θ −→ Q/Z

of the surface-link F . The following theorem is proved in §3:

Theorem 2.2. If F is a pseudo-ribbon surface-link, then the torsion linking `F

vanishes. In other words,

DH1(Ẽ, ∂Ẽ;Z)θ = DH1(Ẽ;Z)θ = 0.
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The linking signature σ(F ) and the local linking signatures σi
p(F ) are defined as

modulo 4 integers in [10] by using the Gauss sum of the quadratic function asso-

ciated with the torsion linking `F . The following corollary is direct from Theorem

2.2:

Corollary 2.3. If F is a pseudo-ribbon surface-link, then we have

σ(F ) = σi
p(F ) = 0

for all prime numbers p and all positive integers i.

3. Constructing a canonical Seifert hypersurface for a pseudo-ribbon

surface-link

We assume that the singularity image ρS(F ) in R3 of a pseudo-ribbon surface-

link F in R4 consists of mutually disjoint simple loops Ci (i = 1, 2, . . . , r). Let Ni

be a regular neighborhood of Ci in ρ(F ), so that we have a homeomorphism

hi : (X,v) × S1 ∼= (Ni, Ci) (i = 1, 2, . . . , r),

where X denotes a cone over a four-point set with v as the vertex. We regard X

as the subgraph of the 1-skelton J (1) of a bouquet J of two 2-simplices at a vertex

such that the complement graph is the union of two disjoint 1-simplices I and I ′.

In this case, v is the vertex of the bouquet J . Then hi extends to an embedding

h̄i : J × S1 −→ R3. We note that there are two choices on regarding X as such a

subgraph of J (1). Our choice is made to satisty the condition that

P = cl(ρ(F ) −∪r
i=1Ni) ∪ (∪r

i=1h̄i((I ∪ I ′)× S1)

is an orientable 2-manifold with an orientation induced from ρ(F ) − ∪r
i=1Ni. The

2-manifold P is referred to as a 2-manifold obtained from ρ(F ) by orientation-

preserving cut along the Ci’s. Let Pj (j = 1, 2, . . . , s) be the components of P such

that the compact 3-manifold Vj in R3 bounded by Pj satisfies the condition that

Pj ⊂ Vj′ implies j < j ′.

Let T be a four-sided disk, and I0 a proper interval in T splitting T into two four-

sided disks. We identify the quotient space T/I0 with J so that the quotient map q :

T −→ J = T/I0 is a half-twist band projection with q(I0) = v. For a subset A of R3

and an interval [a, b] granting a = b, we denote the subset {(x, t)|x ∈ A, t ∈ [a, b]} of

R4 by A[a, b]. We choose real numbers tj (j = 1, 2, . . . , s) so that t1 < t2 < · · · < ts.

After an ambient deformation of F , we have a Seifert hypersurface V for F so that

V = (

s
∐

j=1

Vj [tj ]) ∪ (

r
∐

i=1

h̄∗
i (T × S1),
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where h̄∗
i denotes an embedding h̄∗

i : T × S1 −→ R4 such that the composite

ρh̄∗
i : T × S1 h̄∗

i−→ R4 ρ−→ R3

is equal to the composite

T × S1 q×1−→ J × S1 h̄i−→ R3.

By construction, we have

ρ(V ) = (

s
∐

j=1

Vj) ∪ (

r
∐

i=1

h̄i(J × S1)).

Further, we can assume that V ⊂ ρ(V )[t1, ts]. We call this hypersurface V a

canonical Seifert hypersurface of the pseudo-ribbon surface-link F . Let EV be the

compact oriented 4-manifold obtained from the exterior E of F in S4 = R4∪{∞} by

splitting along V ∩E(∼= V ). Let V ±(∼= ±V ) be the two copies of V in ∂EV ⊂ EV .

Let i± : V ∼= V ± ⊂ EV be the composite injections. The following theorem is a

key to our argument:

Theorem 3.1. For a canonical Seifert hypersurface V of a pseudo-ribbon

surface-link F , the induced homomorphisms

i±∗ : tH1(V ;Z) −→ tH1(EV ;Z)

on the torsion part of the first integral homology are trivial.

To prove this theorem, we need some preliminaries. First we show the following

lemma:

Lemma 3.2. For the inclusion k :
∐s

j=1 Vj [tj ] ⊂ V , we have

tH1(V ;Z) ⊂ image[H1(
s

∐

j=1

Vj [tj]; Z)
k∗−→ H1(V ;Z)].

Proof. Let Ai = h̄∗
i (I × S1) (i = 1, 2, . . . , r) be proper annuli with any orienta-

tions in V . Then we have

Int([Ai], x) = 0

for all x ∈ tH1(V ;Z) with respect to the intersection form

Int : H2(V, ∂V ;Z)×H1(V ;Z) −→ Z.
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This means that every element x ∈ tH1(V ;Z) is represented by an embedded closed

oriented 1-manifold Lx with Lx∩Ai = ∅ for all i, so that Lx is isotopically deformed

into
∐s

j=1 Vj [tj ]. �

We also need the following lemma:

Lemma 3.3. For every polyhedron V in R3, we have tH1(V ;Z) = 0.

Proof. We may assume that V is compact and connected. Further, we may

assume that V is a compact connected 3-submanifold of R3 by taking a regular

neighborhood of V instead of V . For any elements x ∈ tH1(V, ∂V ;Z) and y ∈
tH1(V ;Z), we can represent x and y by disjoint closed oriented 1-manifolds Lx and

Ly in V . Then there are a non-zero integer m and a 2-chain cy in V such that

∂cy = mLy and the torsion linking

`V : tH1(V, ∂V ;Z)× tH1(V ;Z) −→ Q/Z

is computed by the identity `V (x, y) = Int(Lx, cy)/m (mod 1). Since the linking

number Link(Lx, Ly) ∈ Z in R3 is defined, we have

Int(Lx, cy)/m = Link(Lx,mLy)/m = Link(Lx, Ly) ∈ Z

and hence `V (x, y) = 0 ∈ Q/Z. Using that the torsion linking `V is non-singular,

we obtain tH1(V, ∂V ;Z) = tH1(V ;Z) = 0. �

By using Lemmas 3.2 and 3.3, Theorem 3.1 is proved as follows:

Proof of Theorem 3.1. We regard [t1, ts] ⊂ R1 ∪ {∞} = S1. Let f : ρ(V ) ×
S1 −→ R4 ⊂ R4 ∪{∞} = S4 be an embedding sending ρ(V )× [t1, ts] to ρ(V )[t1, ts]

identically. We represent any element x ∈ tH1(V ;Z) by a closed oriented 1-manifold

Lx in
∐s

j=1 Vj [tj ]. Let Lj [tj] = Lx ∩ Vj [tj ] for a closed 1-manifold Lj or ∅ in Vj .

We take a point t0 ∈ S1 − [t1, ts]. For any j with Lj 6= ∅, we further take a subarc

α+
j ⊂ S1 with ∂α+

j = {t0, tj} so that Lj × α+
j meets Vj [tj] from the positive side

of Vj [tj ]. Then the image f(
∐s

j=1 Lj × α+
j ) is a disjoint union of annuli which is

contained in EV and whose boundary consists of Lx in V + and L′
x = f(

∐s
j=1 Lj×t0)

in f(ρ(V ) × t0) ⊂ EV . Since

H1(ρ(V ) × S1;Z) ∼= H1(ρ(V );Z) ⊕H1(S
1;Z),

we see from Lemma 3.3 that [Lx] = 0 ∈ H1(ρ(V ) × S1;Z). Using that the natural

homomorphism H1(ρ(V )× t0;Z) −→ H1(ρ(V )×S1;Z) is injective, we see that L′
x

bounds a 2-chain c′ in f(ρ(V )× t0). Thus, Lx ⊂ V + bounds a 2-chain f(
∐s

j=1 Lj×
α+

j ) + c′ in EV , which means that i+∗ (x) = 0. Similarly, i−∗ (x) = 0. �
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The following corollary is direct from Theorem 3.1 since the infinite cyclic cov-

ering space Ẽ is constructed from the copies ((EV )i; (V
+)i, (V

−)i) (i ∈ Z) of the

triplet (EV ;V +, V −) by pasting (V −)i−1 to (V +)i for all i:

Corollary 3.4. For any canonical Seifert hypersurface V of a pseudo-ribbon

surface-link F , every lift ĩ : V −→ Ẽ of the natural injection i : V −→ E induces

the trivial homomorphism

ĩ∗ = 0 : tH1(V ;Z) −→ tH1(Ẽ ;Z).

By using Corollary 3.4, Theorem 2.2 is proved as follows:

Proof of Theorem 2.2. We consider the following commutative diagram:

τH2(Ẽ, ∂Ẽ;Z)
∩µ−−−−→ tH1(Ẽ;Z)

ĩ∗





y

ĩ∗

x





tH2(V, ∂V ;Z)
∩[V ]
∼=−−−−→ tH1(V ;Z).

In this diagram, we have

ĩ∗ = 0 : tH1(V ;Z) −→ tH1(Ẽ;Z)

by Corollary 3.4 and hence

∩µ = 0 : τH2(Ẽ, ∂Ẽ;Z) −→ tH1(Ẽ;Z).

By Lemma 2.1, we have

∩µ = 0 : hom(DH1(Ẽ, ∂Ẽ;Z)θ, Q/Z) ∼= DH1(Ẽ;Z)θ,

which implies DH1(Ẽ, ∂Ẽ;Z)θ = DH1(Ẽ;Z)θ = 0. �

Here is another corollary to Theorem 3.1.

Corollary 3.5. For any canonical Seifert hypersurface V of a pseudo-ribbon

surface-link F , the natural homomorphism j∗ : tH1(V ;Z) −→ tH1(V, ∂V ;Z) is

trivial.

Proof. From the boundary isomorphism ∂̄ : H2(S
4, V ×I;Z) ∼= H1(V ×I;Z) and

the excision isomorphism H2(EV , V + ∪ V −;Z) ∼= H2(S
4, V × I;Z), the composite

of the natural homomorphisms

tH2(EV , ∂EV ;Z)
∂→ tH1(∂EV ;Z)

i′
∗−→ tH1(V × I;Z)
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is an isomorphism. Since ∂EV = ∂(V × I), the Poincaré duality implies that the

composite of the natural homomorphisms

hom(tH1(EV ;Z),Q/Z)
i#
∗−→ hom(tH1(∂EV ;Z),Q/Z)

∂′#

−→
hom(tH2(V × I, ∂(V × I);Z),Q/Z)

is an isomorphism and hence the composite of the natural homomorphisms

tH2(V × I, ∂(V × I);Z)
∂−→ tH1(∂EV ;Z)

i∗−→ tH1(EV ;Z)

is an isomorphism by applying hom( , Q/Z) to the homomorphisms above. Further,

composing a suspension isomorphism

σ : tH1(V, ∂V ;Z) ∼= H2((V, ∂V )× (I, ∂I);Z) = tH2(V × I, ∂(V × I);Z)

to this composite isomorphism, we obtain an isomorphism

θ = i∗∂σ : tH1(V, ∂V ;Z) ∼= tH1(EV ;Z).

For the natural homomorphism j∗ : tH1(V ;Z) −→ tH1(V, ∂V ;Z), the composite

j∗θ : tH1(V ;Z) −→ tH1(EV ;Z) is equal to the map i+∗ − i−∗ which is the zero map.

Thus, j∗ = 0. �

We note that Corollary 3.5 does not mean that tH1(V ;Z) = 0. It is unknown

whether every pseudo-ribbon surface-link F admits a Seifert hypersurface V with

tH1(V ;Z) = 0.

4. The triple point cancelling number of a surface-link

The triple point number of a surface-link F in R4, denoted by T(F ) is the mini-

mum on the triple point number of the singular surface ρ(F ′) for all generic surface-

links F ′ ambient isotopic to F . In this section, we shall discuss a similar but distinct

concept on a surface-link F . Let F ′ be a generic surface-link ambient isotopic to F .

By an ambient deformation of F ′ without changing ρ(F ′), we can consider that the

set F ′∩ρ−1(Bx) for a 3-ball neighborhood Bx of every triple point x ∈ ρ(F ′) in R3

is the union D1[t1]∪D2[t2]∪D3[t3] where Di is a proper disk in Bx and t1 < t2 < t3.

Then we make an orientation-preserving cut on Di ∪Di+1 ⊂ Bx for i = 1 or 2 to

obtain from F ′ a new generic surface-link F ′
1 in R4 (see J. S. Carter-M. Saito [2,Fig-

ure N]). When we compare ρ(F ′
1) with ρ(F ′), ρ(F ′

1) has the triple points decreased

by one point and the branch points increased by two points. We call the operation

F ′ ⇒ F ′
1 a triple point cancelling operation on ρ(F ′). The triple point cancelling

number of the singular surface ρ(F ′) is the minimum of the number of triple point

cancelling operations on ρ(F ′) needed to obtain a pseudo-ribbon surface-link F ′
∗ in

R4.
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Definition 4.1. The triple point cancelling number of a surface-link F in R4,

denoted by T (F ) is the minimum on the triple point cancelling number of the

singular surface ρ(F ′) for all generic surface-links F ′ ambient isotopic to F .

If we compare T(F ) to the crossing number of a classical knot, then we could

compare T (F ) to the unknotting number of a classical knot. The following lemma

is useful to understand a triple point cancelling operation:

Lemma 4.2. Let F ′
∗ be a surface-link obtained by doing m triple point cancelling

operations on ρ(F ′) for a generic surface-link F ′ ambient isotopic to a surface-link

F in R4. Then F ′
∗ is ambient isotopic to a surface-link F∗ obtained from F by

an embedded surgery along m mutually disjoint 1-handles on F . Conversely, if

F∗ is a surface-link obtained from F by an embedded surgery along m mutually

disjoint 1-handles on F , then F∗ and F are respectively ambient isotopic to generic

surface-links F ′
∗ and F ′ such that F ′

∗ is a surface-link obtained by doing m triple

point cancelling operations on ρ(F ′).

Proof. The proof of the first half part is obvious from the definition of a triple

point cancelling operation. To prove the second half part, we use three 2-spheres

Si ⊂ R3[ti] (i = 1, 2, 3) with t1 < t2 < t3 such that the singularity image ρS(S1 ∪
S2 ∪ S2) is homeomorphic to a suspension of a three point set and hence has just

two triple points. Let B3 be a 3-ball in R3 such that Di = Si ∩ B3[ti] is a disk

with ρ(cl(Si −Di)) (i = 1, 2, 3) mutually disjoint disks in R3. We find a 1-handle

h ⊂ B3[t1, t2] on D1∪D2∪D3 connecting D1 and D2 such that ρ(h) induces a triple

point cancelling operation on ρ(S1 ∪ S2 ∪ S3). Let hi (i = 1, 2, . . . ,m) be mutually

disjoint 1-handles on F to produce a surface-link F∗. Then F is ambient isotopic to a

generic surface-link F ′ such that F ′∩B3
i [t1, t3] = F ′∩ρ−1(B3

i ) and (B3
i [t1, t3]; F

′∩
B3

i [t1, t3], hi) is [t1, t3]-level-preservingly homeomorphic to (B3[t1, t3]; D1 ∪ D2 ∪
D3, h) for some m mutually disjoint 3-balls B3

i (i = 1, 2, . . . ,m) in R3. The surface-

link F∗ is ambient isotopic to a surface-link F ′
∗ obtained by doing m triple point

cancelling operations on ρ(F ′). �

We use the following result later:

Corollary 4.3. Let F be an S2-knot obtained from any non-trivial 2-bridge

knot by the 2-twist spinning. Then T (F ) = 1.

Proof. Since DH1(Ẽ;Z) = H1(Ẽ;Z) ∼= Λ/(p, t+1) for an integer p ≥ 3 (see M.

Teragaito [20]) and BH2(Ẽ, ∂Ẽ;Z) = 0, the torsion linking `F is not zero by [7].

Hence we have T (F ) ≥ 1 by Theorem 2.2. On the other hand, the S2-knot F has a

Seifert hypersurface V homeomorphic to a punctured Lens space. Then there is a

1-handle h on F such that h ⊂ V with cl(V −h) is a solid torus, so that the surface

F1 obtained from F by the embedded surgery along h is a trivial T 2-surface which

is a pseudo-ribbon surface-knot. Hence T (F ) ≤ 1 and T (F ) = 1. �
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The following remark concerns the difference T(F ) − T (F ):

Remark 4.4. For a surface-link F , T (F ) = 0 if and only if T(F ) = 0 if and

only if F is pseudo-ribbon by the definitions. S. Satoh observed that the difference

T(F ) − T (F ) is positive for every non-pseudo-ribbon surface-link F . In fact, we

have T(F ) ≥ T (F ) > 0 by the definitions. If T(F ) = T (F ) > 0, then we have a

generic surface-link F ′ with T (F ′) = T(F ′) = 1 by taking T (F )− 1 times of triple

point cancelling operations. Then we see from a result of S. Satoh [16] that we find

a simple double line connecting to the triple point and a branch point in ρ(F ′), so

that we can eliminate the triple point by moving this branch point along this double

line, meaning that F ′ is a pseudo-ribbon surface-link, contradicting to T (F ′) = 1.

Hence T(F ) − T (F ) > 0. S. Satoh and A. Shima [17] showed that T(S(31)) = 4

for the S2-knot S(31) obtained from the trefoil knot 31 by the 2-twist spinning.

By Corollary 4.3, we have T (S(31)) = 1, so that T(S(31))− T (S(31)) = 3. There

are open questions asking whether T(F ) − T (F ) ≥ 3 for every non-pseudo-ribbon

surface-knot F and whether there is a surface-knot F such that T(F ) − T (F ) is

greater than any previously given positive integer.

The inequality T (F1#F2) ≤ T (F1) + T (F2) holds for any surface-knots F1 and

F2, and the equality does not appear to hold in general (see T. Kanenobu [6]). It

is also an open question whether there is such an example.

From now, we shall establish an estimate of the triple point cancelling number

of a general surface-link. Let E = cl(S4−N) be the knot-exterior of a surface-knot

F in S4 where N = F ×D2 is a tubular neighborhood of F in S4 with the specified

trivialization. Let V0 be the handlebody such that ∂V0 = F . Let Mφ be the closed

4-manifold obtained from the exterior E and V0 × S1 by attaching the boundaries

by a homeomorphism φ : ∂E = F × S1 → ∂V0 × S1 which preserves the S1-factor.

Then Mφ is a closed connected oriented 4-manifold with H1(Mφ;Z) ∼= Z, which we

call a ZH1-manifold. We use the concept of exactness of ZH1-manifold in [8,9] in

our argument.

Lemma 4.5. Let F be a pseudo-ribbon surface-knot in S4. Then there exists

an attachment φ such that the ZH1 -manifold Mφ is a spin exact ZH1-manifold.

Proof. Let V be a canonical Seifert hypersurface for F in S4. Let C be the image

of the boundary homomorphism ∂ : H2(V,F ;Z) −→ H1(F ;Z). By Corollary 3.5,

we have a subgroup C̄ of H1(F ;Z) such that C̄ ⊃ C and the natural monomorphism

H1(F ;Z)/C −→ H1(V ;Z) induces a monomorphism

H1(F ;Z)/C̄ −→ bH1(V ;Z).

Then C̄ is a self-orthogonal complement of H1(F ;Z) with respect to the intersection

form Int : H1(F ;Z) ×H1(F ;Z) −→ Z. Let xi, yi be a Z-basis for H1(F ;Z) such
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that xi (i = 1, 2, . . . , g) is a Z-basis for C̄ and Int(xi, xj) = Int(yi, yj) = 0 and

Int(xi, yj) = δij for all i, j. Let Kx
i and Ky

i be simple loops on F such that

Kx
i ∩ Kx

j = Ky
i ∩ Ky

j = Kx
i ∩ Ky

j = ∅ for all i, j with i 6= j and Kx
i ∩ Ky

i is one

point for all i. Let V0 be a handlebody with ∂V0 = F such that Kx
i (i = 1, 2, . . . , g)

bound mutually disjoint meridian disks Di (i = 1, 2, . . . , g) in V0. Let V̄ = V ∪ V0

be a closed oriented 3-manifold pasting F with these data which produces a ZH1-

manifold Mφ. From the homology exact sequence of the pair (V̄ , V ), we obtain a

natural isomorphism bH1(V ;Z) ∼= H1(V̄ ;Z). When we regard V as V + in EV , we

see from Theorem 3.1 that the simple loop Kx
i ⊂ V + bounds a compact oriented

surface Fi in EV . Let F̄i = Fi ∪Di (i = 1, 2, . . . , g) be closed oriented surfaces in

Mφ. Let Ti = Ky
i × S1 ⊂ F × S1 = ∂E ⊂ Mφ (i = 1, 2, . . . , g). Then the closed

oriented surfaces F̄i and Ti (i = 1, 2, . . . , g) form a Z-basis for H2(Mφ;Z) with

Int(F̄i, F̄j) = Int(Ti, Tj) = 0 and Int(F̄i, Tj) = δij for all i, j with respect to the

intersection form Int : H2(Mφ;Z)×H2(Mφ;Z) −→ Z. [To see that Int(F̄i, F̄j) = 0,

we note that Kx
i (i = 1, 2, . . . , g) represent torsion elements in H1(V ;Z), which

implies that for each i there is a non-zero integer mi such that miF̄i is homologous

to a cycle Ci + C ′
i in Mφ where Ci is a cycle in V̄ and C ′

i is a cycle in intEV ⊂ S4.

Then we have

mimjInt(F̄i, F̄j) = Int(miF̄i,mjF̄j) = 0

showing Int(F̄i, F̄j) = 0.] In particular, Mφ is spin. Using a collar of V̄ in Mφ, we

take mutually disjoint closed oriented surfaces F̄ ′
i (i = 1, 2, . . . , g) in Mφ such that

F̄ ′
i ∩ V̄ = ∅ and F̄ ′

i is homologous to F̄i in Mφ. Since the normal disk bundle N ′
i

of F̄ ′
i in Mφ is trivial, the leaf V ∗ of Mφ obtained by taking connected sums of V̄

and ∂N ′
i (i = 1, 2, . . . , g) in Mφ satisfies the condition that tH1(V

∗;Z) = 0 and the

image of the natural homomorphism H2(V
∗;Z) −→ H2(Mφ;Z) is a self-orthogonal

complement with respect to the intersection form Int : H2(Mφ;Z)×H2(Mφ;Z) −→
Z. Let M ′

φ be the 4-manifold obtained from Mφ by splitting along V ∗. Then by

[8;(4.7.2)] tH1(V
∗;Z) = 0 implies tH1(M

′
φ;Z) = tH2(Mφ, V ∗;Z) = 0. We see from

[9] that V ∗ is an exact leaf of Mφ and thus Mφ is exact. �

For a finitely generated Λ-module H, let e(H) denote the minimal number of

Λ-generators of H. By convention, e(0) = 0. We show the following theorem, which

improves and generalizes Kamada’s estimate in [5]:

Theorem 4.6. Let F be a surface-link with r components and total genus g.

Then for every Λ-submodule H ′ of H = H1(Ẽ, ∂Ẽ;Z) such that D = H/H′ is a

(t− 1)-divisible finite Λ-module, there is a Λ-submodule D′ of D such that

e(D′) ≤ T (F ) and e(E2(D/D′)) ≤ g + e(H′)− r + 1 + T (F ).

Proof. Let m = e(H′). Let F ′ be a surface-link obtained from F by an em-

bedded surgery along m mutually disjoint 1-handles representing Λ-generators for
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H ′. Let E′ be the compact exterior of F ′ in S4. Then we see that H1(Ẽ
′;Z) ∼=

H/H′ = D, so that F ′ is a surface-knot of genus g′ = g + m − (r − 1). Since the

1-handle surgery can be done apart from the triple points of ρ(F ), we obtain a

pseudo-ribbon surface-knot F ′′ of genus

g′′ = g′ + T (F ) = g + m− (r − 1) + T (F )

from F ′ by T (F ) times of triple point cancelling operations. Let E′′ be the knot-

exterior of F ′′. Then we have H1(Ẽ
′′;Z) ∼= D/D′ for a Λ-submodule D′ of D with

e(D′) ≤ T (F ). By Theorem 2.2, we have a t-anti isomprphism

D/D′ = H1(Ẽ
′′;Z) = DH1(Ẽ

′′;Z) ∼= E1(BH2(Ẽ
′′, ∂Ẽ′′;Z)).

Let Mφ be an exact ZH1-manifold obtained from F ′′ by Lemma 4.5. By an argu-

ment in [8], we have a Λ-isomorphism

E1(BH2(M̃φ;Z)) ∼= E1(BH2(Ẽ
′′, ∂Ẽ′′;Z)).

Since Mφ is exact, we see from [9] that there is a splitting

BH2(M̃φ;Z) ∼= X ⊕Λg′′

for a torsion-free Λ-module X with E0E0(X) = Λg′′

, so that

E1(BH2(Ẽ
′′, ∂Ẽ′′;Z)) ∼= E1(X)

and we have a t-anti isomorphism

E2(D/D′) = E2(H1(Ẽ
′′;Z)) ∼= E2E1(X).

Using a natural Λ-epimorphism Λg′′ ∼= E0E0(X)→ E2E1(X) (see [7]), we have

e(E2(D/D′)) = e(E2E1(X)) ≤ g′′. �

A surface-link F is concordant to a surface-link F ′ if there is a proper locally-

flat embedding f : F × [0, 1] → S4 × [0, 1] such that f(F × 0) = F × 0 and

f(F ×1) = F ′×1. Since the triple point cancelling number of every trivial surface-

link is zero, the following corollary also implies that every positive integer is the

triple point cancelling number of a surface-link with any previously given genera of

the components.

Corollary 4.7. For every surface-link F and every integer m ≥ T (F ), there is

a surface-link F∗ such that F∗ is concordant to F and T (F∗) = m.

18



Proof. Let Sn be the n-fold connected sum of any S2-knot in Corollary 4.3.

Then we have T (Sn) ≤ n. Let Fn be any connected sum of F and Sn and F0 = F .

Then Fn is concordant to F , since every S2-knot is concordant to the trivial S2-

knot (see M. A. Kervaire [12]). Let En be the link-exterior of Fn in S4. Let

Hn = H1(Ẽn, ∂Ẽn;Z). Then we have

Hn = H0 ⊕ [Λ/(p, t + 1)]n.

In Theorem 4.6, we take H = Hn and H ′ = H0. Then by Theorem 4.6, there is a

finite Λ-submodule D′ of D = H/H′ = [Λ/(p, t+1)]n such that e(D′) ≤ T (Fn) and

e(E2(D/D′)) ≤ g + e(H0)− r + 1 + T (Fn). Since t acts on D as the (−1)-multiple

map, we have a Λ-isomorphism

E2(D/D′) = hom(D/D′ , Q/Z) ∼= D/D′.

Thus, we have

n = e(D) ≤ e(D′) + e(D/D′) ≤ 2T (Fn) + g + e(H0) − r + 1,

where g and r denote the total genus and the component number of F , respectively.

Using that g, e(H0) and r are independent of n, we see that

lim
n→+∞

T (Fn) = +∞.

Using that T (Fn+1) ≤ T (Fn)+1 for all n, we find an integer n such that T (Fn) = m

for every integer m ≥ T (F ). �
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