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Abstract

We introduce the warping crossing polynomial of an oriented knot
diagram by using the warping degrees of crossing points of the dia-
gram. Given a closed transversely intersected plane curve, we consider
oriented knot diagrams obtained from the plane curve as states to take
the sum of the warping crossing polynomials for all the states for the
plane curve. As an application, we show that every based closed trans-
versely intersected plane curve has a canonical orientation.

1 Introduction

Throughout this paper except Section 4, knot diagrams are oriented and on
S2. A based diagram Db is a diagram D with a base point b. A crossing point
of D is a warping crossing point of Db if we come to the crossing point as an
under-crossing first when we go along D with the orientation by starting from
b. The warping degree d(Db) of Db is the number of warping crossing points
of Db [4]. The warping degree is also defined for link diagrams and spatial
graphs [5]. We note that the similar notions are studied by Fujimura [1],
Fung [2], Lickorish and Millett [6], Okuda [7] and Ozawa [8] considering the
ascending number with an orientation. We define a weight of each crossing
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point c of a knot diagram D as follows: Take a base point b which is just
before the over-crossing of c (Figure 1). The crossing weight Xc(t) of c is

b c

Figure 1:

defined to be td(c), where d(c) = d(Db). Now we define the warping crossing
polynomial XD(t) of a knot diagram D to be the sum of crossing weights for
all crossing points of D, i.e., XD(t) =

∑
c Xc(t). For example, the diagram

D in Figure 2 has XD(t) = 1 + t + t2. Let c(D) be the crossing number of
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Figure 2:

D. We have
lim
t→1

XD(t) = c(D)

by definition. Hence XD(t) is a quantization of the crossing number of D.
Let e be an edge of D. We denote d(Db) by d(e), where b is a base point on
e. Let P be a projection of a knot with the crossing number c(P ) = n ≥ 1.
We obtain 2n diagrams D from P by giving over/under information to each
double point as shown in Figures 4, 5. We call each such diagramD a state for
P . Because of the over/under information, states for P have various warping
crossing polynomials. Then, we consider the state sum ZP (t) =

∑
D XD(t)

of P , where
∑

D is the sum for all the states for P . For example, we have
ZP (t) = 8(1 + t)3 for the knot projection P with c(P ) = 4 in Figure 4. We
have the following theorem:
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Theorem 1.1. (i) Let P be a knot projection with c(P ) = n ≥ 1. Then,

ZP (t) = 2n(1 + t)n−1

.

(ii) Let D be a knot diagram, and D′ the diagram obtained from D by a
crossing change at a crossing point p of D. Then,

XD(t)− tXD′(t) = (1− t)A,

where A is the sum of td(e) for all edges e from the under-crossing of p
to the over-crossing of p.

The proof is given in Section 2. The warping polynomial WD(t) of a knot
diagram D is the sum of td(e) for all edges e [12]. For example, the diagram
D in Figure 3 has WD(t) = 1+2t+2t2+ t3. We have the following theorem:

D
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Figure 3:

Theorem 1.2. Let D be a knot diagram with c(D) ≥ 1. We have

XD(t) =
WD(t)

1 + t
.

The proof is given in Section 3. The rest of this paper is organized as follows:
In Section 2, we study a state sum for a plane curve by considering knot
diagrams obtained from the plane curve as states. In Section 3, we consider
properties of the warping crossing polynomial by comparing with the warping
polynomial. In Section 4, we show that every based plane curve in R2 has a
canonical orientation.
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2 State sum

In this section, we study knot projections by considering the distribution of
the states.
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Figure 4:

Proof of Theorem 1.1.

(i) We show that the sum
∑

D WD(t) of the warping polynomials WD(t) for
all the states D for P is 2n(1 + t)n. Let e be an edge of P , and let
m = 1, 2, . . . or n. We can give all the double points of P over/under
information so that d(e) = m in nCm ways as shown in Figure 6. Hence∑

D

WD(t) = 2n× nC0 + 2n× nC1t+ 2n× nC2t
2 + · · ·+ 2n× nCnt

n

= 2n(1 + t)n

because P has 2n edges.
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Figure 6:
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(ii) Let A (resp. B) be the sum of td(e) (resp. td(e)−1) for all edges e from
the under-crossing (resp. over-crossing) of p to the over-crossing (resp.
under-crossing) of p. By the proof of Lemma 4.4 in [12] and Theorem
1.2, we have (t + 1)XD(t) = A + tB and (t + 1)XD′(t) = tA + B,
and therefore we have XD(t)− tXD′(t) = (1− t)A, XD′(t)− tXD(t) =
(1 − t)B, and XD(t) + XD′(t) = A + B. Hence, only the equation
XD(t)− tXD′(t) = (1− t)A is sufficient.

□

Let spanf(t) be the span of a polynomial f(t). We have the following corol-
lary:

Corollary 2.1. Let D and D′ be diagrams as above. We have

|spanXD′(t)− spanXD(t)| ≤ 2.

3 Warping crossing polynomial

In this section, we prove Theorem 1.2 and show properties of the warping
crossing polynomial. We prove Theorem 1.2.

Proof of Theorem 1.2. If D has n over-crossings shown in the left hand in
Figure 7, then D has also n under-crossings shown in the right hand of Figure
7. In other words, if there are n edges e such that d(e) = k and the endpoints

k k+1 k+1 k

Figure 7:

are over-crossings, then there are also n edges e such that d(e) = k + 1 and
the endpoints are under-crossings. Since the crossing weight of the crossing
point of the left hand of Figure 7 is tk, the sum of td(e) for all the edges e
of D whose endpoints are over-crossings is equal to

∑
c t

d(c) = XD(t), and
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therefore that for all the edges e of D whose endpoints are under-crossings is∑
c t

d(c)+1 = tXD(t). Hence WD(t), which is the sum of td(e) for all the edges,
is (1 + t)XD(t). □

Then, XD(t) has some properties as WD(t) has in [12]:

Corollary 3.1. Let −D be a knot diagram D with the orientation reversed,
and D∗ the mirror image of D. We have X−D(t) = XD∗(t) = tn−1XD(t

−1),
where n = c(D).

Corollary 3.2. A polynomial f(t) is a warping crossing polynomial of a knot
diagram D with c(D) = n ≥ 1 if and only if f(t) = m0t

d + m1t
d+1 + · · · +

mst
d+s, where mi = 1, 2, . . . (i = 0, 1, . . . , s), d, s = 0, 1, . . . and m0 +m1 +

· · ·+ms = n.

A knot diagram D is an alternating diagram if we come to crossing points as
an over-crossing and as an under-crossing alternately when we go along D.
A bridge in a knot diagram D is a path on D between under-crossings which
has no under-crossings and at least one over-crossing in the interior. A knot
diagram D is a one-bridge diagram if D has exactly one bridge. The warping
crossing polynomial characterizes an alternating diagram and a one-bridge
diagram as the warping polynomial characterizes in [12]:

Corollary 3.3. A knot diagram D with c(D) = n ≥ 1 is an alternating
diagram if and only if XD(t) = ntd (d = 0, 1, . . . ).

Remark. 3.4. An alternating diagram D with c(D) ≥ 1 has constant crossing
weights at all the crossing points (see Figure 8).

Corollary 3.5. A knot diagram D with c(D) = n ≥ 1 is a one-bridge dia-
gram if and only if XD(t) = 1 + t+ t2 + · · ·+ tn−1.
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Figure 9:

Remark. 3.6. A one-bridge diagram has different crossing weights at all the
crossing points (see Figure 9).

A spatial arc diagram is a diagram of a spatial arc. we remark that we can
define the warping polynomial WS(t) and the warping crossing polynomial
XS(t) of a spatial arc diagram S. For example, we have WS(t) = 2+5t+2t2

and XS(t) = 1 + 3t for the spatial arc diagram S in Figure 10.
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Figure 10:
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4 Orientations of plane curves

In this section we show that we can give each based plane curve on R2

a canonical orientation by using the warping degrees. We first review the
warping degree of a (non-based) knot diagram. The warping degree d(D) of
an oriented knot diagram D is the minimal warping degree d(Db) of Db for
all base points b of D [4]. The following theorem is shown in [10]:

Theorem 4.1. Let D be an oriented knot diagram with c(D) ≥ 1. We have

d(D) + d(−D) + 1 ≤ c(D).

Further, the equality holds if and only if D is an alternating diagram.

We have the following corollary:

Corollary 4.2. Let D be an oriented alternating knot diagram with non-zero
even crossings. Then, XD(t) ̸= X−D(t).

Proof. We have d(D) + d(−D) = c(D) − 1 because D is alternating. Since
c(D) is even, the value d(D) + d(−D) is odd. Hence the crossing weights of
the crossing points of −D are different from that of D.

Now we discuss the orientations of plane curves. We have the following
theorem:

Theorem 4.3. Every based closed transversely intersected curve Cb on R2

has a canonical orientation.

Proof. We show this theorem in the following order: First, we explain how
to obtain an alternating diagram uniquely from C. After that, we give the
alternating diagram the canonical orientation.
Apply C the checkerboard coloring such that the outer region is colored white
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Figure 11:

Figure 12:

(Figure 11). Then we obtain an alternating diagram D uniquely by giving
each double point over/under information as shown in Figure 12.
If c(D)(= c(C)) is even, we can give D the orientation uniquely such that
d(D) < d(−D) by the proof of Corollary 4.2. By projection, C is also
oriented.
If c(D) is odd, we apply the connected sum of a knot diagram with exactly
one positive crossing to the edge with the base point b in the black region, and
obtain D′ (see Figure 13). Since D′ is alternating and with even crossings,

D D’
b

b

D D’

D’

D’

D
b

b
D

Figure 13:

D′ has the canonical orientation. Therefore D and C are also oriented.
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Remark. 4.4. Every closed transversely intersected curve with even crossings
on R2 has a canonical orientation (without a base point).

We have the following corollary:

Corollary 4.5. For every based oriented curve Cb, there is no orientation-
preserving, base-point-preserving homeomorphism from R2 to R2 sending Cb

to −Cb.

Remark. 4.6. If C is non-based, the above corollary does not hold (see Figure
14).

C

b

-C

b

C b

Figure 14:
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