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Abstract

We obtain an equation among invariants obtained from the Alexander module of an
amphicheiral link. For special cases, it deduces necessary conditions on the Alexander
polynomial. By using the present results and some known results, we show that the
Alexander polynomial of an algebraically split component-preservingly (±)-amphicheiral
link with even components is zero, and we determine prime amphicheiral links with at
least 2 components and up to 9 crossings.

1 Introduction

Let L = K1∪· · ·∪Kr be an oriented r-component link in S3 with r ≥ 1. For an oriented
knot K, we denote the orientation-reversed knot by −K. If ϕ is an orientation-reversing
(orientation-preserving, respectively) homeomorphism of S3 so that ϕ(Ki) = εσ(i)Kσ(i)

for all i = 1, . . . , r where εi = + or −, and σ is a permutation of {1, 2, . . . , r}, then L is
called an (ε1, . . . , εr; σ)-amphicheiral link (an (ε1, . . . , εr; σ)-invertible link, respectively).
A term “amphicheiral link” is used as a general term for an (ε1, . . . , εr; σ)-amphicheiral
link. A link is called an interchangeable link if it is an (ε1, . . . , εr; σ)-invertible link
such that σ is not the identity. An (ε1, . . . , εr; σ)-invertible link is called an invertible
link simply if there exists 1 ≤ i ≤ r such that εi = −. If σ is the identity, then an
amphicheiral link is called a component-preservingly amphicheiral link, and σ may be
omitted from the notation. If every εi = ε for all i = 1, . . . , r (including the case that σ
is not the identity), then an (ε1, . . . , εr; σ)-amphicheiral link (an (ε1, . . . , εr; σ)-invertible
link, respectively) is called an (ε)-amphicheiral link (an (ε)-invertible link, respectively).
We use the notations + = +1 = 1 and − = −1. A link L with at least 2-component is
called an algebraically split link if the linking number of every 2-component sublink of L
is zero. We note that a component-preservingly (ε)-amphicheiral link is an algebraically
split link.

Necessary conditions for the Alexander polynomials of amphicheiral knots are stud-
ied by R. Hartley [3], R. Hartley and the second author [4], and the second author
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[11]. In [11], non-invertibility of 817 is firstly proved by those conditions. On the other
hand, T. Sakai [21] proved that any one-variable Laurent polynomial f(t) over Z such
that f(t) = f(t−1) and f(1) = 1 is realized by the Alexander polynomial of a strongly
invertible knot in S3. B. Jiang, X. Lin, Shicheng Wang and Y. Wu [6] showed that
(1) a twisted Whitehead doubled knot is amphicheiral if and only if it is the unknot
or the figure eight knot, and (2) a prime link with at least 2 components and up to 9
crossings is component-preservingly (+)-amphicheiral if and only if it is the Borromean
rings (cf. Theorem 1.4 (3)). They used S. Kojima and M. Yamasaki’s η-function [15].
Shida Wang [25] determined prime component-preservingly (+)-amphicheiral links with
at least 2 components and up to 11 crossings by the same method as [6]. There are
four such links. For geometric studies of symmetries of arborescent knots, see F. Bona-
hon and L. C. Siebenmann [2]. The first author [8] studied necessary conditions for
the Alexander polynomials of algebraically split component-preservingly amphicheiral
links by computing the Reidemeister torsions of surgered manifolds along the link. The
second author [14] defined and studied invariants obtained from the quadratic form of a
link, and the Seifert quadratic form of a link associated with a Seifert surface of the link.
In the present paper, we deduce necessary conditions for the invariants of amphicheiral
links.

Let L = K1 ∪ · · · ∪ Kr be an oriented r-component link in S3 with r ≥ 1, and
E = S3 \ N(L) the exterior of L where N(L) is a regular neighborhood of L. Let
γ : π1(E) → Z be the surjective homomorphism sending every oriented meridian of L
to 1, and p : Ẽ → E the covering associated with the kernel of γ, which is called the
infinite cyclic covering of L. Let Λ = Z[t, t−1] be the one variable Laurent polynomial
ring over Z. If we correspond the meridians of L to t, then the homology groups
H∗(Ẽ; Z), H∗(∂Ẽ; Z) and H∗(Ẽ, ∂Ẽ; Z) are finitely generated Λ-modules. We set ΛQ =
Λ⊗Z Q. Then the homology groups H∗(Ẽ; Q), H∗(∂Ẽ; Q) and H∗(Ẽ, ∂Ẽ; Q) are finitely
generated ΛQ-modules. Let TH1(Ẽ; Q) be the ΛQ-torsion submodule of H1(Ẽ; Q), and
BH1(Ẽ; Q) = H1(Ẽ; Q)/TH1(Ẽ; Q). Let ρε : TH1(Ẽ; Q) → TH1(Ẽ; Q) be the ΛQ-
homomorphism multiplied by ρε = t − ε where ε = 1 or −1. We define by

κε(L) = dimQ(Ker (ρε; TH1(Ẽ; Q))),

β(L) = rankΛQ(BH1(Ẽ; Q)),

,(L) =
∑

1≤i<j≤r

lk (Ki, Kj) for r ≥ 2, and 0 for r = 1

where the righthand side of κε(L) implies the Q-dimension of the kernel of ρε, the
righthand side of β(L) implies the ΛQ-rank of BH1(Ẽ; Q), and lk (Ki, Kj) is the linking
number of Ki and Kj. We call κε(L) (β(L) and ,(L), respectively) the κε-dimension
(the β-rank and the total linking number, respectively) of L.

Our main theorem is the following:
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Theorem 1.1 Let L = K1 ∪ . . . ∪ Kr be an r-component amphicheiral link. Then we
have

κ−1(L) ≡ r − 1 − β(L) + ,(L) (mod 2).

In particular, if L is an (ε)-amphicheiral link where ε = + or −, then we have ,(L) = 0,
κ−1(L) ≡ 0 (mod 2) and

r − 1 ≡ β(L) (mod 2).

We show the theorem in Section 3.

Let ∆L(t1, . . . , tr) be the r-variable Alexander polynomial of L which is an element of
the r-variable Laurent polynomial ring Λ = Z[t±1

1 , . . . , t±1
r ] over Z where ti (i = 1, . . . , r)

is a variable corresponding to a meridian of Ki. We have the following corollary:

Corollary 1.2 Let L = K1 ∪ . . . ∪ Kr be an r-component amphicheiral link such that
r + ,(L) is even. Then we have

∆L(−1, . . . ,−1) = 0.

In particular, if L is an (ε)-amphicheiral link where ε = + or −, and r is even, then
we have

∆L(t, . . . , t) = 0.

The following is a partial affirmative answer for [8, Conjecture 1.1] (see also Con-
jecture 5.1 in Section 5).

Theorem 1.3 For an r-component component-preservingly (ε)-amphicheiral link L with
r even, we have

∆L(t1, . . . , tr) = 0.

The referee pointed out us that L. Traldi [23, Section 6] has already shown that if
L is an r-component component-preservingly (−)-amphicheiral link, or a 2-component
component-preservingly (+)-amphicheiral link, then the i-th Alexander ideal Ei(L) of
L vanishes for every i < r. Traldi’s result is stronger than our result in Theorem 1.3 for
an r-component component-preservingly (−)-amphicheiral link with r > 2. Our result
is shown by a different method and contains a result that ∆L(t1, . . . , tr) = 0 for any
r-component component-preservingly (+)-amphicheiral link L for every even r > 0. It
would be interesting to observe that connected sums of copies of the Borromean rings
give an example of an r-component component-preservingly (+)-amphicheiral link L
with ∆L(t1, . . . , tr) (= 0 for every odd r > 1.

We determined prime amphicheiral links with at least 2 components and up to 9
crossings. Let An (Cn, respectively) be the set of prime amphicheiral links (component-
preservingly amphicheiral links, respectively) with at least 2 components and up to n
crossings, and Aε

n the subset of An consisting of (ε)-amphicheiral links (Cε
n the subset

of Cn consisting of component-preservingly (ε)-amphicheiral links, respectively) where
ε = + or −. It is clear that An ⊃ Cn, A±

n ⊃ C±
n , An ⊃ A±

n and Cn ⊃ C±
n . For a link

with the crossing number up to 9, we use the notation of D. Rolfsen’s book [20].
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Theorem 1.4 Under the setting above, we have the following:

(1) C9 = {22
1, 6

2
2, 6

3
2, 8

2
8, 8

3
6, 8

4
3}.

(2) A9 \ C9 = {83
4, 9

2
61}.

(3) C+
9 = {63

2}, C−
9 = ∅.

(4) A+
9 \ C+

9 = {83
4, 8

3
6, 8

4
3}, A−

9 \ C−
9 = {63

2, 8
3
4, 8

3
6, 8

4
3}.

We remark that Theorem 1.4 (3) corresponds to a theorem in [6]. We could detect
non-amphicheirality by Corollary 1.2, some other conditions on the Alexander polyno-
mials, and geometric conditions (cf. Lemma 4.1, Lemma 4.2, Lemma 4.3, and Lemma
4.4).

In Section 2, we define the quadratic form of a link and invariants obtained from
them, and prepare properties of them. In Section 3, we prove Theorem 1.1, Corollary
1.2 and Theorem 1.3. In Section 4, we show Theorem 1.4. In Section 5, we give some
remarks related to the first author’s previous results.

2 Quadratic form and its related invariants

For a symmetric matrix A of size k over R, we define

n(A) = k − rank (A) = .(0 eigenvalues of A),
s(A) = .(positive eigenvalues of A) − .(negative eigenvalues of A)

where rank (A) means the rank of A over R, and .(·) implies the number of elements.
We call n(A) (s(A), respectively) the nullity (the signature, respectively) of A. Suppose
that b : Rk × Rk → R is a bilinear form presented by A. Since both n(A) and s(A) do
not change by base changes, they are also invariants of b, and we denote them by n(b)
and s(b), respectively. We can define the similar ones for a hermitian matrix over C.
The following lemma is clear.

Lemma 2.1 Let A be a hermitian matrix of size k over C. Then we have

k ≡ s(A) + n(A) (mod 2).

For an oriented link L, we take a Seifert surface F of L. Let S be a Seifert matrix
associated with F , and A = S+tS where tS is the transposed matrix of S. Then s(A) is
the Murasugi signature of L which is an invariant of L. So we denote s(A) by s(L). Let
,(L) be the total linking number of L defined in Section 1. K. Murasugi [18] showed the
following lemma. The second author [12] obtained the same results by another method.

Lemma 2.2 Let L be an oriented link. Then we have the following:
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(1) [18, Theorem 1] s(L) + ,(L) does not depend on the orientation of L.

(2) [18, Theorem 2] If L is an amphicheiral link, then s(L) + ,(L) = 0.

By Lemma 2.2 (1), the statement of Lemma 2.2 (2) does not depend on the orianta-
tion of L.

For a Λ-module H , let TH denote the Λ-torsion submodule of H , BH = H/TH ,
and HQ = H ⊗Z Q. Then the ΛQ-torsion submodule of HQ is (TH)Q, and we have
(BH)Q = HQ/(TH)Q. We denote (TH)Q and (BH)Q by THQ and BHQ, respectively.
We have a natural ΛQ-isomorphism HomZ(H, Q) ∼= HomQ(HQ, Q), and a natural short
exact sequence:

0 → HomZ(BH, Q) → HomZ(H, Q) → HomZ(TH, Q) → 0.

If H is a finitely generated Λ-module, then TH and BH are finitely generated Λ-
modules, so that THQ splits into finitely many cyclic ΛQ-torsion modules, and hence is
(non-canonically) ΛQ-isomorphic to HomZ(TH, Q), and BHQ is ΛQ-free of finite rank.
Let E be a compact connected oriented n-dimensional manifold, E ′ a submanifold of E,
p : Ẽ → E an infinite cyclic covering, and Ẽ ′ = p−1(E ′). Then we have H∗(Ẽ, Ẽ ′; Q) =
H∗(Ẽ, Ẽ ′; Z)Q which is a finitely generated ΛQ-module. We use the following notations:

T ∗(Ẽ, Ẽ ′; Q) = HomZ(TH∗(Ẽ, Ẽ ′; Z), Q) = HomQ(TH∗(Ẽ, Ẽ ′; Q), Q),

B∗(Ẽ, Ẽ ′; Q) = HomZ(BH∗(Ẽ, Ẽ ′; Z), Q) = HomQ(BH∗(Ẽ, Ẽ ′; Q), Q).

Since the Q-cohomology H∗(Ẽ, Ẽ ′; Q) is identified with HomZ(H∗(Ẽ, Ẽ ′; Z), Q), we ob-
tain the following short exact sequence:

0 → B∗(Ẽ, Ẽ ′; Q) → H∗(Ẽ, Ẽ ′; Q) → T ∗(Ẽ, Ẽ ′; Q) → 0.

Let L = K1∪ . . .∪Kr be an oriented r-component link in S3. From now on, we take
the exterior E of L as E = S3 \ N(L) where N(L) is a regular neighborhood of L. If we
take a connected Seifert surface F of L, then a connected lift FE of F∩E in Ẽ represents
the fundamental class in H2(Ẽ, ∂Ẽ; Z), and we denote µ = [FE ] ∈ H2(Ẽ, ∂Ẽ; Z). We
have the quadratic form bL of L which is the pairing:

bL : T 1(Ẽ, ∂Ẽ; Q) × T 1(Ẽ, ∂Ẽ; Q) → Q

defined by bL(x, y) = 〈x ∪ (t − t−1)y, µ〉 for all x, y ∈ T 1(Ẽ, ∂Ẽ; Q) (cf. [10, 14]). This
definition is an extension of J. Milnor [17]. Then bL have the symmetry bL(x, y) =
bL(y, x) and the t-symmetry bL(tx, ty) = bL(x, y) for all x, y ∈ T 1(Ẽ, ∂Ẽ; Q). Let

Tδ(L; Q) = Im (δ : T 0(∂Ẽ; Q) → T 1(Ẽ, ∂Ẽ; Q)),

T̂ 1(Ẽ, ∂Ẽ; Q) = T 1(Ẽ, ∂Ẽ; Q)/Tδ(L; Q)
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where the map δ is a restriction of the coboundary homomorphism. We set

ρε : TH1(Ẽ; Q) → TH1(Ẽ; Q)

and
ρε : T̂ 1(Ẽ, ∂Ẽ; Q) → T̂ 1(Ẽ, ∂Ẽ; Q)

as multiplied homomorphisms by ρε = t − ε where ε = 1 or −1. Then we define by

κε(L) = dimQ(Ker (ρε; TH1(Ẽ; Q))),

κ̂ε(L) = dimQ(Ker (ρε; T̂ 1(Ẽ, ∂Ẽ; Q))),

β(L) = rankΛQ(BH1(Ẽ; Q))

where the righthand sides of κε(L) and κ̂ε(L) imply the Q-dimensions of the kernels of
ρε, respectively, and the righthand side of β(L) implies the ΛQ-rank of BH1(Ẽ; Q). We
call κε(L) (κ̂ε(L) and β(L), respectively) the κε-dimension (the κ̂ε-dimension and the
β-rank, respectively) of L.

Let V = (vij) be the canonical linking matrix of L of size r defined by

vij =






lk (Ki, Kj) (i (= j),

−
∑

k %=i

lk (Ki, Kk) (i = j).

We define by rV (L) = rank (V ) and v(L) = s(V ). We call rV (L) (v(L), respectively)
the canonical rank (the canonical signature, respectively) of L.

We define the local signature invariants of the quadratic form bL by extending the
coefficient field Q into the real numbers R:

bR
L : T 1(Ẽ, ∂Ẽ; R) × T 1(Ẽ, ∂Ẽ; R) → R

where T 1(Ẽ, ∂Ẽ; R) = T 1(Ẽ, ∂Ẽ; Q) ⊗Q R is a ΛR-module with ΛR = Λ ⊗Z R. We set
σ(L) = s(bR

L), n(L) = n(bR
L) and ρa = t2 − 2at + 1 for every a ∈ (−1, 1). Recall that

ρε = t − ε where ε = 1 or −1. For a ΛR-module H and a ∈ [−1, 1], let Hρa denote the
ρa-primary component of H . Let

bρa

L : T 1(Ẽ, ∂Ẽ; R)ρa × T 1(Ẽ, ∂Ẽ; R)ρa → R

be the induced (restricted) quadratic form from bR
L. We define the local signature at

a and the local nullity at a of L by σa(L) = s(bρa
L ) and na(L) = n(bρa

L ) (a ∈ [−1, 1]),
respectively. We note that σa(L) is zero except a finite number of a ∈ [−1, 1], σa(L) is
even for all a ∈ (−1, 1), and na(L) is zero except a ∈ {1,−1}. Further we have

σ(L) =
∑

x∈[−1,1]

σx(L) and n(L) = n1(L) + n−1(L).
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For x ∈ (−1, 1), we set ωx = x +
√

1 − x2
√
−1. Let S be a Seifert matrix of L

associated with F . We define by

s[a,1](L) = lim
x→a−0

s((1 − ωx)S + (1 − ωx)
tS) for each a ∈ (−1, 1],

s(a,1](L) = lim
x→a+0

s((1 − ωx)S + (1 − ωx)
tS) for each a ∈ [−1, 1),

sa(L) = s[a,1](L) − s(a,1](L) for each a ∈ [−1, 1),

s1(L) = s[1,1](L),

s−1(L) = s[−1,1](L) − s(−1,1](L).

We call sa(L) (a ∈ [−1, 1]) the local Seifert signature at a of L.

The second author [14] showed the following:

Lemma 2.3 Let L be an oriented r-component link in S3. Then we have the following:

(1) rV (L) ≡ v(L) (mod 2).

(2) σ(L) ≡ σ1(L) + σ−1(L) (mod 2).

(3) [14, Lemma 3.2.2] κ̂1(L) + rV (L) = κ1(L).

(4) [14, Lemma 3.2.3] β(L) + κ1(L) = r − 1.

(5) [14, Theorem 5.3] σ(L) = s(L) − v(L).

(6) [14, Corollary 5.4] σa(L) = sa(L) for all a ∈ [−1, 1).

(7) [14, Lemma 5.7.1] σ1(L) ≡ κ̂1(L) (mod 2).

(8) [14, Lemma 5.7.2] σ−1(L) ≡ κ−1(L) (mod 2).

We note that (1) is obtained from Lemma 2.1, and (2) is obtained from the definition
of the local signatures. In the present paper, we do not use (6) explicitly.

To prove Theorem 1.3, we need more general settings. Let L = K1 ∪ . . . ∪ Kr be
an oriented r-component link in S3, E the exterior of L, Ti the boundary of a regular
neighborhood of Ki (i = 1, . . . , r) (i.e. ∂E = T1 ∪ . . .∪ Tr), mi and li the meridian and
the longitude of Ki on Ti respectively, F a Seifert surface of L, M the result of Seifert
framing surgery along L which is obtained by attaching meridians of solid tori to E along
∂F , and m′

i and l′i the meridian and the core of the i-th attaching torus respectively.
Note that M is uniquely determined from the “oriented” link L. In particular, if L
is algebraically split, then M is obtained as the result of (0, . . . , 0)-surgery along L
which is independent from the orientation of L. Let ,ij = lk (Ki, Kj) be the linking
number of Ki and Kj for 1 ≤ i (= j ≤ r. In H1(E) (we write elements of homologies
multiplicatively), we have

[li] =
∏

j %=i

[mj ]
&ij (2.1)
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Hence we have
H1(E) = 〈[m1], . . . , [mr]〉 ∼= Zr.

Since ∂F ∩Ti represents an element of the form [mi]ci[li] in H1(Ti) for some ci ∈ Z, and
[∂F ] = 1 in H1(E), we have

[∂F ] =
r∏

i=1

[mi]
ci [li] =

r∏

i=1

[mi]
ci+

P
k !=i &ik = 1,

and hence
ci = −

∑

k %=i

,ik

by (2.1). In H1(M), we have

[m′
i] = [mi]ci [li] = [mi]

−
P

k !=i &ik
∏

j %=i

[mj ]
&ij = 1,

[l′i] = [mi]

(2.2)

The first equation in (2.2) implies that the canonical linking matrix V is a presentation
matrix of H1(M), and

H1(M ; Q) ∼= Qr−rV (L) (2.3)

Let γ : H1(E) → Z = 〈t〉 (The operation of 〈t〉 is multiplicative) be an epimorphism
with γ([mi]) = tui where ui ∈ Z (i = 1, . . . , r), pγ : Ẽγ → E the infinite cyclic covering
associated with the kernel of γ, and ∆γ

L(t) the Alexander polynomial of H1(Ẽγ). We
set a column vector u = t(u1, . . . , ur) which is the transpose vector of a row vector
(u1, . . . , ur). Then pγ extends to the infinite cyclic covering M̃γ → M if and only if u
is in the null space of V (i.e. V u = 0). We note that t(1, . . . , 1) is in the null space
of V (i.e. the dimension of the null space of V is at least one). In particular, if L is
algebraically split, then V is the zero matrix, and pγ extends to M̃γ → M for every γ.
We also denote M̃γ → M , the induced homomorphism H1(M) → Z, and the Alexander
polynomial of H1(M̃γ) by the same symbols pγ, γ, and ∆γ

M(t), respectively. Let

κγ
ε (L) = dimQ(Ker (ρε; TH1(Ẽγ ; Q))),

κγ
ε (M) = dimQ(Ker (ρε; TH1(M̃γ ; Q)))

where ε = 1 or −1, and ρε = t − ε,

T γ
δ (L; Q) = Im (δγ : T 0(∂Ẽγ ; Q) → T 1(Ẽγ , ∂Ẽγ ; Q)),

δγ(L) = dimQ(T γ
δ (L; Q)),

δγ
ε (L) = dimQ(T γ

δ (L; Q)ρε)

where the map δγ is a restriction of the coboundary map,

bγ
L : T 1(Ẽγ; Q) × T 1(Ẽγ ; Q) → Q,

bγ
M : T 1(M̃γ ; Q) × T 1(M̃γ; Q) → Q,
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the quadratic forms on Ẽγ and M̃γ respectively defined by bγ
L(x, y) = 〈x∪ (t− t−1)y, µγ〉

for all x, y ∈ T 1(Ẽγ ; Q) and bγ
M (x, y) = 〈x ∪ (t − t−1)y, µγ

M〉 for all x, y ∈ T 1(M̃γ ; Q)
where µγ and µγ

M are the fundamental classes in H2(Ẽγ; Q) and H2(M̃γ; Q) respectively,
(bγ

L)R = bγ
L⊗R, (bγ

M )R = bγ
M⊗R, (bγ

L)R
ρε

and (bγ
M)R

ρε
the restrictions of (bγ

L)R and (bγ
M)R on

TH1(Ẽγ ; R)ρε and TH1(M̃γ ; R)ρε respectively, σγ
ε (L) = s((bγ

L)R
ρε

), σγ
ε (M) = s((bγ

M)R
ρε

),
nγ

ε (L) = n((bγ
L)R

ρε
) and nγ

ε (M) = n((bγ
M )R

ρε
).

Lemma 2.4 We suppose the situation above.

(1) We have
∆γ

L(t)
.
= (t − 1)∆L(tu1 , . . . , tur).

If γ([l′i]) = tui (= 1 (i.e. ui (= 0) for every i (i = 1, . . . , r), then we have

∆γ
M(t)

.
= ∆γ

L(t)(t − 1)
r∏

i=1

(tui − 1)−1.

(2) κγ
1(L) = r − rV (L) − 1 − β(L). In particular, if L is algebraically split, then we

have κγ
1(L) = r − 1 − β(L).

(3) nγ
1(L) − κγ

1(L) = nγ
1(M) = κγ

1(M).

(4) dimQ(TH1(M̃γ ; Q)) ≡ dimQ(TH1(M̃γ ; Q)ρ1) ≡ σγ
1 (M) + κγ

1(M) ≡ 0 (mod 2).

Proof (1) By the second equation in (2.2), and the surgery formula of Reidemeister
torsions [24], we have the result.

(2) We have the following Wang exact sequence:

H1(M̃γ; Q)
t−1−→ H1(M̃γ; Q) → H1(M ; Q) → Q → 0.

By (2.3) and BH1(M̃γ ; Q) ∼= Λβ(L)
Q , we have

TH1(M̃γ ; Q)/(t − 1)TH1(M̃γ ; Q) ∼= Qr−rV (L)−1−β(L),

and hence we have κγ
1(L) = r−rV (L)−1−β(L). In particular, if L is algebraically split,

then we can take V as the zero matrix (rV (L) = 0), and we have κγ
1(L) = r− 1− β(L).

(3) By the argument in [14, p101], we have exact sequences

TH1(∂Ẽγ ; Q)
iγ∗−→ TH1(Ẽγ ; Q) → TH1(M̃γ; Q) → 0

and

TH1(∂Ẽγ ; Q)ρε

(iγ∗ )ρε−→ TH1(Ẽγ ; Q)ρε → TH1(M̃γ ; Q)ρε → 0
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where ε = 1 or −1, and (iγ∗)ρε is a restriction of iγ∗ . The exact sequences and an
isomorphism

TH1(∂Ẽγ ; Q) ∼=
r⊕

i=1

ΛQ/(tui − 1)

induce
nγ

ε (L) − δγ
ε (L) = nγ

ε (M) = κγ
ε (M) and δγ

ε (L) = κγ
ε (L).

(4) Since the cup product on T 1(M̃γ; Q) is non-singular skew-symmetric, we have

dimQ(TH1(M̃γ ; Q)) ≡ dimQ(TH1(M̃γ ; Q)ρ1) ≡ 0 (mod 2).

By (3), Lemma 2.1, and that dimQ(TH1(M̃γ ; Q)ρ1) is even, we have the result.

3 Proofs of Theorem 1.1 and Theorem 1.3

Proof of Theorem 1.1 Suppose that L is an r-component amphicheiral link. By
Lemma 2.2 (2), Lemma 2.3 (2) and (5), we have

σ1(L) + σ−1(L) ≡ −,(L) − v(L) (mod 2).

By this, Lemma 2.3 (1) and (3), we have

σ1(L) + σ−1(L) ≡ −,(L) + κ̂1(L) − κ1(L) (mod 2).

By this, Lemma 2.3 (4) and (7), we have

σ−1(L) ≡ −,(L) + β(L) − r + 1 (mod 2).

By this and Lemma 2.3 (8), we have

κ−1(L) ≡ −(r − 1 − β(L) + ,(L)) (mod 2)

≡ r − 1 − β(L) + ,(L) (mod 2).

Suppose that L is an oriented link. We set the linking number of Ki and Kj

(1 ≤ i (= j ≤ r) as ,ij = lk (Ki, Kj), and L(L) = {,ij | 1 ≤ i < j ≤ r}. Let L∗ be the
mirror image of L with the induced orientation, and −L∗ the oriented link obtained
from L∗ by introducing the opposite orientations on every components. Then we have
L(L∗) = L(−L∗) = {−,ij | 1 ≤ i < j ≤ r}, and

,(L∗) = ,(−L∗) = −,(L) (3.1)

Suppose that L is an (ε)-amphicheiral link where ε = + or −. Then the sets L(L) and
L(εL∗) should be identical. By (3.1), we have ,(L) = 0. Since σ−1(L) ≡ 0 (mod 2), we
have κ−1(L) ≡ 0 (mod 2) by Lemma 2.3 (8). Therefore we have

r − 1 ≡ β(L) (mod 2).

10



Proof of Corollary 1.2 Suppose that L is an r-component amphicheiral link such
that r + ,(L) is even. Then by Theorem 1.1, we have

κ−1(L) ≡ −1 − β(L) (mod 2).

Suppose that β(L) = 0. Then we have κ−1(L) > 0. It implies that ∆L(t, . . . , t) is
divisible by t + 1, and

∆L(−1, . . . ,−1) = 0.

Suppose that β(L) > 0. It implies that

∆L(t, . . . , t) = 0.

If L is an (ε)-amphicheiral link where ε = + or −, and r is even, then we have β(L) > 0
by Theorem 1.1.

Proof of Theorem 1.3 Suppose ∆L(t1, . . . , tr) (= 0. Then there are coprime integers
u1, . . . , ur with ∆L(tu1 , . . . , tur) (= 0. Note that {u1, . . . , ur} does not include 0 by the
Torres condition [22]. Let E be the exterior of L, and M the result of (0, . . . , 0)-surgery
along L. We take the epimorphism γ : H1(E) → Z = 〈t〉 defined by γ([mi]) = tui

(i = 1, . . . , r) where [mi] is the representing element of the i-th meridian mi in H1(E).
Since H1(E) ∼= H1(M) ∼= Zr naturally, γ induces γ : H1(M) → Z. Here we used the
same notation. By Lemma 2.4 (1), we have

∆γ
L(t) = (t − 1)∆L(tu1 , . . . , tur) (= 0,

∆γ
M(t) = ∆γ

L(t)(t − 1)
r∏

i=1

(tui − 1)−1 (= 0.

Hence H1(M̃γ ; Q) is ΛQ-torsion, and β(L) = 0. By Lemma 2.4 (2), we have

κγ
1(M) = r − 1 ≡ 1 (mod 2)

which is odd. By Lemma 2.4 (4), σγ
1 (M) is odd.

Since (M, γ) is orientation-preservingly homeomorphic to (−M,−εγ), we have

σγ
1 (M) = σ−εγ

1 (−M) = −σγ
1 (M) = 0.

It is a contradiction. Therefore we have ∆L(t1, . . . , tr) = 0.

Remark 3.1 (1) The condition “r + ,(L) is even” in Corollary 1.2 is necessary. If L is
the Hopf link (r = 2 and ,(L) = ±1), then we have

∆L(−1,−1) = ±1 (= 0.

If L is the Borromean rings (r = 3 and ,(L) = 0), then we have

∆L(−1,−1,−1) = ±8 (= 0.

11



(2) If r = 2, then the condition “r+,(L) is even” in Corollary 1.2 implies that the linking
number of L is even. Since R. Hartley [3] showed that a 2-component link with non-zero
even linking number is not component-preservingly amphicheiral (see also Lemma 4.3),
the condition “r + ,(L) is even” is effective only if L is an algebraically split link in this
case. However the statement works for general amphicheiral links, so we include the
case of non-zero even linking numbers (see also Remark 4.7 (1)).

(3) Though a component-preservingly (ε)-amphicheiral link is an algebraically split link,
a general (ε)-amphicheiral link for r ≥ 3 is not always an algebraically split link. For
example, if r = 3, then the connected sum of the positive Hopf link and the negative
Hopf link is a (+)-amphicheiral link which is not an algebraically split link. The reader
can find such examples in Theorem 1.4 (4).

(4) Y. Matsumoto and G. Venema [16] applied the invariants in Theorem 1.1 and
Lemma 2.3 effectively to study 4-dimensional topology.

4 Amphicheiral links with up to 9 crossings (Proof
of Theorem 1.4)

In this section, we determine prime amphicheiral links with at least 2 components and
up to 9 crossings. For a link with the crossing number up to 9, we use the notation of
D. Rolfsen’s book [20]. In Rolfsen’s table [20], an r-component link such that r ≥ 2
and the crossing number c is denoted by cr

k where k is the ordering of the link in the
table.

We raise results from R. Hartley [3] and the previous results due to the first author
[8]. Since most of their statements are on component-preservingly amphicheiral links,
we modify them for the case of general amphicheiral links. We do not give proofs of
Lemma 4.1 and Lemma 4.4, and could not modify Lemma 4.4 into a statement on
general amphicheiral links.

For two elements A and B in the r-variable Laurent polynomial ring Z[t±1
1 , . . . , t±1

r ],
we denote by A

.
= B if they are equal up to multiplications of units.

Lemma 4.1 ([8, Lemma 2.5]) Let L = K1 ∪ · · ·∪Kr be an r-component (ε1, . . . , εr; σ)-
amphicheiral link where εi = + or − (i = 1, . . . , r), and σ is a permutation of {1, 2, . . . , r}.
Then we have

∆L(t1, . . . , tr)
.
= ∆L

(
t
εσ(1)

σ(1) , . . . , t
εσ(r)

σ(r)

)
.

Lemma 4.2 ([8, Lemma 3.1]) Let L = K1 ∪ · · ·∪Kr be an oriented r-component link.

(1) If L is an (ε1, . . . , εr; σ)-amphicheiral link, then a sublink L′ = Ki1 ∪ · · · ∪ Kis

(1 ≤ i1 < · · · < is ≤ r) is an (εi1 , . . . , εis; ρ)-amphicheiral link where ρ is a
permutation of {i1, i2, . . . , is} closed under the action of σ.
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(2) If ,1,2 · ,2,3 · ,3,1 (= 0 where ,p,q is the linking number of Kp and Kq, then L is
not amphicheiral.(Thank you for R. Nikkuni and K. Taniyama for this correct
statement.)

Proof (1) We can see it without difficulty.

(2) Let L∗ and K∗
i (i = 1, 2, 3) be the mirror images of L and K∗

i with the induced
orientations, respectively. We set the product of the linking numbers N = ,1,2·,2,3·,3,1 (=
0. Since the linking number of K∗

p and K∗
q is −,p,q, the product N changes into −N on

L∗. Even if the orientations of some components of L∗ are changed, the product of the
linking numbers as above does not change. Therefore L cannot be amphicheiral.

Lemma 4.3 Let L = K1∪K2 be a 2-component link with non-zero even linking number
e. Then we have the following:

(1) (Hartley [3], [8, Lemma 3.2]) L is not component-preservingly amphicheiral.

(2) If e ≡ 2 (mod 4), then L is not (±,∓; (1 2))-amphicheiral where (1 2) is the
non-trivial permutation of {1, 2}.

Proof We show only (2). Suppose that L is a (+,−; (1 2))-amphicheiral link with the
linking number e where e > 0 and e ≡ 2 (mod 4).

By the duality and the Torres condition [22] on 2-variable Alexander polynomials,
we can normalize ∆L(t1, t2) as

∆L(t1, t2) = (t1t2)
− e−2

2 · (t1t2)e − 1

t1t2 − 1
∆K1(t1)∆K2(t2) + (t1 − 1)(t2 − 1)f(t1, t2) (4.1)

where ∆Ki(ti) (i = 1, 2) is normalized as ∆Ki(t
−1
i ) = ∆Ki(ti) and ∆Ki(1) = 1, and

f(t1, t2) = f(t−1
1 , t−1

2 ). Then we have

∆L(t1, t2) = t1t2∆L(t−1
1 , t−1

2 ) (4.2)

By the assumption, the knot types of K1 and K2 are identical up to orientations and
mirror images, and hence we have ∆K1(t) = ∆K2(t) where we set t = t1 = t2.

By Lemma 4.1, we may assume

∆L(t1, t2) = ηtb11 tb22 ∆L(t−1
2 , t1) (4.3)

where η = + or −, and b1, b2 ∈ Z. By substituting t2 = 1 to (4.3), we have

∆K1(t1) = ηtb11 ∆K2(t1) = ηtb11 ∆K1(t1) (= 0,

and η = + and b1 = 0 by (4.1). By substituting t1 = 1 to (4.3), we have

∆K2(t2) = ηtb2−1
2 ∆K1(t

−1
2 ) = ηtb2−1

2 ∆K2(t2) (= 0,
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and η = + and b2 = 1 by (4.1). Hence we have

∆L(t1, t2) = t2∆L(t−1
2 , t1) (4.4)

By substituting t2 = −1 to (4.4) and (4.1), we have

∆L(t1,−1) = −∆L(−1, t1)

and

−∆K1(−1)(−t1)
− e−2

2 · te1 − 1

t1 + 1
∆K1(t1) = (t1 − 1){f(t1,−1) + f(−1, t1)} (4.5)

Substitute t1 = −1 to (4.5). Then the lefthand side is divisible by 2, but is not divisible
by 4, and the righthand side is divisible by 4. This is a contradiction.

Lemma 4.4 ([8, Corollary 1.4]) If L = K1 ∪ K2 is an algebraically split component-
preservingly amphicheiral link, then ∆L(t1, t2) is divisible by (t1 − 1)2(t2 − 1)2.

We determine prime amphicheiral links with at least 2 components and up to 9
crossings as in Figure 1. For this class, most of them are detected not to be amphicheiral
only by Lemma 4.1, Lemma 4.2, and Lemma 4.3. Firstly, we raise such examples.

Example 4.5 (1) Let L be a (2p, 2q)-torus link where p and q are positive integers
with gcd(p, q) = 1. Then L is a 2-component link, and its Alexander polynomial is

∆L(t1, t2)
.
=

(t1t2)pq − 1

t1t2 − 1
· {(t1t1)pq − 1}(t1t2 − 1)

{(t1t1)p − 1}{(t1t2)q − 1}

where the orientation of L is the torus braid orientation. It is easy to see that the linking
number of L is pq, and the degree of ∆L(t1, t2) about ti (i = 1, 2) is (p−1)(q−1)+pq−1.
We can see by Lemma 4.1 that L is not amphicheiral except the case p = q = 1 (i.e.
the Hopf link (= 22

1) is amphicheiral as in Figure 1). Hence 42
1, 62

1 and 82
1 are not

amphicheiral. Moreover by Lemma 4.2 (1), 83
1, 83

2, 83
7, 83

8, 83
9, 83

10, 93
5, 93

6, 93
8, 93

19 and 93
20

are not amphicheiral. The case of 83
10 is subtle. The 2-component sublinks of 83

10 are
one 2-component trivial link and two (2, 4)-torus links. Since the 2-component sublinks
of the mirror image of 83

10 are one 2-component trivial link and two (2,−4)-torus links,
83

10 is not amphicheiral. On the other hand, 83
4 is amphicheiral as in Figure 1. We set

L = 83
4 = K1 ∪ K2 ∪ K3, its 2-component sublinks L1 = K1 ∪ K2, L2 = K1 ∪ K3 and

L3 = K2 ∪ K3, and their mirror images L∗, L∗
1, L∗

2 and L∗
3, respectively where L1 is

the 2-component trivial link, L2 is the (2, 4)-torus link and L3 is the (2,−4)-torus link.
Then there is an orientation-reversing homeomorphism ϕ of S3 such that ϕ(K1) = K∗

2 ,
ϕ(K2) = K∗

1 , ϕ(K3) = K∗
3 , ϕ(L1) = L∗

1, ϕ(L2) = L∗
3 and ϕ(L3) = L∗

2, respectively.
Hence 83

4 is (+)-amphicheiral and (−)-amphicheiral by a suitable orientation, but it is
not component-preservingly amphicheiral (cf. Figure 2).
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Figure 1: Prime amphicheiral links with up to 9 crossings

810
384
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Figure 2: 83
4 and 83
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(2) Let L be a 2-bridge link. It is well-known that a 2-bridge link is interchangeable, and
(−,−)-invertible. Suppose L = S(p, q) where S(p, q) is Schubert’s notation as in [13,
Section 2]. Then L is amphicheiral if and only if q2 ≡ −1 (mod p). By [7], we can also
detect amphicheirality of L from Conway’s notation, and L cannot be (ε)-amphicheiral.
By the fact, 62

2 = S(10, 3) = C(3, 3) and 82
8 = S(34, 13) = C(2, 1, 1, 1, 1, 2), where

C(. . .) is Conway’s notation as in [13, Section 2], are amphicheiral (cf. Figure 1), and
52

1, 62
3, 72

1, 72
2, 72

3, 82
2, 82

3, 82
4, 82

5, 82
6, 82

7, 92
1, 92

2, 92
3, 92

4, 92
5, 92

7, 92
8, 92

9, 92
10 and 92

11 are not
amphicheiral. We note that a (2, 2p)-torus link is a 2-bridge link S(2p, 1) = C(2p). We
also see that it is not amphicheiral if p ≥ 2. In the following table, ‘A’ means that the
link is amphicheiral, and ‘N’ means that the link is not amphicheiral.

link Conway Schubert Amphicheirality
22

1 C(2) S(2, 1) A
42

1 C(4) S(4, 1) N
52

1 C(2, 1, 2) S(8, 3) N
62

1 C(6) S(6, 1) N
62

2 C(3, 3) S(10, 3) A
62

3 C(2, 2, 2) S(12, 5) N
72

1 C(2, 1, 4) S(14, 5) N
72

2 C(2, 1, 1, 3) S(18, 7) N
72

3 C(2, 3, 2) S(16, 7) N
82

1 C(8) S(8, 1) N
82

2 C(3, 5) S(16, 5) N
82

3 C(2, 2, 4) S(22, 9) N
82

4 C(3, 2, 3) S(24, 7) N
82

5 C(2, 2, 1, 3) S(26, 11) N
82

6 C(2, 4, 2) S(20, 9) N
82

7 C(2, 1, 2, 1, 2) S(30, 11) N
82

8 C(2, 1, 1, 1, 1, 2) S(34, 13) A
92

1 C(2, 1, 6) S(20, 7) N
92

2 C(2, 1, 1, 5) S(28, 11) N
92

3 C(2, 3, 4) S(30, 13) N
92

4 C(4, 1, 4) S(24, 5) N
92

5 C(3, 1, 1, 4) S(32, 9) N
92

7 C(2, 1, 1, 2, 3) S(44, 17) N
92

8 C(2, 3, 1, 3) S(34, 14) N
92

9 C(3, 1, 1, 1, 3) S(40, 11) N
92

10 C(2, 5, 2) S(24, 11) N
92

11 C(2, 1, 2, 2, 2) S(46, 17) N

(3) By Lemma 4.2 (1), 72
4, 72

5, 72
6, 72

7, 72
8, 82

11, 82
12, 82

14, 92
13, 92

14, 92
15, 92

16, 92
17, 92

18, 92
19,

92
20, 92

21, 92
22, 92

27, 92
28, 92

29, 92
30, 92

31, 92
39, 92

40, 92
43, 92

44, 92
45, 92

46, 92
47, 92

48, 92
49, 92

50, 92
51, 92

52,
92

55, 92
56, 92

59, 92
60, 93

1, 93
2, 93

3, 93
4, 93

9, 93
11, 93

12, 93
13, 93

14, 93
15, 93

16, 93
17, 93

18 and 93
21 are not
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amphicheiral. We give a precise explanation particularly on the cases of 93
9 and 93

21. Let
L = K1 ∪ K2 ∪ K3 be 93

9 or 93
21 such that its 2-component sublinks are L1 = K1 ∪ K2,

L2 = K1 ∪K3 and L3 = K2 ∪K3, respectively where L1 is the 2-component trivial link,
and both L2 and L3 are the positive Whitehead link (= 52

1) (cf. Figure 3). Since 52
1 is

not amphicheiral, L is not amphicheiral.

99
3

K3K1 K2

921
3
K3K1 K2

Figure 3: 93
9 and 93

21

(4) By Lemma 4.2 (2), 63
1, 63

3, 73
1, 83

3 and 93
7 are not amphicheiral.

(5) By Lemma 4.3, 82
9, 82

16, 92
6, 92

23, 92
26, 92

38, 92
57 and 92

58 are not amphicheiral. Since the
linking number of 92

53 is 4, it is not component-preservingly amphicheiral, but it may
be (±,∓; (1 2))-amphicheiral. The Alexander polynomial of 92

53 is

∆92
53

(t1, t2)
.
= (t21t2 + 1)(t1t

2
2 + 1),

and
∆92

53
(t2, t

−1
1 )

.
= (t21 + t2)(t1 + t22).

By Lemma 4.1, it is not amphicheiral (cf. Figure 4).

953
2

Figure 4: 92
53

(6) By Lemma 4.1, 92
12, 92

24, 92
34, 92

35, 92
42 and 92

54 are not amphicheiral. Since the
Alexander polynomial of 92

12 is

∆92
12

(t1, t2)
.
= (t1t2 − t1 − 2t2 + 1)(t1t2 − 2t1 − t2 + 1),

we have

∆92
12

(t1, t
−1
2 )

.
= ∆92

12
(t2, t

−1
1 )

.
= (t1t2 − t1 − t2 + 2)(2t1t2 − t1 − t2 + 1).
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Since the linking number of 92
12 is 1 (non-zero), it is (±,∓)-amphicheiral or (±,∓; (1 2))-

amphicheiral if it is amphicheiral. However by Lemma 4.1, it is not amphicheiral. The
rest cases can be shown in the similar way.

The Borromean rings (= 63
2) is well-known to be amphicheiral, and 84

3, 84
6 and 92

61

are amphicheiral (cf. Figure 1). Then the rest links are 82
10, 82

13, 82
15, 83

5, 84
1, 84

2, 92
25, 92

32,
92

33, 92
36, 92

37, 92
41, 93

10 and 94
1. We apply Lemma 4.4 and Corollary 1.2 to them.

Example 4.6 (1) By Lemma 4.1 and Lemma 4.4, 82
10, 82

13, 82
15, 92

25, 92
32, 92

33, 92
36, 92

37

and 92
41 are not amphicheiral.

(2) By Corollary 1.2, 83
5, 84

1, 84
2, 93

10 and 94
1 are not amphicheiral. Since ,(83

5) = ±1, 83
5

satisfies the condition in Corollary 1.2. Since the Alexander polynomial of 83
5 is

∆83
5
(t1, t2, t3)

.
= (t1 − 1)(t2 − 1)(t3 − 1)(t2t3 + 1),

we have
∆83

5
(−1,−1,−1) = ±16 (= 0,

and hence 83
5 is not amphicheiral. Similarly we can see that 84

1, 84
2 and 84

3 satisfy the
condition in Corollary 1.2. The Alexander polynomials of them are

∆84
1
(t1, t2, t3, t4)

.
= t1t2t3 + t2t3t4 + t3t4t1 + t4t1t2

−t1t2 − t3t4 − t1t4 − t2t3 − 2t1t3 − 2t2t4
+t1 + t2 + t3 + t4,

∆84
2
(t1, t2, t3, t4)

.
= t1t2t3 + t4t1t2 − t1t2 − t2t3 − t3t4 − t4t1 + t3 + t4,

∆84
3
(t1, t2, t3, t4)

.
= (t1 − t3)(t2 − t4),

respectively. Since

∆84
1
(−1,−1,−1,−1) = ±16 (= 0,

∆84
2
(−1,−1,−1,−1) = ±8 (= 0,

∆84
3
(−1,−1,−1,−1) = 0,

respectively, 84
1 and 84

2 are not amphicheiral (cf. Figure 5). The rest cases can be shown
in the similar way.

Since the linking number of 92
61 is 4, we have 92

61 ∈ A9 \ C9 by Lemma 4.3 (1). Since
83

4, 83
6 and 84

3 are component-preservingly (−)-invertible, they are (+)-amphicheiral and
(−)-amphicheiral. The Borromean rings 63

2 is component-preservingly (+)-amphicheiral,
and (−,−,−; (1 2))-amphicheiral by a suitable orientation. We show that 63

2 cannot
be component-preservingly (−)-amphicheiral. Suppose that 63

2 = K1 ∪ K2 ∪ K3 is
component-preservingly (−)-amphicheiral. Then there exists an orientation-reversing
autohomeomorphism h of the exterior of 63

2 which preserves the orientation of the i-
th meridian mi (h(mi) = mi), and reverses the orientation of the i-th longitude li
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81
4 82

4 83
4

Figure 5: 84
1, 84

2 and 84
3

(h(li) = −li) for every i (i = 1, 2, 3), and h induces an orientation-reversing autohome-
omorphism h̃ of the (0, 0, 0)-surgered manifold T 3 which is the 3-torus S1 × S1 × S1

and we have H1(T 3) ∼= H1(T 3) = Hom (H1(T 3), Z) ∼= Z3. We can take two bases of
H1(T 3) induced by the dual of the meridians 〈c1, c2, c3〉, and the dual of the longitudes
〈d1, d2, d3〉. The cup products of H1(T 3) induces a trilinear map

∪ : H1(T 3) × H1(T 3) × H1(T 3) → H3(T 3) ∼= Z.

We may suppose ∪(d1, d2, d3) = 1. Let (h̃)∗ be an autohomomorphism of H1(T 3)
induced by h̃. Since (h̃)∗(ci) = ci for every i (i = 1, 2, 3), the trilinear form ∪ is stable
by (h̃)∗. On the other hand, we have

∪((h̃)∗(d1), (h̃)∗(d2), (h̃)∗(d3)) = ∪(−d1,−d2,−d3) = −∪ (d1, d2, d3) = −1.

It implies that the trilinear form ∪ is not stable by (h̃)∗. This is a contradiction. 63
2 is

not component-preservingly (−)-amphicheiral. This argument also works for the case
that a 3-component algebraically split link L has the non-zero trilinear cup product ∪
as above. The condition is equivalent to that a Milnor’s µ-invariant µL(123) is non-zero.
That is, a 3-component algebraically split link L with µL(123) (= 0 is not component-
preservingly (−)-amphicheiral. Therefore we could determine the sets A9, C9, A±

9 and
C±

9 completely.

Remark 4.7 (1) The condition “e ≡ 2 (mod 4)” in Lemma 4.3 (2) is necessary. 92
61 is

an amphicheiral with the linking number 4. Note that it is not component-preservingly
amphicheiral by Lemma 4.3 (1). For any positive odd integer m, let L be a 2-component
link obtained by taking (2, 1)-cable and (2,−1)-cable of each component of a 2-bridge
link C(m, m) which is amphicheiral with the linking number m. Then L is an am-
phicheiral link with the linking number 4m. By repeating these processes (taking
(2, 1)-cable and (2,−1)-cable of each component), for any positive integer n, we can
construct a 2-component amphicheiral link with the linking number 4nm. R. Nikkuni
and K. Taniyama [19] found a sequence of amphicheiral links with the linking number
4k for any integer k.

(2) For a link L, let VL(t) be the Jones polynomial of L. If L is amphicheiral, then
VL(t−1) is equal to VL(t) up to multiplications of positive trivial units (cf. [9, Lemma 3.1
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(4)], for example). It implies that an amphicheiral link has the Jones polynomial with
symmetric coefficients. In general, this obstruction detects very well non-amphicheiral
links. However it is not a complete one. For example, 83

2, 83
7 and 92

49 in Figure 6 have
the Jones polynomials with symmetric coefficients, and they are not amphicheiral by
Example 4.5 (1) and (3). The reader can find more such examples for prime links with
10 or 11 crossings in [9].

87
382

3 949
2

Figure 6: 83
2, 83

7 and 92
49

(3) To determine the link-symmetric group (cf. [5, 7, 26]) for any link is an important
problem. It has information of amphicheirality, invertibility and interchangeability. In
the present paper, we deal with only a part of amphicheirality and interchangeability.

5 Further remarks

In [8], the first author raised a conjecture:

Conjecture 5.1 ([8, Conjecture 1.1]) For an r-component algebraically split component-
preservingly amphicheiral link L with r even, we have ∆L(t1, . . . , tr) = 0.

This is one of motivations of our present study. Our results in the present paper
support it. In particular, Theorem 1.3 is a very strong partial affirmative answer for
the conjecture. Some interesting examples are found in the table of prime links with
crossing numbers 10 and 11 (see D. Bar-Natan and S. Morrison’s website [1] and the
first author’s paper [9]). Though the examples support the conjecture, the condition
“component-preservingly” is needed

One of the supporting results in [8] for the conjecture is Lemma 4.4, and another is
the following:

Theorem 5.2 ([8, Theorem 1.5]) If L = K1 ∪ . . . ∪ Kr is an r-component component-
preservingly (ε)-amphicheiral link with r even, then the Alexander polynomial of L sat-
isfies

∆L(tη1 , . . . , tηr) = 0

where ηi ∈ {1,−1} (i = 1, . . . , r).

It was shown by spanning Seifert surfaces following the argument due to R. Hartley
[3]. We note that Corollary 1.2 and Theorem 1.3 include properly Theorem 5.2.
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