Almost identical link imitations
and the skein polynomial

Akio Kawauchi

Dedicated to Professor Kunio Murasugi on his 60th birthday

The imitation theory gives a method constructing from a given good (3,1)-manifold
pair (M, L) a new good (3,1)-manifold pair (M, L*) with a map ¢ : (M,L*) —
(M, L) close to a diffeomorphism in several senses (cf.[K0],[K1]). In [K2], for
any given good (3,1)-manifold pair (M, L), an infinite family of almost identical
imitations (M, L*) of (M, L) with exteriors F(L*, M) hyperbolic is constructed.
In [K3] it is shown that we can take as this family an infinite family of (3,1)-
manifold pairs (M, L*) which have the hyperbolic covering property. In this paper,
this result is applied to some graph in the 3-sphere S° to construct from any link
L in $* an infinite family < of almost identical imitations (9%, L*) of (S3, L)
with several properties, one of which is related to the skein (= two-variable Jones,
HOMFLY, FLYPMOTH) polynomials (cf.[F/Y/H/L/M/O]) of the links L*, L. A
link L* will be simply called an almost identical link imitation of a link L if
(S, L*) is an almost identical imitation of (S*, L).

For an link L and any positive number C, we shall show that this family <
of almost identical link imitations L* of L can be taken so as to have all of the
following properties:

(1) Each L* € & has the hyperbolic covering property, and there is a number
C* > C such that the hyperbolic volume VolE(L*,S*) < C* and
SUp veq VOLE(L*, 8%) = Ct,

(2) Each L* € & is obtained as a band sum of L and a trivial knot O
(In other words, L* is a fusion of the split union L + O) and has the
unlinking number u(L*) < max{u(L), 1},

(3) The skein polynomial is constant on all L* € <, and the skein polyno-
mial of each L* € & is ‘close’ to the skein polynomial of L.

A certain generalization of (2) will be shown in Theorem 3.1 which is our
main theorem. The precise meaning of the term ‘close’ in (3) will be clear in
Theorem 3.1 using coefficient polynomials , essentially the coefficients of the skein
polynomial, regarded as a polynomial in m in the convention of Lickorish/Millett
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in [L/M]. Infinitely many knots with the same skein polynomial constructed by
Kanenobu [K] have mutually non-isomorphic Alexander modules. By a property
of the imitation in [K1], any imitation map ¢ : (S*,L*) — (5% L) induces an
isomorphism between the Alexander modules of L* and L. Thus, for each link
L, we have infinitely many links with the same skein polynomial and the same
Alexander module isomorphic to the Alexander module of L.

Throughout this paper, some terminologies of [KO],|K1],[K2],[K3] will be
used without mentions. However, the following terms are reconfirmed here. Name-
ly, a compact connected oriented 3-manifold M is said to be hyperbolic if intgM =
M — 9yM ( when OM = 9,M ) or its double D(intoM ) ( when OM # doM )
has a complete Riemannian structure of constant curvature -1, where 9y M denotes
the union of all tori in the boundary M of M. Then the volume Vol(inty M) or
Vol(D(intgM))/2 (known to be finite) is a topological invariant of M, called the
hyperbolic volume of M and denoted by VolM. By a good (3,1)-manifold pair
(M, L) (or a good 1-manifold L in M ), we mean that M is a compact connected
oriented 3-manifold and L is a compact proper smooth 1-submanifold of A/ such
that any 2-sphere component of M meets L with at least three points. Tt is said
to have the hyperbolic covering property if for every pair of component unions
Lo, Ly (possibly, § ) of L with L — Ly = L, any finite regular covering space of
the exterior £(Lg, M) branched along L, is hyperbolic after spherical completion.

§1. Construction

Let L be a link in S* and b an oriented band spanning L with orientation coherent
with the orientation of L (cf. Fig.1(1)).

B, B, Bj
(1 (2) (3)

Figure 1

Let L’ be a link obtained from L by surgery along b. For our application to the
first half of the statement (2) in the introduction, we take b so that L' is a split union
of L and a trivial knot O. We choose mutually disjoint 3-balls B;. ¢ = 1,2,3, in
53 sothat LN B, is a 2-string tangle in B3;, as it is illustrated in Fig.1(7},4=1,2,3,
where L 1 B, should belong to one component of I, and we do not specify the
string orientation of L M B;. Let L” be a link obtained from I by a crossing
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change at a crossing point in Fig.1(3). We call this crossing point a clasp crossing
point. For our application to the latter half of the statement (2) in the introduction,
we take L” so that the unlinking number w(L”) = max{u(L) — 1,0}. Next, we
replace the 2-string tangle L N B; by the graph G in Fig.2(i),i= 1,2,3.

B < -
O Sl A
a4 \ o>

B, Qs B, B3
(1) (2) (3)

Figure 2

By I' we denote a spatial graph occurring from L by this replacement. Let
(83,T,) be a good (3,1)-manifold pair obtained from (S* T') by removing a small
open ball neighborhood of each vertex of I" of degree 3. Given an almost identical
imitation

Go 1 (S3,T5) — (55, T),

we have an almost identical graph imitation
q: (5%,T%) — ($°,T)

by taking a spherical completion (cf.[K2]). We consider an H-graph H; in a 3-
ball neighborhood V; around the arc a;,¢ = 0,1 and an H-graph H J’ in a 3-ball
neighborhood V/ around the arc aj,j =0,1,...,2s, and H-graphs H, H* in 3-ball
neighborhoods V, V'* around the arcs a,a* which are illustrated in Fig.3(1), (2)
and (3), respectively.

Va vs v v*
(m (2) (3)

Figure 3

We replace these H-graphs by certain 2-tangles with mi7m3-,m and m* full
twists, respectively, as they are illustrated in Fig.4(1),(2),(3) (In the figure, the
case of positive twists is illustrated and a negative twist is the mirror image of a
positive twist).

We impose the following condition on m;, mgm and m*:

(#) mo+my =my+mj +..+mh, =m+m* =0.
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‘V' ‘Vi .v .V*
M (2} (3)

Figure 4

Then I' changes into a link with the same oriented link type as L. Identifying
this link with L, we see that any almost identical graph imitation g : (S, ) —
(83,T) induces an almost identical imitation ¢* : (S®, L*) — (S°,L). Let b* be a
band spanning L* obtained by thickening the arc ag in Fig.3(1) so that ¢* maps b*
diffeomorphically onto b. The following lemma is obvious from our construction:

Lemma 1.1. The map (S°, L*') — (S3, L) induced from q* by the surgeries along
b*, b is homotopic to a diffeomorphism, and the map (S*, L*"") — (S*, L") induced
from q* by the crossing changes at the clasp crossing points corresponding by q*
is homotopic to a diffeomorphism.

Let M be a 3-manifold obtained from $° by removing intV;, inth’ for all ¢, j, intV’

and intV*, Let U, U’ be 3-balls obtained from S> by splitting along a 2-sphere
such that

(1) LNYU is a trivial r(> 3)-string tangle in U/ , and
2) Vi, Vj’ ,V and V'~ for all 4, j are contained in intl.

Lemma 1.2, For any positive number C, there is an almost identical graph im-
itation q : (S*,T*) — (5% T') extending an almost identical graph imitation
qu : (U, (I'nU)*) — (U,I'NU) and an almost identical imitation qy+ : (U', (LN
UN*) — (U, LNU") such that (U', (LNU')*) has the hyperbolic covering prop-
erty and the double covering spaces M, (U N M), of M, U N M branched along
*NM,I*NU N M, respectively, are hyperbolic with VolM, > 2C.

Proof. Let T be a split union in $* of an n-component trivial link O in U and
I'. By [K3], we have an almost identical graph imitation ¢, : (U, (T NU)*) —
(U,T* NU) such that the good (3,1)-manifold pair (I, (I'" N U)*) N S3 has the
hyperbolic covering property. By {K3] and [K2, Corollary 3.3], we have an almost
identical imitation qg : (U, (LOU')*) — (U, LOU) such that (U, (LN U')*)
has the hyperbolic covering property and the extension (S°, (LNU’)*U(LNU)) —
(83, L) of gy by the identity on (U, LN U) is homotopic to a diffeomorphism.
Using q;} and qp7, we have an almost identical graph imitation ¢© : (S°, I'*) —
(S3,T). Let O* be the preimage of O by ¢* and Eyny = E(O*, M NU) and
En = E(O*, M). The double covering space (Eynpr )2 of Eynas branched along
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I+**NUNM —O* and lifting the tori around O* in Eynay trivially is hyperbolic
by the hyperbolic covering property of (U, I'+*NU)NS3. By Myers gluing lemma
(cf.[K2, Lemma 5.3]), the double covering space (Ej;), of Ep; branched along
['**NM —O* which extends the covering (Eynar)2 — Funw is also hyperbolic,
for (U, I'"™* nU") = (U’',(LNU")*) has the hyperbolic covering property. By
Jgrgensen’s theorem [T1],[T2], we have Vol(Exs), > 2C by taking i so large.
By Thurston’s hyperbolic Dehn surgery [T1],[T2], if ¢ : (S?,T*) — (S3,T) is
obtained from ¢* by Dehn surgery along the components of O* and O with
the same coefficient 1/m for a large positive integer m, then ¢ is an almost
identical graph imitation and we have that M, and (U N M), are hyperbolic with
VolM, > 2C'. This completes the proof.

From now on, we consider an almost identical imitation
¢ (S, L) — (8%, L)

induced from an almost identical graph imitation
q:(S°,I*) — ($°.1)

stated in Lemma 1.2,

Lemma 1.3. For any positive number C, there is a positive constant ¢ such that
Jor all m;, m’y,m and m* with (#) and |m|, |m/|,|m|, |m*| > ¢, (S, L*) has the
hyperbolic covering property and

C < VolE(L*,8%) < sup VolE(L*,S%) < 400

{mg,m}

if we fix m;,m and m”* for all j.

Proof. The branched covering spaces S*(L*)y,U(L* NU); of $*,U branched
along L*, L* N U are obtained from M,, (U N M), by attaching solid tori whose
attaching meridians vary by the values m;, mg-, m and m*. Hence by Thurston’s
hyperbolic Dehn surgery, there is a number ¢ > 0 such that for all m;, mj, m, m*
with |m;|, [m}|, |ml|,im*| > ¢,5*(L*); and U(L* N U), are hyperbolic with
VolS*(L*), > 2C. Since the surface U (L* N U), is incompressible in S*(L*),
which is hyperbolic, we see from [K3, Lemma 1.7] that (S, L*) has the hyper-
bolic covering property. Let L} be the lift of L* to S*(L*),. Then

VOlE(L*,8%) = VolE(L%, S*(L")2)/2 > VolS*(L*),/2 > C.

Let L be the link L* with m; = m; = m = m* = 0 for all 4, j. Let L* be the
link obtained from Lj by adding the components &;, k;, k, k™ for all ¢, j indicated
in Fig. 5.
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(1) (2) (3)

Figure 5

Note that L* is obtained from L* by the 1 /m;, 1/ m}, 1/m, and 1 /m™-surgeries
along the components k;, K, k, k*, respectively, for all 4, j. Using that §*(L*), is
hyperbolic, we see that L* is a prime link. Since F(L*,S5?) is hyperbolic for all
mi, my, m and m* with |m;|, [m}], |m| and |m*| greater than ¢, we can conclude
from the torus decomposition of E(L*, S%) that L* is a hyperbolic link. Hence by
Thurston’s hyperbolic Dehn surgery,

VolE(L*,8%) < sup VolE(L*,5%) < +o0

{mOvml}

if we take and fix m} and mn, m* for all j with |mj|, [m/,|m*| > c. This complete
the proof.

§2. The coefficient polynomials

The skein polynomial Py (¢,m) of a link L is calculable in principle by the initial
condition

(D Po(¢,m) =1,
where O is a trivial knot, and the skein relation
) (P, (6,m) + P (0,m) + mPr, (€, m) =0,

where L, ,L_ and Ly are links, identical except the part in a 3-ball B in which
the 2-strand braids with positive half twist, negative half twist and O twist are
occurring, respectively. We call an operation producing from one of the links
L, L_, Ly the other two links a skein move within B. For the component number
r of L, we let

"Py(L;,m) = (¢m)"" P (6, m).
Then the initial condition and the skein relation are written as

(1) Py(0;¢,m) = 1,

(24) — 0 Py(Ly38,m) = Po(L_;€,m) = (£2m?)° Py(Lo; ¢, m),
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where we let & = (r — g+ 1)/2 (=1 or 0) for the component numbers 7, ro of
L., Ly, respectively.
Then we see easily that Py(L;¢,m) is written as

52 pan (L £)m™™,

where py, (L;£) is a Laurent polynomial in ¢%, being 0 except a finite number of
n. We denote —¢2 and —m? by z and y, respectively, and then Py(L; ¢, m) and
pon (L 0) by Cy(L;x,y) and c,(L;x)(—x)", respectively. Clearly, ¢ (L;x) is a
Laurent polynomial in @z and we have

Cy(Lyx,y) = Br S cn(Ly a)(ay)™

Taking ¢, (L;z) = 0 for n < 0, we obtain the following, giving an alternative
description of the initial condition and the skein relation of the skein polynomial:

Theorem 2.1. There is one and only one link invariant family of Laurent polyno-
mials in x of a link L which is denoted by c,(L;x),n € Z, and has the following
identities:

(1) For a trivial knot O,

L _ [0 (n#0)
C’L(O"’:)'{1 (n=0),

(2) xzep(Liix)—co(L_sz) = ¢n_g(Losx) forall n, with & = (ro—ro+1)/2
( = 0 or 1) for the component numbers v, g of Ly, Lo, respectively.

We call the Laurent polynomial ¢, (L;xz) the nth coefficient polynomial of the
skein polynomial Py (£,m) (or simply, of the link L). Some calculations of the
coefficient polynomials has been made in [K4]. For example, for any link L with
the components k;,i = 1,2,...,r, and the total linking number A, we have

co(Liz) = (¢ — 1) o Aep(kiy w)eo (ki ). co (ks ),
i
colkis1) = 1, -(Trc()(ki; ) =0,i=12, .7

and this characterizes the zeroth coefficient polynomial. Since cy(L; x) determines
the component number r of L, we see that for any link L, the family of the co-
efficient polynomials ¢, (L;z) for all n determines not only Py(L;¢,m) but also
the skein polynomial Py, (£, m)- itself. From now we shall calculate the coeffi-
cient polynomial ¢,(L*;x) of an almost identical link imitation L* of a link L
constructed in §1 for all m;(i = 0, l),m} (0 < j < 28),m,m" full twists with
condition (#). We show the following three lemmas:

Lemma 2.2. ¢, (L™;z) is constant on all my, my with mg +my = 0.
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Lemma 2.3. ¢, (L") = ¢, (L; x) for all n with n < s.
Lemma 2.4. ¢, (L*,x) — ¢, (L; x) is divided by ™ — 1 for all n.

Proof of Lemma 2.2. By fixing the m’ ’s and m, m*, we write L* as Ling.m,y Let

mp > 0,m; < 0 without loss of generallty By the skein relation corresponding
to a skein move in V;,7 = 0, 1, we have

cn(Lan()ml;);x) - xilcn([’?mofl,ml);‘r) + wilcnﬁﬁ(L/;m)
and
C"( €7n071’ml);l‘) = xcn<L?m()—l,7n|+]);m) - Cn—6<L/;I)>
for some ¢ =0 or 1. Hence
C"(L?mo,ml);m) = Cn(Lz‘m(,—l,mlJrl);x) == Cﬂ(LZF()(,O);I)’

for mo + my = 0. This completes the proof of Lemma 2.2.

Next, when we fix m,,7 = 0,1, and m, m*, we denote by Loy, g,y @ link
obtained from L* by replacing mj full tw1sts in Fig.4(2) with u; half twists. Thus,

* o * . . . .
L i 2 2m) = L*. Take a similar presentation of L using m;, mj,m m*

Then we also use the notation Ly, u,,...u,) if We replace m} full twists with w;

half twists and fix the other m;,¢ = 0, 1, and m, m*, so that L<2m6,2m/|“__,2m§ )
L. -

If a Laurent polynomial f(x) in 2 is written as a sum

Yieir” fi(z)

with some ¢; = *1, integers 7; and Laurent polynomials f;(z) in z, we say that
flx) is a unit mulriple sum of fi(x),i=1,2,...n

Proof of Lemma 2.3. Let

Cnlug,ieg,... ugg) = Cn(L(uo,u; b2 :L')

and

* . * N
Cutgyureoizg) = gy, g ©)-

Note by our assumption in §1 that L N B, in Fig.1(2) belongs to one component

of L. Then there is a skein move in the 3-ball V| changing Cn(?.m 2o 2m] )

and c* with

into a unit mlﬂtlple sum of (n(Zm L\ 2m7 ..... ”m 2) n(2rn u 2m 27”79)

lu)| = |2ml| — 1 and |u}| = |2ml| 2. There is also a skein move in vy

changing c; into a unit multiple sum of ¢

2NL u1,2m 2m o) ](277:0,u|,uz,..,,Z'sz)

and ¢ 2l  with luz| = [2m4| — 1 and [uh| = |2m)| — 2. By in-

77(77710,u,| ,u,,

duction on ]2mz| there are skein moves in V; changing o 2ty 22l )
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into a unit multiple sum of (:,’:L( and c* *) for

! ’
2myg,u,0,...,2m)5 ) nfl(Zm(’),u,,u, ,...,2m’2=)

some odd integers ugk), k=1,2,...,|m}|. Hence there are skein moves in V| and
VJ changing ¢’ into a unit multiple sum of ¢*
2 n( n

/
0

2m:),2m'l s 2mi ) ‘
’s. Since |uf| = [2m]] — 2,

* he ¢ :
and Cn(2m6,u|,(),...ZmZ’ZS) and t n—l(Zm(’),ul,ugk),...,?.més)

we have by induction on |2/m}| that there are skein moves in V/, V) changing
C;(zms am? . amh ) into a unit multiple sum of a finite number of Laurent polyno-
mials of the following types:

(2m, ,ug ,Z'mQ Yoo ,2‘m’2€ )

*

Cn(2m('],ul 0,.,2mh )

*
Cn(2n16 0,02, ,2m35)
and

*

Cn—1 (2m,

/ ’
oty U2ee 2T )

with u;, u> odd.

Applying this process to 2m5,_;,2m5;,j = 2,3,...,s, we see that there are
skein moves in V]',j =1,2,...,2s, changing CZ,(2m6,2m’] am) into a unit multi-
ple sum of a finite number of Laurent polynomials of the following types:

w®
Copym (2mgv1 e s02)

where n — s < n* < n and some v; = 0, and

*
C’n—s(Z’m,('),ul yeensU2s )

with u; odd. By a property of the almost identical graph imitation, we see that

* - L ,
@mfvy,.vas) T T @mgurse o vag)

Hence
Let n < s. Then if

is proved, we can see from the skein relations corresponding to the skein moves
in the Vs that

c] *' — * g — » LS
(fn(L »’I> = C-rl(27n6,2m’|,_,_72m,’zs) = c'n,(2m(’),2m§ ..... 2777'25) = (’TI(L"E>‘

To show that

* J—
('O(Zm('),'u‘ e U2s) C()(me(/),m,._.771.25)-,

we first note that for any odd g, Liyg.u,,...us,) 18 @ link with two or more (in
fact, r + 1) components and L} N is an almost identical link imitation of

(gt e U2
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Lugur,...un,)- By the characterization of the zeroth coefficient polynomial(|K4]),
we have

* —
Colug,uy,ug) = CO(ug,up,... uzy)-
: NPT Lk
There are skein moves in V] changing COmd s i)

CS((),ul _____ u,,) @nd a finite number of Laurent polynomials of the type COug.,

with ug odd. Since

into a unit multiple sum of

...,‘Ltgs)

* _
(Oyaey,0u28) L(O,'U,] ----- U2g)s
we see from the skein relations corresponding to the skein moves in Vy that
o =
C()(Z'm(’),u]....,uzs) - '()(Zm(’),ul ,,,,, uzg)”

This completes the proof of Lemma 2.3.

Proof of Lemma 2.4. Let L* = L{,, +y by fixing the other m; and m/; for all
i,j. Let m > 0 and m* < 0. Since 7 +m* = 0, by skein relations corresponding

to skein moves in V'*, we have
Cn(Lipmei ) = " Cn (Ll pyp ) — (L+z+ .o+ 2™ e (Lg; o),

where Ly denotes a connected sum of the link L” appearing in our construction
of §1 and the Hopf link. By skein relations corresponding to skein moves in V,
we have

en(Lip oy e) =2 Men(Liggia) + ™™ (1 + 2z + o+ 2™ Ve, (Ll 2),

where L7, is a link which is an almost identical link imitation of L. Noting
Lo = L, we have

‘,-I:.’(YIV — 1 )
{2 " en(Lii®) — en(Lizio)).

c'fl(Lzm,m*); ‘L) = Cn (L’ l) + .
Note that ¢, (L7; 1) and ¢, (Ly; 1) are the 2>~ -coefficients of the Conway
polynomials of L}; and Ly, respectively. Since the Conway polynomial is known
to be invariant under any link imitation(cf.[K4]), we have ¢, ( ) =cu(L;1)
and 27"¢, (L} x) — ¢u(Lp; ) is divided by x — 1, showing that ¢, (L*; ) —
cn(L;x) is divided by 2™ — 1. The same assertion for the case that m < 0 and
m” > 0 is proved similarly. This completes the proof of Lemma 2.4.

§3. Main theorem

Theorem 3.1, For any link L in S we consider links L', L" such that I is
obtained from L by a surgery along a band b with coherent orientation and L' is
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obtained from L by a crossing change within a 3-ball B where L N\ B is a trivial
2-string tangle. Then for any positive integers N, N' and positive number C, there
is an infinite family S of almost identical link imitations L™ of L with all of the

(1)

2)

3)

following properties:

Each L* €  has the hyperbolic covering property and there is a number
C*+ > C such that the hyperbolic volume VolE(L*,S*) < C* and
SUppeq VOLE(L*, S%) = C,

For the imitation map q : (S, L*) — (S°,L), there are a band b*
spanning L* with diffeomorphism ¢|b* : b* — b and a 3-ball B* in O
with a diffeomorphism q|B* : B* — B such that the maps

q (S, L) — (S*, L),
and
q/l . (53,[/*,/) — (Sg,LN)

induced from q by surgeries along b*, b and the crossing changes within
B*, B corresponding by q, respectively, are homotopic to diffeomor-
phisms,

For any n, the nth coefficient polynomial ¢,(L*;x) is constant on all
L* € §and ¢, (L*;x) = ep(Lix) for all n < N and the difference
en(L*; ) — en(Ls ) is divided by aN' — 1 for all n > N.

Proof. In Lemma 1.3, we take & to be the family of L* for all mg, ) with
mg +my = 0 and |m;| > ¢, by choosing and fixing m},m and m” for all
7,7 = 0,1,...,2s, so that they satisfy (#) and have s = N — 1.|m]| > c and
Im| > max{c, N' — 1}. Let C* = sup, .. VolE(L*,S?). Then for any L* €
&, L* is an almost identical link imitation of L with hyperbolic covering property
and C' <VolE(L*,8%) < C*, showing (1). We obtain (2) from Lemma I.1. We
obtain (3) from Lemmas 2.2,2.3,2.4. This completes the proof.

Remark 3.2. For the Jones polynomial V,(t)(cf.[J]) of a link L, we let

Va(Lit) = (VE =t V)~V (7)),

where r is the component number of L. Then we have

Vi(Lit) = 552, (L )" (¢ — 1)*"

(cf.[K4)). Thus, the statement (3) of Theorem 3.1 implies that Vi(L*;t) and hence
Vy«(t) are constant on all L* € < and Vyg(L*;t) — Va(L;t) is divided by (¢ —
1)2N(t2N/ - l).
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The following corollary is obtained directly from Theorem 3.1 by taking ., L’ and
L" to be a trivial knot, a two-component trivial link and a trivial knot, respectively.

Corollary 3.3. For any positive integers N, N' and any positive number C, there
is an infinite family 3 of knots O* with trivial Alexander polynomial and with the
same skein polynomial such that

(1) Each O™ € 3 has the hyperbolic covering property and there is a number
C* > C such that the hyperbolic volume VolE(O*,S%) < Ct and
SUPov e VOLE(O*, %) = C'F,

(2) Each O* € S is a ribbon knot of 1-fusion with unknotting number
u(0*) =1,

(3)

0 (0<n<N)

Cn(O*;x): { 1 (Tl:O),

and c,(O*;2) is divided by V' — 1 for all n > N.

Finally, we note that we can obtain similar results, taking an infinite family of
hyperbolic links ( but with essential Conway spheres ) as ¥, when we use the
results of [K2] alone instead of [K3].
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