Splitting a 4-manifold with infinite cyclic fundamental group, revised in a

definite case

Akio KAWAUCHI

Osaka City University Advanced Mathematical Institute

Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

A sufficient condition that a closed connected definite 4-manifold with infinite cyclic fundamental group is TOP-split is given. By this condition, it is shown that every closed connected definite smooth 4-manifold with infinite cyclic fundamental group is TOP-split. By combining with an earlier result, it is confirmed that every closed connected oriented smooth 4-manifold with infinite cyclic fundamental group is TOP-split. This also implies that every smooth sphere-knot in a closed simply connected smooth 4-manifold is topologically unknotted if the fundamental group of the complement is infinite cyclic.

Mathematics Subject Classification 2010: 57M10, 57M35, 57M50, 57N13

Keywords: Smooth 4-manifold, Definite intersection form, Topological splitting, Infinite cyclic covering, Topolological unknotting.

1. Introduction

A closed connected oriented 4-manifold M is called a Z^{π_1} -manifold if the fundamental group $\pi_1(M)$ is isomorphic to Z, and a Z^{H_1} -manifold if the first homology group $H_1(M;Z)$ is isomorphic to Z. A Z^{π_1} -manifold M is TOP-split if M is homeomorphic to the connected sum $S^1 \times S^3 \# M_1$ for a simply connected closed 4-manifold M_1 , and virtually TOP-split if a finite covering of M is TOP-split. A Z^{H_1} -manifold M is definite if the rank of the intersection form

$$\operatorname{Int}^M: H_2(M; Z) \times H_2(M; Z) \to Z$$

is equal to the absolute value of the signature, and *positive definite* if, furthermore, the signature is positive. A definite Z^{H_1} -manifold is positive definite, if necessary, by changing an orientation of M.

In this paper, a sufficient condition for a definite Z^{π_1} -manifold to be TOP-split is given in a study following [10] of the revision of the author's earlier paper [6] of a TOP-split Z^{π_1} -manifold. This revision was needed because a non-TOP-split, positive definite and non-smoothable Z^{π_1} -manifold was given by Hambleton-Teichner in [5] and Friedl, Hambleton, Melvin and Teichner in [4] (see also [7, 8, 9] for some discussions).

To explain our main result, some observations and terminologies are needed. It is not always assumed that a closed 4-manifold is a smooth or piecewise-linear manifold, but smooth and piecewise-linear techniques can be used for it because a punctured manifold of it is smoothable (see Freedman-Quinn [3]). Let X be a Z^{H_1} -manifold, and V a leaf of X. Let S be a closed oriented surface (embedded) in X lifting trivially to the infinite cyclic covering X of X. Then we can assume that the intersection $L = S \cap V$ is a closed oriented possibly disconnected 1-manifold unless it is empty. Let D_i (i = 1, 2, ..., r) be the connected regions of S divided by L. Let α_{ij} be an oriented arc in S joining an interior point p_i of D_i to an interior point p_j of D_j . The absolute value $|\operatorname{Int}^S(\alpha_{ij}, L)|$ of the intersection number $\operatorname{Int}^S(\alpha_{ij}, L)$ is independent of any choices of p_i , p_j and α_{ij} , whose maximal number for all i, j is called the winding index of the surface S in X with respect to the leaf V and denoted by $\delta(S, V; X)$. Given a positive definite Z^{π_1} -manifold M, it is shown in [10] that the connected sum $X = \overline{\mathbb{C}P}^2 \# M$ is TOP-split because $\operatorname{sign}(\overline{\mathbb{C}P}) = -1$ and hence X is an indefinite Z^{π_1} manifold. Let S^3 be a 3-sphere leaf of X. For the sphere $\overline{\mathbb{CP}}^1$ in $\overline{\mathbb{CP}}^2$, the winding index $\delta(\overline{\mathbb{C}P}^1, S^3; X)$ is simply called a winding index on M. We note that there are infinitely many winding indexes on M by deforming the leaf S^3 in X isotopically. We shall show the following theorem:

Theorem 1.1. A definite Z^{π_1} -manifold M is TOP-split if for any given winding index δ on M there is a Z-basis x_i (i = 1, 2, ..., n) of the second homology $H_2(M^{(m)}; Z)$ of an m-fold covering $M^{(m)}$ of M with $m \geq \delta$ such that the intersection number $\operatorname{Int}^{M^{(m)}}(x_i, x_i)$ has

$$1 \le |\operatorname{Int}^{M^{(m)}}(x_i, x_i)| \le 2$$

for all *i*. In particular, a Z^{π_1} -manifold M is TOP-split if every finite covering of M has an intersection matrix which is a block sum of copies of E_8^1 and/or (1).

If a positive definite Z^{π_1} -manifold M is smooth, then the intersection form

$$\operatorname{Int}^{M^{(m)}}: H_2(M^{(m)}; Z) \times H_2(M^{(m)}; Z) \to Z$$

of the m-fold covering $M^{(m)}$ of M for any m > 0 is standard by Donaldson's theorem in [1], because $M^{(m)}$ is a positive definite Z^{π_1} -manifold which is seen by using the Euler characteristic identity $\chi(M^{(m)}) = m\chi(M)$, the signature identity $\operatorname{sign}(M^{(m)}) = m\operatorname{sign}(M)$ and the Poincaé duality on $M^{(m)}$ and the intersection form $\operatorname{Int}^{M^{(m)}}$ is isomorphic to the intersection form

$$\operatorname{Int}^{M_1^{(m)}}: H_2(M_1^{(m)}; Z) \times H_2(M_1^{(m)}; Z) \to Z$$

of a simply connected smooth 4-manifold $M_1^{(m)}$ obtained from $M^{(m)}$ by surgery killing $\pi_1(M^{(m)}) = Z$. Thus, there is a Z-basis x_i (i = 1, 2, ..., n) of $H_2(M^{(m)}; Z)$ such that $\operatorname{Int}^{M^{(m)}}(x_i, x_i) = 1$ for all i and hence by Theorem 1.1 M is TOP-split. Since it is shown in [10] that every indefinite Z^{π_1} -manifold is TOP-split, we have the following corollary.

Corollary 1.2. Every smooth Z^{π_1} -manifold is TOP-split.

This result answers affirmatively a question thought so by the author himself in [8, p.209] and also confirms affirmatively a conjecture given by Friedl, Hambleton, Melvin and Teichner in [4]. We note that there is a smooth Z^{π_1} -manifold M which is not diffeomorphic to the connected sum $S^1 \times S^3 \# M_1$ for any simply connected smooth 4-manifold M_1 (see Fintushel and Stern [2]).

In terms of S^2 -knot theory, Corollary 1.2 implies the following corollary by a similar reason as the proof of [10, Corollary 1.5].

¹This matrix is a square matrix (a_{ij}) of size 8 whose non-zero entries are given by $a_{ii} = 2$ (i = 1, 2, ..., 8), $a_{14} = a_{41} = 1$, and $a_{jj+1} = a_{j+1j} = 1$ (j = 2, 3, ..., 7).

Corollary 1.3. Let M_1 be a closed simply connected smooth 4-manifold. A smooth S^2 -knot K in M_1 is topologically unknotted if we have one of the following two conditions:

- (1) The fundamental group $\pi_1(M_1 \backslash K)$ is isomorphic to Z.
- (2) The S^2 -knot K is of Dehn's type in M_1 , namely if there is a map f from the 3-disk D^3 to M_1 such that the image $f(\partial D^3) = K$ and the singular set $\Sigma(f) \subset \text{int} D^3$.

2. Proof of Theorem 1.1

We first observe the following lemma.

Lemma 2.1. Let X be a Z^{H_1} -manifold, V a connected leaf of X and S a closed connected oriented surface in X lifting trivially to the infinite cyclic covering \tilde{X} of X. Let V' and S' be connected lifts of V and S, respectively, to any m-fold covering $X^{(m)}$ of X with $m \geq \delta(S, V; X)$. Then we have the winding index

$$0 \le \delta(S', V'; X^{(m)}) \le 1.$$

Proof. Let X_V be a 4-manifold obtained from X by cutting X along V whose boundary ∂M_V is given as the disjoint union $V^+ \cup V^-$ of two copies V^{\pm} of V. Then the m-fold covering $X^{(m)}$ of X is obtained from the m copies X_V^i $(i=1,2,\ldots,m)$ of X_V by pasting V_i^+ to $V_{i+1}^ (i=1,2,\ldots,m)$ with m+1=1) for the m copies $V_i^+ \cup V_i^ (i=1,2,\ldots,m)$ of $V^+ \cup V^-$. For any $m \ge \delta(S,V;X)$, it is seen from the definition of a winding index that $0 \le \delta(S',V';X^{(m)}) \le 1$. \square

Throughout the remainder of this section, the proof of Theorem 1.1 is done. We assume that the Z^{π_1} -manifold M is positive definite by a choice of an orientation of M. It suffices to prove that M is virtually TOP-split since "virtually TOP-split" implies "TOP-split" by [10]. For any given winding index δ on M, there is an m-fold covering $M^{(m)}$ of M with $m \geq \delta$ such that there is a Z-basis x_i $(i=1,2,\ldots,n)$ of $H_2(M^{(m)};Z)$ with $1 \leq \operatorname{Int}^{M^{(m)}}(x_i,x_i) \leq 2$ for all i. Since $\delta = \delta(\overline{\mathbb{CP}}^1,S^3;X)$ for $X = \overline{\mathbb{CP}}^2 \# M$, we see from Lemma 2.1 that any connected lift S_1^3 of the leaf S_1^3 of S_1^3 to the S_1^3 of S_1^3 of S_1^3 to the S_1^3 of S_1

$$0 \le \delta(\overline{\mathbf{CP}}_k^1, S_1^3; X^{(m)}) \le 1$$

for all the connecting lifts $\overline{\mathbb{CP}}_k^1$ (k = 1, 2, ..., m) of $\overline{\mathbb{CP}}^1$ to $X^{(m)}$. Let $L_k = \overline{\mathbb{CP}}_k^1 \cap S_1^3$ (k = 1, 2, ..., m) be oriented links (possibly empty) with the orientations determined by the orientations of $\overline{\mathbb{CP}}_k^1$, S_1^3 and $X^{(m)}$. Represent x_i by a closed connected oriented

surface F_i (embedded) in the connected summand $M^{(m)}$ of $X^{(m)}$. The intersection $K_i = F_i \cap S_1^3$ is assumed to be an oriented knot (possibly empty), if necessary, by doing a surgery of F_i along 1-handles on F_i in a collar $S_1^3 \times [-1,1]$ of S_1^3 in $X^{(m)}$. We show that the linking number $\text{Link}(K_i, L_k) = 0$ in S_1^3 for all k. Suppose that $\text{Link}(K_i, L_k) = \ell_{i,k} \neq 0$ for some k. By the fact that every meridian of the sphere $\overline{\mathbb{CP}}^1$ in the complex projective plane $\overline{\mathbb{CP}}^2$ bounds a disk disjointly parallel to $\overline{\mathbb{CP}}^1$, we can construct a compact connected oriented surface D_i with $\partial D_i = K_i$ in the union U_m of $S_1^3 \times [-1,1]$ and the connected summand $m\overline{\mathbb{CP}}^2$ of $X^{(m)}$ so that $D_i \cap m\overline{\mathbb{CP}}^1 = \emptyset$. As an important note, the surface D_i has the intersection number $-a_i$ with respect to a Seifert framing of K_i in S_1^3 for $a_i = \sum_{k=1}^m \ell_{i,k}^2 > 0$. The surface D_i is regarded as a surface in the Z^{π_1} -manifold $M^{(m)}$ obtained from $X^{(m)}$ by replacing a normal disk bundle of $m\overline{\mathbb{CP}}^1$ in $m\overline{\mathbb{CP}}^2$ with the 4-disks mD^4 . Let S_i be an immersed closed connected oriented surface obtained from F_i by a surgery along D_i , namely take

$$S_i = \operatorname{cl}(F_i \backslash K_i \times [-1, 1]) \cup D_i^{-1} \cup D_i^{+1}$$

for a collar $K_i \times [-1, +1]$ of K_i in F_i and isotopically deformed surfaces $D_i^{\pm 1}$ of D_i such that the boundaries $\partial D_i^{\pm 1}$ are deformed into $K_i \times \pm 1$ through F_i , respectively. Then we have $[S_i] = [F_i] = x_i \neq 0$ in $H_2(M^{(m)}; Z)$. Let S_i' be a connected lift of S_i to the double covering $X^{(2m)}$ of $X^{(m)}$ which is the 2m-fold covering of X. Since U_m lifts trivially to $X^{(2m)}$, the self-intersection number of S_i' in $X^{(2m)}$ is computed as follows:

$$\operatorname{Int}^{X^{(2m)}}([S_i'], [S_i']) = \operatorname{Int}^{X^{(m)}}(x_i, x_i) - 2a_i \le 2 - 2a_i \le 0.$$

Since the surface S'_i is in the connected summand $M^{(2m)}$ of $X^{(2m)}$, we have

$$Int^{M^{(2m)}}([S_i'], [S_i']) \le 0 \quad (i = 1, 2, \dots, n).$$

Since $M^{(2m)}$ is a positive definite Z^{π_1} -manifold, there is a real basis e_j $(j=1,2,\ldots,2n)$ of the real extension $H_2(M^{(2m)};\mathbf{R})$ of the integral homology group $H_2(M^{(2m)};Z)$ such that the real intersection number $\operatorname{Int}_{\mathbf{R}}^{M^{(2m)}}(e_j,e_{j'})=\delta_{jj'}$ (the Kronecker's delta) for all j,j'. The covering projection $M^{(2m)}\to M^{(m)}$ induces a homomorphism $H_2(M^{(2m)};Z)\to H_2(M^{(m)};Z)$ sending the homology class $[S_i']$ to $x_i\neq 0$, so that $[S_i']\in H_2(M^{(2m)};\mathbf{R})$ is written as

$$[S_i'] = \sum_{i=1}^{2n} c_{ij} e_j$$

with $c_{ij} \neq 0$ for some j and hence

$$\operatorname{Int}^{M^{(2m)}}([S_i'], [S_i']) = \operatorname{Int}_{\mathbf{R}}^{M^{(2m)}}([S_i'], [S_i']) = \sum_{j=1}^{2n} c_{ij}^2 > 0,$$

which is a contradiction. Thus, we have

$$\operatorname{Link}(K_i, L_k) = 0$$

for all k. Then K_i bounds a compact connected oriented surface D_i^* embedded in U_m such that $D_i^* \cap m\overline{\mathbb{C}P}^1 = \emptyset$ and D_i^* has the self-intersection number 0 with respect to a Seifert framing of K_i in S_1^3 . The surface D_i^* is regarded as a surface in the Z^{π_1} -manifold $M^{(m)}$ obtained from $X^{(m)}$ by replacing a normal disk bundle of $m\overline{\mathbb{C}P}^1$ in $m\overline{\mathbb{C}P}^2$ with the 4-disks mD^4 . Then a closed connected orientable surface S_i^* embedded in $M^{(m)}$ is obtained from F_i by a surgery along a collar $D_i^* \times [-1,1]$ of D_i^* with $(D_i^* \times [-1,1]) \cap F_i = K_i \times [-1,+1]$. This modification can be done for all i. Since U_m lifts trivially to the infinite cyclic covering $\tilde{X}^{(m)}$ of $X^{(m)}$, we see that the Z-basis $x_i = [S_i^*]$ $(i = 1, 2, \ldots, n)$ of $H_2(M^{(m)}; Z)$ regarded as a direct summand of $H_2(X^{(m)}; Z)$ lifts to a set of elements $\tilde{x}_i = [\tilde{S}_i^*]$ $(i = 1, 2, \ldots, n)$ of $H_2(\tilde{X}^{(m)}; Z)$ for a connected lift \tilde{S}_i^* of S_i^* to $\tilde{X}^{(m)}$ such that the Λ-intersection form

$$\operatorname{Int}_{\Lambda}^{\tilde{X}^{(m)}}: H_2(\tilde{X}^{(m)}; Z) \times H_2(\tilde{X}^{(m)}; Z) \to \Lambda$$

has

$$\operatorname{Int}_{\Lambda}^{\tilde{X}^{(m)}}(\tilde{x}_i, \tilde{x}_j) = \operatorname{Int}^{X^{(m)}}(x_i, x_j) \in Z$$

for all i, j, where $\Lambda = Z[Z] = Z[t, t^{-1}]$. Since the surfaces \tilde{S}_i^* (i = 1, 2, ..., n) belong to the infinite cyclic covering $\tilde{M}^{(m)}$ of $M^{(m)}$, the elements \tilde{x}_i (i = 1, 2, ..., n) are regarded as elements of $H_2(\tilde{M}^{(m)}; Z)$ with

$$\operatorname{Int}_{\Lambda}^{\tilde{M}^{(m)}}(\tilde{x}_i, \tilde{x}_j) = \operatorname{Int}_{\Lambda}^{\tilde{X}^{(m)}}(\tilde{x}_i, \tilde{x}_j)$$

for all i, j. Using that $H_2(\tilde{M}^{(m)}; Z)$ is a Λ -free module of rank n, we see from the non-singularity of the Λ -intersection matrix $(\operatorname{Int}_{\Lambda}^{\tilde{M}^{(m)}}(\tilde{x}_i, \tilde{x}_j))$ that the elements \tilde{x}_i $(i=1,2,\ldots,n)$ form a Λ -basis for $H_2(\tilde{M}^{(m)}; Z)$. This implies that the Z^{π_1} -manifold $M^{(m)}$ is exact (see [8, 9]), so that by [8, Corollary 3.4] $M^{(m)}$ is TOP-split. Thus, M is virtually TOP-split and hence by [10] M is TOP-split. This completes the proof of Theorem 1.1.

References

- [1] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), 279-315.
- [2] R. Fintushel and R. Stern, A fake 4-manifold with $\pi_1 = Z$ and $b^+ = 4$, Turkish J. Math. 18 (1994), 1-6.

- [3] M. H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Univ. Press (1990).
- [4] S. Friedl, I. Hambleton, P. Melvin, and P. Teichner, Non-smoothable four-manifolds with infinite cyclic fundamental group, Int. Math. Res. Not. IMRN (2007), no. 11, Art. ID rnm031, 20 pp.
- [5] I. Hambleton and P. Teichner, A non-extended hernmitian form over Z[Z], Manuscripta Math. 94 (1997), 435-442.
- [6] A. Kawauchi, Splitting a 4-manifold with infinite cyclic fundamental group, Osaka J. Math. 31 (1994), 489-495.
- [7] A. Kawauchi, A survey of knot theory, Birkhäuser (1996).
- [8] A. Kawauchi, Torsion linking forms on surface-knots and exact 4-manifolds, in: Knots in Hellas '98, Series on Knots and Everything 24 (2000), 208-228, World Sci. Publ.
- [9] A. Kawauchi, Algebraic characterization of an exact 4-manifold with infinite cyclic first homology, Journal Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 405-424.
- [10] A. Kawauchi, Splitting a 4-manifold with infinite cyclic fundamental group, revised, Journal of Knot Theory and Its Ramifications, Vol. 22, No. 14 (2013) 1350081 (9 pages).