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Abstract
We show that every well-order of the set of lattice points induces an embedding

from the set of closed connected orientable 3-manifolds into the set of links which
is a right inverse of the 0-surgery map and this embedding induces further two
embeddings from the set of closed connected orientable 3-manifolds into the well-
ordered set of lattice points and into the set of link groups. In particular, the set of
closed connected orientable 3-manifolds is a well-ordered set by a well-order inher-
ited from the well-ordered set of lattice points and the homeomorphism problem
on the 3-manifolds can be in principle replaced by the isomorphism problem on the
link groups. To determine the embedding images of every 3-manifold, we propose a
tabulation program on the well-ordered set of 3-manifolds which can be carried out
inductively until a concrete pair of indistinguishable 3-manifolds occurs (if there is
such a pair). As a demonstration, we tabulate 3-manifolds corresponding to the
lattice points of lengths up to 7.

1. Introduction

There are two fundamental problems in the theory of 3-manifolds, that is, the
homeomorphism problem and the classification problem (see J. Hempel [11, p.169]).
The homeomorphism problem is the problem of giving an effective procedure for
determining whether two given 3-manifolds are homeomorphic and the classifica-
tion problem is the problem effectively generating a list containing exactly one
3-manifold from every (unoriented) type of 3-manifolds. In this paper, we consider
the classification problem on closed connected orientable 3-manifolds by establish-
ing an embedding from the set of closed connected orientable 3-manifolds into the
set of links in the 3-sphere S3 which is a right inverse of the 0-surgery map. For
this purpose, let Z be the set of integers, and Zn the product of n copies of Z whose
elements x = (x1, x2, . . . , xn) ∈ Zn we will call lattice points of length �(x) = n.
The set X of lattice points is the disjoint union of Zn for all n = 1, 2, 3, . . . . Let Ω
be any well-order in X, although we define in §2 the canonical order1 Ωc, a partic-
ular well-order in X such that we have x < y for any x,y ∈ X with �(x) < �(y).
We are particularly interested in the delta set ∆, a special subset of X defined in
§3 such that the lattice points of ∆ smaller than any given x ∈ X in Ωc form a
finite set. The class of oriented links L′ in S3 such that there is a homeomorphism
h : S3 → S3 sending L to L′ is called the unoriented link type [L] of an oriented link
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L in S3, and the oriented link type 〈L〉 of L if moreover h preserves the orientation

of S3 and the orientations of L and L′. Let L and
→
L be the sets of unoriented link

types and oriented link types in S3, respectively. A link type will be identified with

a link belonging to the link type unless confusion might occur. Thus, L and
→
L are

understood as the sets of unoriented links and oriented links in S3, respectively.
We have a canonical surjection

clβι : X
clβ−→

→
L

ι−→ L

sending a lattice point to the closure of the associated braid (see §2 for details),

where ι :
→
L → L denotes the forgetful surjection, which simply ignores the orien-

tations of S3 and links. On the other hand, every well-order Ω in X induces an
injection

σ : L −→ X

which is a right inverse of clβι, so that Ω defines a well-order in L, also denoted by
Ω. This construction of σ is done in §2. In §3, we show that in the case of Ω = Ωc

the image σ(L) of a prime link L belongs to ∆. In §4, we define the concept of
a π-minimal link (depending on a choice of a well-order Ω in X). Let Lπ be the
subset of L consisting of π-minimal links. Then we see that the restriction

σ|Lπ : Lπ −→ X

is an embedding (see Lemma 4.4). Since a π-minimal link is a prime link by
definition, we see in the case of Ω = Ωc that σ(Lπ) ⊂ ∆ and every initial segment
of Lπ is a finite set. The link group of a link L in S3 is the fundamental group π1E(L)
of the exterior E(L) = cl(S3 − N(L)) of L with N(L) a tubular neighborhood of
L in S3. Let G be the set of the isomorphism types of the link groups for links in
L. The isomorphism type of a group will be identified with a group belonging to the
isomorphism type unless confusion might occur. An Artin presentation is a finite
group presentation

(x1 , x2, . . . , xn |xi = wixp(i)w
−1
i , i = 1, 2, . . . , n)

where p(1), p(2), . . . , p(n) are a permutation of 1, 2, . . . , n and wi (i = 1, 2, . . . , n)
are words in x1, x2, . . . , xn which satisfy the identity

n∏
i=1

xi =
n∏

i=1

wixp(i)w
−1
i

in the free group F on the letters x1, x2, . . . , xn. Then we have a braid b ∈ Bn

corresponding to the automorphism ϕ of F defined by

ϕ(xi) = wixp(i)w
−1
i (i = 1, 2, . . . , n),
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from which we see that the set G is characterized as the set of groups with Artin
presentation (see for example [15; p.83] as well as J. S. Birman [2;p.46]). If the
closure cl(b) is prime or π-minimal, then we say that the Artin presentation is
prime or π-minimal, respectively. For the map

π : L −→ G

sending every link L to the link group π1E(L), we also see that the restriction

π|Lπ : Lπ −→ G

is an embedding (see Lemma (4.4)). Let M and
→
M be the sets of unoriented types

and oriented types of closed connected oriented 3-manifolds, respectively. The
type of a closed connected oriented 3-manifold will be identified with a 3-manifold
belonging to the type unless confusion might occur. We define the map χ0 : L →
M by χ0(L) = χ(L, 0), where χ(L, 0) denotes the 0-surgery manifold of L. The
following result is our main theorem which is proved in §5:

Theorem (1.1) Every well-order Ω of X induces an embedding

α : M −→ Lπ ⊂ L

and hence two embeddings

σα = σα :M −→ X,

πα = πα :M −→ G

which satisfy properties (1) and (2) below:

(1) χ0α = 1.
(2) If a lattice point σα(M) ∈ X is given, then the π-minimal link α(M) ∈ L with
a braid presentation, the 3-manifold M ∈ M with a 0-surgery description along a
π-minimal link and the link group πα(M) ∈ G with a π-minimal Artin presentation
are determined.

Furthermore, when Ω = Ωc, we have σα(M) ⊂ ∆ and the properties (3) and (4)
below are obtained:

(3) If a group πα(M) with a prime Artin presentation is given, then the lattice
point σα(M) is determined assuming a solution of the following problem:

Problem. Let x ∈ X be a lattice point induced from the prime Artin presentation
of πα(M), and x1 < x2 < · · · < xn the lattice points in ∆ smaller than or equal to
x. Then find the smallest index i such that the link clβ(xi) is prime and there is
an isomorphism π1E(clβ(xi)) → πα(M).
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(4) If a 3-manifold M with the 0-surgery description along a π-minimal link L

is given, then the lattice point σα(M) is determined assuming a solution of the
following problem:

Problem. Let x ∈ X be a lattice point induced from a π-minimal link L, and
x1 < x2 < · · · < xn the lattice points in ∆ smaller than or equal to x. Then
find the smallest index i such that the link clβ(xi) is π-minimal and the 0-surgery
manifold χ(clβ(xi), 0) is χ(L, 0).

The embedding σα makes the set M a well-ordered set by a well-order, inherited
from the well-order Ω of L and denoted also by Ω. The length of a 3-manifold
M ∈ M is the length of the lattice point σα(M) ∈ X. In §6, to determine the
images α(M), σα(M) and πα(M) of every M ∈ M, we take the canonical order
Ωc and propose a classification program on M based on Theorem 1.1 which we can
carry out inductively until a concrete pair of indistinguishable 3-manifolds occurs
(if there is such a pair). As a demonstration, we carry out this classification for
3-manifolds with lengths up to 7. The embedding πα implies that two 3-manifolds
Mi ∈ M (i = 1, 2) are homeomorphic if and only if the groups πα(Mi) (i = 1, 2)
are isomorphic, and thus the homeomorphism problem on M can be in principle
replaced by the isomorphism problem on G (see Remark (5.5)), although it appears
difficult to calculate the group πα(M) of any given 3-manifold M ∈ M apart from
the classification program. A lifting of the embedding α to the oriented version
is discussed in §7 together with an observation on a relationship between oriented
3-manifold invariants and oriented link invariants.

This paper is a grow up version of a part of the research announcement “Link
corresponding to closed 3-manifold ”. A version of the remaining part will appear
in [16] (see http://www.sci.osaka-cu.ac.jp/˜kawauchi/index.htm). The author is
grateful to Dr. Ikuo Tayama for finding errors from an earlier version of this paper
and to the referees for finding further errors and for helpful comments.

2. Representing links in the set of lattice points

For a lattice point x = (x1, x2, . . . , xn) of length n, we denote the lattice points
(xn, . . . , x2, x1) and (|x1 |, |x2|, . . . , |xn|) by xT and |x|, respectively. Let |x|N be
a permutation (|xj1 |, |xj2 |, . . . , |xjn |) of the coordinates |xj | (j = 1, 2, . . . , n) of |x|
such that |xj1 | � |xj2 | � · · · � |xjn |. For convenience, we use kn for the lattice
point of length n with k for every coordinate and −kn for (−k)n. The integers
min1�i�n |xi| and max1�i�n |xi| are also denoted by min |x| and max |x|, respec-
tively. Further, we define the dual lattice point δ(x) = (x′1, x

′
2, . . . , x

′
n) of x by

x′i =
{

sign(xi)(max |x| + 1 − |xi|) xi �= 0
0 xi = 0.
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Defining δ0(x) = x and δn(x) = δ(δn−1(x)) inductively, we note that δ2(x) �= x in
general, but δn+2(x) = δn(x) for all n � 1. For example, taking x = (23, 3,−2, 3),
we have δ2m−1(x) = (23, 1,−2, 1) and δ2m(x) = (13, 2,−1, 2) for all m � 1. For
a lattice point y = (y1, y2, . . . , ym) of length m, we denote by (x,y) the lattice

point (x1 , x2, . . . , xn, y1, y2, . . . , ym) of length n + m. Let
→
L be the set of oriented

links. By the Alexander theorem (see J. S. Birman [2]), every oriented link L is
represented by the closure cl(b) of an s-string braid b ∈ Bs for some s � 1. The
braiding algorithm of S. Yamada [23] would be useful to deform a link into a closed
braid form. Let σi (i = 1, 2, . . . , s − 1) be the standard generators of the s-string
braid group Bs. By convention, we regard the sign of the crossing point of the
diagram σi as +1. We consider that every braid b in Bs is written as a word on the
letters σi (i = 1, 2, . . . , s− 1). When b is not written as 1, we write

b = σε1
i1
σε2

i2
. . . σεr

ir
, εi = ±1 (i = 1, 2, . . . , r).

Then we define the lattice point x(b) of the braid b by the identity

x(b) = (ε1i1, ε2i2, . . . , εrir) ∈ Zr ⊂ X.

When b is written as 1, we understand that x(b) = 0 ∈ Z ⊂ X. For a non-zero
lattice point x = (x1, x2, . . . , xn) ∈ X, let xij (j = 1, 2, . . . ,m; i1 < i2 < · · · < im)
be the set of the non-zero integers in the coordinates xi (i = 1, 2, . . . , n) of x. Then
the lattice point x̃ = (xi1 , xi2 , . . . , xim ) is called the core of x. When x is a zero
lattice point, we understand the core x̃ = 0. We note that for every non-zero
lattice point x, there is a unique braid b ∈ Bs for every s � max |x| + 1 such that
x(b) = x̃. The braid b is called the associated braid with index s of x and denoted
by β(s)(x), and in particular for s = max |x| + 1, called the associated braid of x
and denoted by β(x). The associated braid with index s of any zero lattice point
of X is understood as 1 ∈ Bs, and in particular the associated braid as 1 ∈ B1.
Taking the closure clβ(x) of the braid β(x), we obtain a surjection

clβ : X −→
→
L.

Then every well-order Ω in X defines an injection (which is a right inverse of the
map clβ)

→
σ : L −→ X

by sending to a link L to the initial element of the subset {x ∈ X|clβ(x) = L} of
X indicated by Ω. By definition, the closed braid clβ(s)(x) with s > max |x| + 1 is
obtained from the closed braid clβ(x) by adding a trivial link of (s− max |x| − 1)
components. We introduce an equivalence relation ∼ in X as follows:

Definition (2.1) Two lattice points x and y in X are related as x ∼ y if we have

clβ(x) = clβ(y) in
→
L modulo split additions of trivial links.
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Clearly the relation ∼ is an equivalence relation in X. Let X/ ∼ be the quotient
set of X by ∼, and 〈x〉 the equivalence class of a lattice point x ∈ X by ∼. The
quotient map

→
σ∼ :

→
L −→ X/ ∼

has the identity
→
σ∼(cl(b)) = 〈x(b)〉 and is a bijection from the quotient set of

→
L

modulo split additions of trivial links onto X/ ∼. In particular,
→
σ∼ is independent

of a choice of Ω. We can describe the equivalence relation ∼ only in terms of X by
using the braid group presentation and the Markov theorem (see J. S. Birman [2]),
as stated in the following lemma:

Lemma (2.2) The relations (1)-(6) below are in the equivalence relation ∼ in X.
Concersely, if we have x ∼ y in X, then y is obtained from x by applying the
relations (1)-(6) finitely often.

(1) (x, 0) ∼ x, x ∼ (x, 0) for all x ∈ X,
(2) (x,y,−yT ) ∼ x, x ∼ (x,y,−yT ) for all x,y ∈ X,
(3) (x, y) ∼ x, x ∼ (x, y) for all x ∈ X and y ∈ Z such that |y| > max |x|,
(4) (x,y, z) ∼ (x,z,y) for all x,y, z ∈ X such that min |y| > max |z| + 1 or

min |z| > max |y| + 1,
(5) (x, εy, y + 1, y) ∼ (x, y + 1, y, ε(y + 1)) for all x ∈ X and y ∈ Z such that

y(y + 1) �= 0 and ε = ±1,
(6) (x,y) ∼ (y,x) for all x,y ∈ X.

Proof. The relation (1) is in ∼ since β(x, 0) = β(x). For (2), we take β(s)(x) and
β(s)(y) in Bs for some s. Then we have

β(s)(x,y,−yT ) = β(s)(x)β(s)(y)β(s)(y)−1 = β(s)(x)

in Bs and hence
clβ(x,y,−yT ) = clβ(x)

in
→
L modulo split additions of trivial links, showing that the relation (2) is in ∼.

For (3), let s = |y| + 1. Then by the Markov theorem,

clβ(x, y) = clβ(s)(x)

in
→
L and the last link is equal to clβ(x) modulo split additions of trivial links,

showing that the relation (3) is in ∼. For (4), we take β(s)(x), β(s)(y) and β(s)(z)
in Bs for some s. By the assumption on y and z, we have

β(s)(x,y, z) = β(s)(x)β(s)(y)β(s)(z) = β(s)(x)β(s)(z)β(s)(y) = β(s)(x,z,y)

in Bs which shows that
clβ(x,y, z) = clβ(x,z,y)
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in
→
L modulo split additions of trivial links. Thus, the relation (4) is in ∼. For (5),

consider β(s)(x) and σε′
j (j = |y|, ε′ = sign(y)) in Bs for some s. Let ε′ = +1. Then

β(s)(x, εy, y + 1, y) = β(s)(x)σε
jσj+1σj

and the last braid is equal to

β(s)(x)σj+1σjσ
ε
j+1 = β(s)(x, y + 1, y, ε(y + 1))

in Bs by a well-known braid relation. Hence we have

clβ(x, εy, y + 1, y) = clβ(x, y + 1, y, ε(y + 1))

in
→
L modulo split additions of trivial links, showing that the relation (5) is in ∼.

For ε′ = −1, a similar argument gives the desired result since sign(y + 1) = −1 by
assumption. For (6), let β(s)(x) and β(s)(y) in Bs for some s. Then we have

clβ(s)(x)β(s)(y) = clβ(s)(y)β(s)(x)

by the Markov theorem and hence

clβ(x,y) = clβ(y,x)

in
→
L modulo split additions of trivial links, showing that the relation (6) is in ∼.
Next, we assume x ∼ y. By the relations (1) and (6), we assume x̃ = x and

ỹ = y. Let b = β(x) and b′ = β(y) be the associated braids. We show that if b = b′

in Bs for an index s, then we can change x into y by finitely many applications
of the relations (2), (4), (5) and (6). We use the group presentation of Bs with
generators σi (i = 1, 2, . . . , s− 1) and relators

(i) σiσjσ
−1
i σ−1

j (|i− j| � 2) and (ii) σiσi+1σiσ
−1
i+1σ

−1
i σ−1

i+1 (1 � i � s− 2)

(see [2]). Let F be the free group on the letters σi (i = 1, 2, . . . , s− 1). If b = b′ in
F , then the solution of the word problem on F guarantees us to change x into y
by finitely many applications of the relations (2) and (6). If b = b′ in Bs, then the
word b(b′)−1 is written in the form

b(b′)−1 =
n∏

k=1

RεkWk

k

in F , where RεkWk

k = WkR
εk

k W
−1
k for εk = ±1 and Rk denotes a relator of the type

(i) or (ii) and Wk is a word in F written on the letters σi (i = 1, 2, . . . , s−1). Thus,
(x,−yT ) is changed into

a = (x(Rε1W1
1 ),x(Rε2W2

2 ), . . . ,x(RεnWn
n ))
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by finitely many applications of the relations (2) and (6). Since we can change x
into (x,−yT ,y) = (a,y) by the relation (2), we may consider b(b′)−1b′ = β(a,y)
instead of b = β(x). We note that

x(Rk) = (i, j,−i,−j), x(R−1
k ) = (j, i,−j,−i)

for the relator (i) and

x(Rk) = (i, i+ 1, i,−(i + 1),−i,−(i + 1)),

x(R−1
k ) = (i+ 1, i, i + 1,−i,−(i + 1),−i)

for the relator (ii). Since

x(RεkWk

k ) = (x(Wk),x(Rεk

k ),−x(Wk)T ),

we see that (a,y) is changed into y by finitely many applications of the relations
(2), (4), (5) and (6). Thus, in the case that b = b′ in Bs for an index s, we showed
that x can be changed into y by finitely many applications of the relations (2), (4),
(5) and (6).

Now we consider the general case of b and b′. Applying the relation (3) to x or

y, we can assume that cl(b) = cl(b′) in
→
L. Then the Markov theorem says that we

have b = b′ in Bs with a suitable index s after finitely many applications of the
Markov equivalences:

b1b2 ↔ b2b1 (b1, b2 ∈ Bm),

bσ±1
m ↔ b (b ∈ Bm ⊂ Bm+1)

for any m. This is equivalent to saying that b = b′ ∈ Bs after finitely many
applications of the relations (3) and (6) besides the relations (2), (4), (5) and (6)
to x and y. Thus, x is changed into y by finitely many applications of the relations
(2), (3), (4), (5) and (6). �

Composing the forgetful surjection ι :
→
L → L to the map clβ, we obtain a

canonical surjection
clβι : X → L

and an injection which is a right inverse of clβι

σ : L −→ X

sending an unoriented link L to the initial element of the subset {x|clβι(x) = L}
of X indicated by Ω. The length of a link L ∈ L is the length of the lattice point
σ(L). By the rule that L1 < L2 if and only if σ(L1) < σ(L2), a well-order in L is
defined. Since the map σ is induced from Ω, we may say that this well-order in L is
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induced from Ω and denoted also by Ω. We also introduce an equivalence relation
≈ in X more relaxed than ∼.

Definition (2.3) Two lattice points x and y in X are related as x ≈ y if we have
clβ(x) = clβ(y) in L modulo split additions of trivial links.

It is straightforward to see that the relation ≈ is an equivalence relation in X. The
quotient map

σ≈ : L −→ X/ ≈
is independent of a choice of Ω and induces a bijection from the quotient set of
L modulo split additions of trivial links onto X/ ≈. For the natural surjection
X/ ∼ → X/ ≈ also denoted by ι, we have the following commutative square:

→
L

→
σ∼−−−−→ X/ ∼

ι

�
�ι

L
σ≈−−−−→ X/ ≈ .

In this diagram, we denote ι〈x〉 by [x]. Then we have the identity σ≈(cl(b)) = [x(b)].
To determine the class [x] ∈ X/ ≈, it is desired to describe the equivalence relation
≈ only in terms of X. At present, only what we can say about ≈ is the following
lemma:

Lemma (2.4) We have the following (1) and (2):

(1) For any x,y ∈ X such that x ∼ y, we have x ≈ y.
(2) For all x ∈ X, we have x ≈ xT ≈ −x ≈ −xT .

Proof. (1) follows directly from the surjection ι : X/ ∼→ X/ ≈ . For (2), let −L
denote the inverse of an oriented link L, and ±L̄ the mirror image of ±L. Then we
have L = −L = L̄ = −L̄ in L. Taking L = cl(b) for a braid b, we have

→
σ∼(L) = 〈x(b)〉, →σ∼(−L) = 〈x(b)T 〉, →

σ∼(L̄) = 〈−x(b)〉, →
σ∼(−L̄) = 〈−x(b)T 〉.

Then the commutative square preceding to Lemma (2.4) shows (2). �

The following remark means that (1) and (2) of Lemma (2.4) are sufficient to
characterize the equivalence relation ≈ in the set of knots:

Remark (2.5) Let X1 be the subset of X consisting of lattice points x such that clβ(x)
is a knot. Then every relation x ≈ y for x,y ∈ X1 is generated by the equivalence
relation ∼ and the relations in (2) of Lemma (2.4). In fact, let K = clβ(x) and
K ′ = clβ(y). If x ≈ y, then we have [K] = [K ′] modulo split additions of trivial
links. Then there is an oriented knot K ′′ which is one of the knots ±K or ±K̄ such
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that K ′′ = K ′ in
→
L modulo split additions of trivial links. Thus, we have z ∼ y

for a lattice point z which is one of ±x, ±xT . More generally, for oriented links
L,L′ in S3, we have L = L′ in L modulo split additions of trivial links if and only

if we have L = L′ in
→
L modulo split additions of trivial links after a suitable choice

of orientations of L and S3. By Lemma (2.4), this implies that in order to know
the class σ≈(L) ∈ X/ ≈ of an oriented link L in S3 with r(� 2)-components Ki

(i = 1, 2, . . . , r), it suffices to know a braid presentation of the link (−L′)∪ (L \L′)
for every sublink L′ of L with 1 � #L′ � r

2 besides a braid presentation of L, where
#L′ denotes the number of components of L′.

We now define the canonical order Ωc in X. We define a well-order in Z by
0 < 1 < −1 < 2 < −2 < 3 < −3 < . . . and extend it to a well-order in Zn for every
n � 2 as follows: Namely, for x1,x2 ∈ Zn we define x1 < x2 if we have one of the
following conditions (1)-(3):

(1) |x1|N < |x2|N by the lexicographic order (on the natural number order).
(2) |x1|N = |x2|N and |x1| < |x2| by the lexicographic order (on the natural

number order).
(3) |x1| = |x2| and x1 < x2 by the lexicographic order on the well-order of Z

defined above.

Finally, for any two lattice points x1,x2 ∈ X with �(x1) < �(x2), we define x1 < x2.
Then this order Ωc makes X a well-ordered set. In fact, let S be any non-empty

subset of X. Let S� be the subset of S consisting of lattice points with the smallest
length, say n. Since Zn is a well-ordered set as defined above, we can find the initial
lattice point of S� which is the initial lattice point of S by definition. The following
lemma is useful in an actual tabulation of prime links.

Lemma (2.6) Let L be a link without a splittable component of the trivial knot.
Then in the canonical order Ωc, the lattice point σ(L) is the initial elemnent of the
equivalence class [σ(L)] ∈ X/ ≈. In particular, we have clβ(σ(L)) = L.

Proof. Let x be the initial element of [σ(L)]. Suppose that clβ(x) has a splittable
component of the trivial knot O. If a crossing point of the closed braid diagram
clβ(x) is in O, then there is a shorter length lattice point x′ such that clβ(x′) is
obtained from the diagram clβ(x) by removing the component O, contradicting the
minimality of x. If there are no crossing point in O, then we see from the definition
of β that there is a lattice point x′ with x′ < x such that clβ(x′) is obtained from
clβ(x) by removing the component O, contradicting the minimality of x. Thus, we
have clβ(x) = L. By definition, we have σ(L) = x. �

3. The range of prime links in the canonical order

In this section, we consider X ordered by the canonical order Ωc unless otherwise
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stated. A lattice point x ∈ X is minimal if x is the initial element of the class
[x] in Ωc. A prime link is a link which is neither a splittable link nor a connected
sum of two non-trivial links. Let Lp be the subset of L consisting of prime links.
By Lemma (2.6), the lattice point σ(L) is minimal for every prime link L. The
following relations are consequences of the relations in Lemma (2.2) and useful in
finding minimal lattice points :

Lemma (3.1)

(1) (Duality relation) For any lattice point x, we have x ∼ δ(x).
(2) (Flype relation) For any lattice points x, y with min |x| � 2, min |y| � 2,

any integer m � 1 and ε′, ε = ±1, we have (εm,x, ε′,y) ∼ (εm,y, ε′,x).
(3) For any lattice points x, z, any integers m, y ∈ Z with m � 1, y(y + 1) �= 0

and ε = ±1, we have

(x, εym, y + 1, y, z) ∼ (x, y + 1, y, ε(y + 1)m, z),

(x, y, ε(y + 1)m,−y, z) ∼ (x,−(y + 1), εym, y + 1, z).

Proof. For (1), we note that the lattice point δ(x) is obtained by changing the usual
indices 1, 2, . . . ,m of the strings of the associated braid b = β(x) intom,m−1, . . . , 1
and then overturning the braid diagram, where m = max |x|+1 by definition. Since

this deformation does not change the link type of cl(b) in
→
L, we have x ∼ δ(x) by

Definition (2.1). For (2), the closed braid diagrams of the lattice points (y, εm,x, ε′)
and (y, ε′,x, εm) are in the braid-preserving flype relation (see J. S. Birman-W.
W. Menasco [3]) [To understand this easier, we number the strings of the closed
braid diagram so that the most inside string is 1]. Hence they are related by the
relation ∼. Since these lattice points are related to (εm,x, ε′,y) and (εm,y, ε′,x)
respectively by a relation in Lemma (2.2), the desired relation is obtained. For (3),
the first equivalence is proved by induction on m using (5),(6) of Lemma (2.2). The
second equivalence follows from (2),(6) of Lemma (2.2) and the first equivalence as
follows:

(x, y, ε(y + 1)m,−y, z) ∼ (x,−(y + 1), y + 1, y, ε(y + 1)m,−y, z)

∼ (x,−(y + 1), εym, y + 1, y,−y, z)

∼ (x,−(y + 1), εym, y + 1, z). �

To limit the image σ(Lp) ⊂ X, we introduce the delta set ∆ as follows:

Definition (3.2) The delta set ∆ is the subset of X consisting of

0(∈ Z), 1n(n � 2)

and all the lattice points x = (x1, x2, . . . , xn) (n � 4) which satisfy all the following
conditions (1)-(8):
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(1) x1 = 1, |xn| � 2, n/2 � max |x| � 2 and min |x| � 1.
(2) For every integer k with 1 < k < max |x|, there is an index i such that

|xi| = k.
(3) Every lattice point obtained from x by permuting the coordinates of x

cyclically is not of the form (x′,x′′) where 1 � max |x′| < min |x′′|.
(4) If |xi| > |xi+1|, then |xi| − 1 = |xi+1|.
(5) If |xi| = |xi+1|, then sign(xi) = sign(xi+1).
(6) If |(xi, xi+1, . . . , xi+m+1)| = (k, (k + 1)m, k), (km, k + 1, k) or (k, k + 1, km)

for some k,m � 1 and |xj | �= k for all j < i and j > i + m + 1, then
(xi, xi+1, . . . , xi+m+1) is equal to ±(k,−ε(k + 1)m, k), ±(εkm,−(k + 1), k)
or ±(k,−(k + 1), εkm) for some ε = ±1, respectively. Further, if m = 1,
then we have ε = 1.

(7) If |(xi, xi+1, . . . , xi+m+1)| is of the form (k+1, km, k+1) for some k,m � 1,
then (xi, xi+1, . . . , xi+m+1) = ±(k+1, εkm, k+1) for some ε = ±1. Further
if m = 1, then we have ε = −1.

(8) x is the initial element (in the canonical order Ωc) of the set of the lattice
points obtained from every lattice point of ±x, ±xT , ±δ(x) and ±δ(x)T by
permuting the coordinates cyclically.

See Example (6.2) for some small length lattice points in ∆. It follows directly
from the definition of Ωc that the lattice points in ∆ smaller than any given lattice
point x ∈ X form a finite set. To analyze the image σ(L) ∈ X of a prime link
L ∈ Lp, we use the following notion:

Definition (3.3) A lattice point x = (x1, x2, . . . , xn) is reducible if satisties one of
the following conditions:

(1) min |x| = 0 and �(x) > 1.
(2) There is an integer k such that min |x| < k < max |x| and k �= |xi| for all i.
(3) There is a lattice point of the form (x′,x′′) obtained from x by permuting

the coordinates of x cyclically where 1 � max |x′| < min |x′′|.
Otherwise, x is irreducible.

In Definition (3.3), we note the following points: In (1), the core x̃ of x has a
shorter length. In (2), the link L = clβ(x) is split. In (3), the closed braid diagram
L = clβ(x) is a connected sum of two closed braid diagrams. Thus, L is a non-prime
link or we have a shorter length lattice point x′ with x′ ∼ x.

Since min |x| = 0 if and only if x = 0 ∈ Z in ∆, we see from (2) and (3) of
Definition (3.2) that every lattice point in ∆ is irreducible. The following lemma is
important to our argument:

Lemma (3.4) The lattice point σ(L) ∈ X of any prime link L ∈ Lp belongs to ∆.

12



Proof. By Lemma (2.6), σ(L) = x = (x1 , x2, . . . , xn) is a minimal lattice point and
L = clβ(x). If n = 1, then x = 0 ∈ ∆ (and hence L is a trivial knot). In fact, if
x �= 0, then

x ∼ (x, 0) ∼ (0,x) ∼ 0

by (1),(3) and (6) of Lemma (2.2), contradicting that x is minimal. Assume that
n > 1. If x is reducible, then we see from the remarks following Definition (3.3) that
we have a shorter length lattice point x′ with x′ ∼ x because L is a prime link except
the trivial knot, a contradiction. Hence x is irreducible. By the duality relation, we
have x′ � x with x′ ∼ x and min |x′| = 1. Since x is minimal, we have x′ = x and
min |x| = 1. By Lemmas (2.2) and (2.4), we must have x1 = 1. If max |x| = 1, then
xi = 1 for all i, since otherwise x has a shorter length lattice point x′ with x′ ∼ x,
a contradiction. Let max |x| > 1. We show that x has the properties (1)-(8) of
Definition (3.2). Using that x is irreducible, we see that x has (1), (2), (3) except
that |xn| � 2. Suppose |xn| = 1. Then by Lemma (2.2), there is a smaller lattice
point x′ with x′ ∼ x, a contradiction. Thus, the condition |xn| � 2 is also satisfied.
If |xi| − 1 > |xi+1|, then the lattice point x′ obtained from x by interchanging xi

and xi+1 has x′ < x and x′ ∼ x by Lemma (2.2), a contradiction. Hence we have
(4). We have also (5) since otherwise x has a shorter lattice point x′ with x′ ∼ x
by Lemma (2.2). For (6), first let (xi, xi+1, . . . , xi+m+1) = (εkm, ε′(k + 1), ε′′k).
When ε′′ = ε′, we obtain from (3) of Lemma (3.1)

x ∼ x′ = (x′1, x
′
2, . . . , x

′
n)

where (x′i, x
′
i+1, . . . , x

′
i+m+1) = (ε′(k + 1)], ε′k, ε(k+ 1)m) and x′j = xj for all j < i

and j > i + m + 1. Since |x′j | �= k for all j < i and j > i + m + 1, we see
that x′ is reducible, contradicting to the minimality of x. Hence ε′′ = −ε′. For
(xi, xi+1, . . . , xi+m+1) = (ε′k, ε′′(k+ 1), εkm) or (ε′′k, ε(k+1)m,−ε′k), we see that
ε′′ = −ε′ by a similar argument using (3) of Lemma (3.1). In particular whenm = 1,
we have also ε′ = ε. Thus, we have (6). For (7), we take (xi, xi+1, . . . , xi+m+1) =
(ε′(k + 1), εkm, ε′′(k + 1)). When ε′′ = −ε′, we obtain from (3) of Lemma (3.1)

x ∼ x′ = (x′1, x
′
2, . . . , x

′
n)

where (x′i, x
′
i+1, . . . , x

′
i+m+1) = (−ε′k, ε(k + 1)m, ε′k) and x′j = xj for all j < i and

j > i + m + 1. Then x′ < x, a contradiction. Hence ε′′ = ε′. When m = 1 and
ε′′ = ε′ = ε, we have

x ∼ x′ = (x′1, x
′
2, . . . , x

′
n),

where (x′i, x
′
i+1, x

′
i+2) = ε(k, k+1, k) and x′j = xj for j �= i, i+1, i+2. Then x′ < x,

a contradiction. Hence ε′ = ε′′ = −ε and we have (7). Since x is minimal, we have
(8). Thus, x = σ(L) is in ∆. �

We see from Lemma (2.6) that the length of a prime link (or more generally, a
link without a splittable component of the trivial knot) L in Ωc is nothing but the
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minimal crossing number among the crossing numbers of the closed braid diagrams
representing L, so that there are only finitely many prime links with the same
length. This property also holds for every well-order Ω of X such that �(x) < �(y)
means x < y for any x,y ∈ X. There are long histories on making a table of knots
and links, for example, by C. F. Gauss, T. P. Kirkman, P. G. Tait, C. N. Little, M.
G. Haseman, J. W. Alexander-B. G. Briggs, K. Reidemeister for earlier studies (see
[15] for references) and by J. H. Conway [5], D. Rolfsen [21], G. H. Dowker-M. B.
Thistlethwaite [7], H. H. Doll- M. J. Hoste [6] and Y. Nakagawa [20] for relatively
recent studies. In comparison with these tabulations, our tabulation method has
three points which may be noted. The first point is that every prime link has a
unique expression in canonically ordered lattice points, because Lp is canonically
identified with a subset of the well-ordered set ∆ by σ. J. H. Conway’s expression
in [5] using basic polyhedra and algebraic tangles is excellent for enumerating knots
and links together with some global features except for ordering them in a canonical
way. C. H. Dowker and M. B. Thistlethwaite in [7] (for knots) and H. H. Doll- M. J.
Hoste in [6] (for links) assigned integer sequences to oriented, ordered knot and link
diagrams for a tabulation via computer use. As the second point, we can state in
the context of their works that we can specify a unique integer sequence among lots
of integer sequences representing every prime link, because our method specifies a
unique closed braid diagram for every prime link. Using a result of R. W. Ghrist
[9], Y. Nakagawa [20] defined an injection φ from the set of oriented knots into
the set of positive integers so that the value φ(K) reconstructs K. Then the third
point is that we can have a similar result for Lp by our argument. In fact, in the
forthcoming paper [17] (see [18]), we establish an embedding ζ from ∆ into the
set Q+ of positive rational numbers so that the value ζ(x) reconstructs x. Thus,
we can identify Lp with a subset of Q+ in the sense that the value ζσ(L) ∈ Q+

reconstructs L. In §6, we explain how to make the table of prime links graded by
the canonical order Ωc, and as a demonstration, we make the table for the prime
links with lengths up to 7.

4. π-minimal links

Let Ki(i = 1, 2, . . . , r) be the components of an oriented link L in S3. A coloring
f of L is a function

f : {Ki| i = 1, 2, . . . , r } −→ Q ∪ {∞}.

By a meridian-longitude system of L on N(L), we mean a pair of a meridian system
m(L) = {mi| i = 1, 2, . . . , r } and a longitude system �(L) = {�i| i = 1, 2, . . . , r } on
N(L) such that (mi, �i) is the meridian-longitude pair of Ki on N(Ki) for every i.
We can specify the orientations of m(L) and �(L) from those of L and S3 uniquely.
Let f(Ki) = ai

bi
for coprime integers ai, bi for every i where we take ai = ±1 and

bi = 0 when f(Ki) = ∞. Then we have a (unique up to isotopies) simple loop si

on ∂N(Ki) with [si] = ai[mi] + bi[�i] in the first integral homology H1(∂N(Ki)).
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We note that if the different choice f(Ki) = −ai

−bi
is made, then only the orientation

of si is changed. The Dehn surgery manifold of a colored link (L, f) is the oriented
3-manifold

χ(L, f) = E(L)
r⋃

i=1

si=1×∂D2
i
S1 ×D2

i

with the orientation induced from E(L) ⊂ S3, where
⋃

si=1×∂D2
i

denotes a pasting
of S1 × ∂D2

i to ∂N(Ki) so that si is identified with 1× ∂D2
i . In this construction,

the 3-manifold χ(L, f) ∈ M is uniquely determined from the colored link (L, f). In
this paper, we are particularly interested in the 0-surgery manifold, that is, χ(L, f)
with f = 0. For every link L ∈ L, we consider the subset

{L}π = {L′ ∈ L| π1E(L′) = π1E(L)}

of L. Here are some examples on {L}π.

Example (4.1) (1) For every prime knot K ∈ L, we have {K}π = {K} by the
Gordon-Luecke theorem [10] and W. Whitten [22]. However, for example if K is
the trefoil knot, then {K#K}π = {K#K,K#K̄} where K̄ denotes the mirror
image of K.

(2) Let L be the Whitehead link obtained from the Hopf link O∪O′ by replacing
O′ with the untwisted double D of O′: L = O ∪ D. Further, let Lm be the link
obtained by replacing D with the m-full twist Dm of D along O for every m ∈ Z

where we take L0 = L. Then we have

{L}π = {Lm | m ∈ Z}.

To see (2), let L′ ∈ {L}π. Since E(L) is a hyperbolic 3-manifold and hence
π1E(L) = π1E(L′) means E(L) = E(L′) (see W. Jaco [12]), the meridian sys-
tem on L′ indicates a coloring f of L. Since the linking numer of O and D is 0, we
have f(O) = 1

m and f(D) = 1
n for some integers m,n ∈ Z. If m or n is not 0, then

we can assume that m �= 0 since the components O and D are interchangeable.
If m �= 0, then we obtain Lm by taking m full twists along O. Since any twisted
doubled knot K ′ is non-trivial and χ(K′, 1

n
) �= S3 for n �= 0, we must have n = 0,

giving the desired result. On this example, one may note that since the linking
numer of Lm is 0, the longitude system of Lm coincides with the longitude system
of L in ∂E(L), so that χ(Lm, 0) = χ(L, 0) for every m.

We consider L as a well-ordered set by the well-order Ω (defined from the well-
order Ω of X in §2). The following definition is needed to choose exactly one link
in the set {L}π for a link L ∈ L:

Definition (4.2) A link L ∈ L is π-minimal if L is the initial element of the set
{L}π ∩ Lp in the well-order Ω.
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The following remark gives a reason why we restrict ourselves to a link in S3:

Remark (4.3) For a certain torus knot L ∈ L, there are homotopy torus knot spaces
E′, not the exterior of any knot in S3, such that π1(E′) = π1E(L) (see J. Hempel
[11,p.152]).

Let Lπ be the subset of L consisting of π-minimal links. We note that

Lπ ⊂ Lp ⊂ L.

For the map π : L → G sending a link to the link group, we have the following
lemma:

Lemma (4.4) The restriction π|Lπ : Lπ −→ G is injective.

Proof. For L,L′ ∈ Lπ, assume that π1E(L) = π1E(L′). Since both L and L′ are
π-minimal in {L}π = {L′}π, we have L � L′ and L � L′ by definition. Hence
L = L′. �

The following question is related to determining when a given prime link is π-
minimal:

Question (4.5) For L,L′ ∈ Lp, does π1E(L) = π1E(L′) mean E(L) = E(L′) ?

This question is known to be yes for a large class of prime links, including all
prime knots by W. Whitten [22], and prime links L such that E(L) does not contain
any essential embedded annulus, in particular, hyperbolic links, by the Johannson
Theorem (see W. Jaco [12]). Here is another class of links.

Proposition 4.6 For links L,L′ ∈ L, assume that E(L) is a special Seifert mani-
fold (that is, a Seifert manifold without essential embedded torus) and there is an
isomorphism π1E(L) → π1E(L′). Then there is a homeomorphism E(L) → E(L′).

Proof. By a classification result of G. Burde-K. Murasugi [4], the Seifert structure
of E(L) comes from a Seifert structure on S3. By [12], the orbit surface of the
Seifert manifold E(L) is

(i) the disk with at most two exceptional fibers,
(ii) the annulus with at most one exceptional fiber, or
(iii) the disk with two holes and no exceptional fibers.

In particular, π1E(L) and hence π1E(L′) are groups with non-trivial centers, so
that E(L′) is also a special Seifert fibered manifold with the same orbit data as
E(L). In the case (i), both L and L′ are torus knots and π1E(L) ∼= π1E(L′)
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implies L = L′ (confirmed for example by the Alexander polynomials) and hence
E(L) = E(L′). In the cases of (ii) without exceptional fiber and (iii), we have
E(L) = E(L′) = S1×C for the annulus or the disk with two holes C . Assume that
E(L) and E(L′) are in the case of (ii) with one exceptional fiber. Let (p, q) and
(r, s) be the types of the exceptional fibers of E(L) and E(L′), respectively, where
p, r � 2, (p, q) = 1, (r, s) = 1. Let

π1E(L) = (t, a, b|ta = at, tb = bt, tq = ap) and

π1E(L′) = (t, a, b|ta = at, tb = bt, ts = ar)

be the fundamental group presentations of E(L) and E(L′), respectively, obtained
from S1 × C with C the disk with two holes by adjoining a fibered solid torus
around the exceptional fiber. Let ψ : π1E(L) → π1E(L′) be an isomorphism.
Considering the central group which is the infinite cyclic group generated by t, we
see that ψ(t) = t±1. Replacing −s with s if necessary, we may have ψ(t) = t. In
the quotient groups, ψ induces an isomorphism

ψ∗ : (a|ap = 1) ∗ (b|−) ∼= (a|ar = 1) ∗ (b|−).

Hence p = r and ψ(a) = tmaε for some integer m and ε = ±1. Then

tq = ψ(ap) = tmpaεp = tmpaεr = tmp+εs

and hence q ≡ ±s (mod p), which shows the types (p, q) and (r, s) are equivalent.
Thus, there is a fiber-preserving homeomorphism E(L) → E(L′). �

Here is a remark on π-minimal links.

Remark (4.7) Let L be the 2-fold connected sum of the Hopf link, and L′ the
(3, 3)-torus link. Then we have σ(L) = (12, 22) and σ(L′) = (12, 2, 12, 2) in the
canonical order Ωc (cf. §6). Although E(L) = E(L′) and L < L′, the link L′ is a
π-minimal link. We note that χ(L, 0) = S1 × S2 and χ(L′, 0) = P 3 (the projective
3-space).

5. Proof of Theorem(1.1)

The following lemma is a folklore result obtained by the Kirby calculus (see R.
Kirby [19]):

Lemma (5.1) The map χ0 : L → M defined by χ0(L) = χ(L, 0) is a surjection.

Proof. For every M ∈ M, we have a colored link (L, f) with components Ki (i =
1, 2, . . . , r) such that χ(L, f) = M and f(Ki) = mi is an even integer for all i (see
S. J. Kaplan [13]). We show that there is a link L′

2 with r+2 components such that
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χ(L′
2, 0) = χ(L, f). Let L2 = L∪LH be the split union of the oriented link L and an

oriented Hopf link LH = O1 ∪O2 with linking number Link(O1, O2) = −1. Let f2
be the coloring of L2 obtained from f and the 0-coloring of LH . If mi �= 0, then we
take a fusion knot K ′

i of Ki and |mi|
2 parallels of sign(mi)O1 and one parallel copy

of O2 in the 0-framings. If mi = 0, then we take K ′
i = Ki. Doing these operations

for all i, we obtain from (L2, f2) a colored link (L′
2, f

′
2) with L′

2 = (∪r
i=1K

′
i) ∪ LH ,

a link with r + 2 components and a coloring f ′2 such that

f ′2(K
′
i) = f2(Ki) + 2Link(

mi

2
O1, O2) = mi −mi = 0.

Since f ′2|LH = f2|LH = 0, we have f ′2 = 0. By the Kirby calculus on handle slides
([19], [15,p.245]), we have χ(L′

2, 0) = χ(L2, f2) = M . �

Let Lπ(M) be the subset of Lπ consisting of π-minimal links L such that
χ(L, 0) = M . When we consider a prime link L ∈ L with χ(L, 0) = M to find
a π-minimal link in Lπ(M) for a given M ∈ M, the following points should be
noted: If we take the initial element L0 of the set {L}π, then the link L0 need
not be a prime link, as it is noted in Remark (4.7). If L0 is the initial element of
the prime link subset of {L}π, then L0 is a π-minimal link in Lπ(χ(L0, 0)), but
in general we cannot guarantee that χ(L0, 0) = M , as we note in the following
example:

Example (5.2) There are hyperbolic links L,L′ ∈ L such that E(L) = E(L′),
χ(L, 0) �= χ(L′, 0) and {L}π = {L′}π = {L,L′}. Thus, if L < L′ in the well-order
Ω, then the link L is π-minimal, but L is not in L(χ(L′, 0)). To obtain this example,
let LH = O1 ∪O2 be the Hopf link with coloring f such that f(O1) = 0, f(O2) = 1.
Then χ(LH , f) = S3 and the dual colored link (L′

H , f
′) of (LH , f) is given by

L′
H = LH and f ′(O1) = −1 and f ′(O2) = 0. By Remark 4.7 of [16], we have

a normal imitation q : (S3, L∗
H) → (S3, LH) with χ(L∗

H , fq) = S3 and a dual
normal imitation q′ : (S3, L′∗

H) → (S3, L′
H), that is a normal imitation such that

E(L∗
H) = E(L′∗

H), q′|E(L∗
H) = q|E(L∗

H) and (L′∗
H , f

′q′) is the dual colored link of
(L∗

H , fq). As it is stated in Remark 4.7 of [16], we can impose on these normal
imitations the following additional properties: namely, L∗

H and L′∗
H are totally

hyperbolic, componentwise distinct links, and every homeomorphism h : E(L′′) →
E(L∗

H) extends to a homeomorphism h+ : (S3, L′′) → (S3, L∗
H) or h+′ : (S3, L′′) →

(S3, L′∗
H). On the other hand, we see that χ(L′

H , 0) = S3 and the dual colored
link (LH , f

′′) of (L′
H , 0) is given by f ′′(O1) = −1 and f ′(O2) = ∞. Further, we

can assume from Theorem 4.1(2) of [16] that χ(L∗
H , 0) and χ(L∗

H , f
′′q) = χ(L′∗

H , 0)
are distinct because 0 and f ′′ are distinct from ∞, f . Thus, we can take L∗

H and
L′∗

H as L and L′, respectively. (We note that χ(L∗
H , 0) and χ(L′∗

H , 0) are homology
3-spheres, because they are normal imitations of χ(LH , 0) = χ(L′

H , 0) = S3.)

In spite of Example (5.2), we can show the following lemma:
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Lemma (5.3) For every M ∈ M, the set Lπ(M) is an infinite set.

Proof. By Lemma (5.1), we take a disconnected link L in S3 such that χ(L, 0) = M .
Let M �= S3. By a result of [16], there are infinitely many normal imitations

qi : (S3, L∗
i ) −→ (S3, L) (i = 1, 2, 3, . . . )

such that

(1) χ(L∗
i , 0) = χ(L, 0) = M ,

(2) L∗
i is (totally) hyperbolic, and

(3) every homeomorphism h : E(L∗
i ) → E(L′) for a link L′ in S3 extends to a

homeomorphism h+ : (S3, L∗
i ) → (S3, L′).

Then L∗
i is π-minimal by (2) and (3), so that L∗

i ∈ Lπ(M), i = 1, 2, 3, . . . . For
M = S3, let L be a Hopf link. Then χ(L, 0) = S3 and the dual link L′ of the Dehn
surgery is also the Hopf link. By Remark 4.7 of [16], there are infinitely many pairs
of normal imitations

qi :(S3, L∗
i ) −→ (S3, L),

q′i :(S3, L′∗
i ) −→ (S3, L′) (i = 1, 2, 3, . . . )

such that

(1) χ(L∗
i , 0) = χ(L, 0) = S3 = χ(L′, 0) = χ(L′∗

i , 0),
(2) E(L∗

i ) = E(L′∗
i ),

(3) L∗
i and L′∗

i are (totally) hyperbolic,
(4) every homeomorphism h : E(L∗

i ) → E(L′′) for a link L′′ in S3 extends to a
homeomorphism h+ : (S3, L∗

i ) → (S3, L′′) or h′+ : (S3, L′∗
i ) → (S3, L′′).

Thus, {L∗
i }π = {L∗

i , L
′∗
i } for every i, and we can take a π-minimal link, say L∗

i in
{L∗

i }π for every i, so that L∗
i ∈ Lπ(S3), i = 1, 2, 3, . . . . �

We are in a position to prove the first half of Theorem (1.1).

Proof of Theorem (1.1). Since Lπ(M) �= ∅ by Lemma (5.3), we can take the initial
element LM of Lπ(M) for every M ∈ M. Using that the set Lπ(M) is uniquely
determined by M and Ω, we see that the well-order Ω of X induces a map

α : M −→ Lπ ⊂ L

sending a 3-manifold M to the link LM . This map α must be injective, because
the 0-surgery manifold χ(α(M), 0) = M . Combining this result with Lemma (4.4),
we obtain the embeddings σα and πα. If a lattice point x = σα(M) is given,
then we obtain the link α(M) = clβ(x) with braid presentation, the 3-manifold
M = χ(clβ(x),0) with 0-surgery description and the link group π1E(clβ(x)) with
Artin presentation associated with the braid β(σα(M)), completing the proof of

19



the first half. If a link group G = πα(M) with a prime Artin presentation is given,
then we have a braid b such that G is the link group of the prime link cl(b). Let
xi ∈ ∆ (i = 1, 2, . . . , n) be the lattice points smaller than or equal to the lattice
point x(b). By Lemma (3.4), there is a lattice point xi with xi ≈ x(b). By using
a solution of the problem in (3), let xi0 be the smallest lattice point such that
clβ(xi0) is a prime link and there is an isomorphism π1E(clβ(xi0)) → G among xi

(i = 1, 2, . . . , n). Then the link clβ(xi0) is π-minimal by this construction. Thus,
the desired lattice point σα(M) = xi0 is obtained, proving (3). If a π-minimal
link L with χ(L, 0) = M is given, we take a braid b representing L. Let xi ∈ ∆
(i = 1, 2, . . . , n) be the lattice points smaller than or equal to x(b). By Lemma (3.4),
there is a lattice point xi with xi ≈ x(b). By using a solution of the problem in (4),
we take the smallest lattice point xi0 such that the link clβ(xi0) is a π-minimal link
and χ(clβ(xi0), 0) = M . Thus, the desired lattice point σα(M) = xi0 is obtained,
proving (4). �

As a matter of fact, we can construct many variants of the embedding α : M → L.
Here are remarks on constructing some other embeddings α.

Remark (5.4) Let Lh ⊂ L be the subset consisting of hyperbolic links L (possibly
with infinite volume) such that L is determined by the exterior E(L) (that is,
E(L) = E(L′) for a link L′ means L = L′), and Lh(M) = {L ∈ Lh |χ(L, 0) = M}.
Then we still have an embedding α : M → Lh ⊂ L with χ0α = 1 such that σα and
πα are embeddings by the proof of Theorem (1.1) using Lh(M) instead of Lπ(M).
(For this proof, we use that Lh(S3) contains the Hopf link and the set Lh(M) for
M �= S3 is infinite by Lemma (5.3).) In this case, the links α(S1 × S2), α(S3) and
α(M) for every M �= S1×S2, S3 are the trivial knot, the Hopf link and a hyperbolic
link of finite volume, respectively. If we take the subset L(M) ⊂ L consisting of all
links L with χ(L, 0) = M , then the proof of Theorem (1.1) using L(M) instead of
Lπ(M) shows the existence of an embedding α : M → L with χ0α = 1. However,
in this case, the map πα is no longer injective in the canonical order Ωc. In fact, if
K#K is the granny knot and K#K̄ is the square knot where K is a trefoil knot,
then we see that α(χ(K#K, 0)) = K#K and α(χ(K#K̄, 0)) = K#K̄. Then we
have πα(χ(K#K, 0)) = πα(χ(K#K̄, 0)), although χ(K#K, 0) �= χ(K#K̄, 0) (see
[14, Example 3.2]).

Remark (5.5) The subsets Lh(M) ⊂ Lπ(M) ⊂ L(M) of L are defined up to auto-
morphisms of M , but the Kirby calculus of [19] enables us to make “automorphism-
free”definitions of them. In fact, for a given link L, let L(L) the set of links L′ such
that the 0-colored link (L′, 0) is obtained from the 0-colored link (L, 0) or (L̄, 0)
by a finite number of Kirby moves, and then we define Lh(L) and Lπ(L) to be the
restrictions of L(L) to the hyperbolic links determined by the exteriors and the
π-minimal links, respectively. R. Kirby’s theorem in [19] shows that for a link L
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with χ(L, 0) = M we have the identities

L(L) = L(M), Lh(L) = Lh(M) and Lπ(L) = Lπ(M),

where the right hand sides are the sets defined on before for M . Thus, the em-
bedding α is defined “automorphism-freely”. In particular, in any use of Lh(M)
or Lπ(M), the embedding πα is defined “automorphism-freely”. This is the precise
meaning of that the homeomorphism problem on M can be in principle replaced by
the isomorphism problem on G, stated in the introduction.

6. A classification program

In this section, we take the canonical order Ωc unless otherwise stated. We
consider the following mutually related three embeddings already established in
Theorem (1.1):

α :M −→ L,

σα :M −→ X,

πα :M −→ G.

Since σα(M) ⊂ ∆ and every initial segment of ∆ is a finite set, we can attach
(without overlapping) to every 3-manifold M in M a label (n, i) where n denotes
the length of M and i denotes that M appears as the ith 3-manifold of length n,
so that we have

Mn,1 < Mn,2 < · · · < Mn,mn

for a positive integer mn <∞. Let

α(Mn,i) = Ln,i ∈ L, πα(Mn,i) = Gn,i ∈ G and σα(Mn,i) = xn,i ∈ ∆.

Our classification program is to enumerate the 3-manifolds Mn,i for all n =
1, 2, . . . and i = 1, 2, . . . ,mn together with the data Ln,i, Gn,i and xn,i, but by
(2) of Theorem (1.1) it is sufficient to give the lattice point xn,i, because we can
easily construct Ln,i, Mn,i and Gn,i by Ln,i = clβ(xn,i), Mn,i = χ(Ln,i, 0) and
Gn,i = π1E(Ln,i). We proceed the argument by induction on the length n. Since
the lattice points of lengths 1, 2, 3 in ∆ are 0, 12 and 13, we can do the classification
of M with lengths 1, 2, 3 as follows (where T 2 ×A S

1 denotes the torus bundle over
S1 with monodromy matrix A):

length 1: m1 = 1, M1,1 = S1 × S2, L1,1 = O (the trivial knot),

G1,1 = Z, x1,1 = 0.

length 2: m2 = 1, M2,1 = S3, L2,1 = 21
1 (the Hopf link),

G2,1 = Z ⊕ Z, x2,1 = 12.

length 3: m3 = 1, M3,1 = T 2 ×A S1, A =
(

1 1
−1 0

)
,

L3,1 = 31 (the trefoil knot), G3,1 = (x, y|xyx = yxy), x3,1 = 13.
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To explain our classification of M with any length n � 4, we assume that the
classification of M with lengths � n − 1 is done. Let ∆n be the subset of ∆
consisting of lattice points of length n. The first step of our classification program
is as follows:

Step 1. Make an ordered list ∆∗
n ⊂ ∆n containing all the minimal lattice points in

∆n.

If we take the list ∆∗
n smaller, then our work will be simpler. It is recommended

to make first the ordered list |∆∗
n| = {|x| |x ∈ ∆∗

n} counting the property of Ωc

that we have x < y if we have one of the following three conditions: (i) �(x) < �(y),
(ii) �(x) = �(y) and |x|N < |y|N , and (iii) |x|N = |y|N and |x| < |y|. To establish
Step 1, we use the following notion:

Definition (6.1) A lattice point x ∈ X is locally-minimal if it is the initial element
of the subset of [x] consisting of the lattice points obtained from x by the duality
relation, the flype relation and the moves in Lemmas (2.2) and (2.4) except the
length-increasing moves.

Every minimal lattice point is locally-minimal, but the converse is not true. It
is realistic to make as ∆∗

n a list containing all the locally-minimal lattice points of
∆n. The following list is such a list for Step 1.

Example (6.2) The following list contains all the minimal lattice points of lengths
� 7 in ∆:

∆∗
1 : 0,

∆∗
2 : 12,

∆∗
3 : 13,

∆∗
4 : 14, (1,−2, 1,−2),

∆∗
5 : 15, (12, 2,−1, 2), (12,−2, 1,−2),

∆∗
6 : 16, (13, 2,−1, 2), (13,−2, 1,−2), (12, 2, 12, 2),

(12, 2, (−1)2, 2), (12,−2, 12,−2), (12,−2, 1, (−2)2),

(1,−2, 1,−2, 1,−2), (1,−2, 1, 3,−2, 3),

∆∗
7 : 17, (14, 2,−1, 2), (14,−2, 1,−2),

(13, 2, 12, 2), (13 , 2, (−1)2, 2), (13,−2, 12,−2),

(13,−2, (−1)2,−2), (13, 2,−1, 22), (13,−2, 1, (−2)2),

(12,−2, 12, (−2)2), (12,−2, 1,−2, 1,−2),

(12, 2,−1,−3, 2,−3), (12,−2, 1, 3,−2, 3), (1,−2, 1,−2, 3,−2, 3),

(1,−2, 1, 3, 22, 3), (1,−2, 1, 3, (−2)2 , 3).
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Let Lp
n be the subset of Lp consisting of prime links of length n. Let D∗

n be
the set consisting of the link diagrams clβ(x) for all x ∈ ∆∗

n. By Lemma (3.4), we
observe that if L = clβ(x) ∈ Lp

n for a lattice point x ∈ X, then there is a minimal
lattice point x′ ∈ ∆n with x′ � x such that L = clβ(x′). This implies that the set
Lp

n consists of the prime links represented by link diagrams of D∗
n not belonging

to L
p
j (j = 1, 2, . . . , n− 1) (which are assumed to have already constructed by our

inductive hypothesis). Step 2 is the following procedure:

Step 2. Construct Lp
n from D∗

n.

The link clβ(x) of a lattice point x of length n such that x̃ = x admits a braided
link diagram with crossing number n. Thus, if a list of prime links with crossing
numbers up to n is available, then this procedure would not be so difficult. In the
following example, our main work is only to identify the lattice points of length
n � 7 in Example (6.2) with prime links in Rolfsen’s table [21].

Example (6.3) The following list gives the elements of the sets Lp
n for n � 7 together

with the corresponding lattice points.

L
p
1 : O σ(O) = 0.

L
p
2 : 22

1 σ(22
1) = 12.

L
p
3 : 31 σ(31) = 13.

L
p
4 : 42

1 < 41

σ(42
1) = 14,

σ(41) = (1,−2, 1,−2).

L
p
5 : 51 < 52

1

σ(51) = 15,
σ(52

1) = (12,−2, 1,−2).

L
p
6 : 62

1 < 52 < 62 < 63
3 < 63

1 < 63 < 63
2 < 62

3

σ(62
1) = 16,

σ(52) = (13, 2,−1, 2),
σ(62) = (13,−2, 1,−2),
σ(63

3) = (12, 2, 12, 2),
σ(63

1) = (12,−2, 12,−2),
σ(63) = (12,−2, 1, (−2)2),
σ(63

2) = (1,−2, 1,−2, 1,−2),
σ(62

3) = (1,−2, 1, 3,−2, 3).
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L
p
7 : 71 < 62

2 < 72
1 < 72

7 < 72
8 < 72

4 < 72
2 < 72

5 < 72
6 < 61 < 76 < 77 < 73

1

σ(71) = 17,
σ(62

2) = (14, 2,−1, 2),
σ(72

1) = (14,−2, 1,−2),
σ(72

7) = (13, 2, 12, 2),
σ(72

8) = (13, 2, (−1)2, 2),
σ(72

4) = (13,−2, 12,−2),
σ(72

2) = (13,−2, 1, (−2)2),
σ(72

5) = (12,−2, 12, (−2)2),
σ(72

6) = (12,−2, 1,−2, 1,−2),
σ(61) = (12, 2,−1,−3, 2,−3),
σ(76) = (12,−2, 1, 3,−2, 3),
σ(77) = (1,−2, 1,−2, 3,−2, 3)
σ(73

1) = (1,−2, 1, 3, (−2)2, 3).

The following lattice points of Example (6.2)

(12, 2,−1, 2), (12, 2, (−1)2, 2), (13,−2, (−1)2,−2), (13, 2,−1, 22), (1,−2, 1, 3, 22, 3)

are removed from the list, since these links are seen to be 42
1, 63

3, 72
7, 62

3, 63
3, respec-

tively. The links 72, 73, 74, 75, 72
3 in Rolfsen’s table of [21] are also excluded from

the list since these links turn out to have lengths greater than 7. In Steps 3 and 4,
powers of low dimensional topology techniques will be seriously tested.

Step 3. Construct the subset Lπ
n ⊂ Lp

n by removing every link L ∈ Lp
n such that

there is a link L′ ∈ L
p
j (j � n) with L′ < L and π1E(L) = π1E(L′).

From construction, we see that the set Lπ
n consists of π-minimal links of length n.

Among the links in Example (6.3), we see that E(42
1) = E(72

7) and E(52
1) = E(72

8)
by taking one full twist along a component and that except these identities, all
the links have mutually distinct link groups by using the following lemma on the
Alexander polynomials:

Lemma (6.4) Let A(t1, t2, . . . , tr) and A′(t1, t2, . . . , tr) be the Alexander polynomials
of oriented links L and L′ with r components. If there is a homeomorphism E(L) →
E(L′), then there is an automorphism ψ of the multiplicative free abelian group
〈t1, t2, . . . , tr〉 with basis ti (i = 1, 2, . . . , r) such that

A′(t1, t2, . . . , tr) = ±ts1
1 t

s2
2 . . . tsr

r A(ψ(t1), ψ(t2), . . . , ψ(tr))

for some integers si (i = 1, 2, . . . , r).

The proof of this lemma is direct from the definition of Alexander polynomial(see
[15]). Thus, we obtain the following example:
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Example (6.5) We have Lπ
n = Lp

n for n � 6 and

Lπ
7 : 71 < 62

2 < 72
1 < 72

4 < 72
2 < 61 < 72

5 < 72
6 < 76 < 77 < 73

1.

Let Mn be the subset of M consisting of 3-manifolds of length n, and LM

n the
subset of Lπ

n by removing a π-minimal link L ∈ Lπ
n such that there is a π-minimal

link L′ ∈ Lπ
j (j � n) with L′ < L and χ(L, 0) = χ(L′, 0). The following step is the

final step of our classification program:

Step 4. Construct the set LM

n .

Let Li (i = 1, 2, . . . , r) be the π-minimal links in the set LM

n , ordered by Ωc. Then
we have Mn,i = χ(Li, 0), α(Mn,i) = Li (i = 1, 2, . . . , r). An important notice is
that every 3-manifold in M appears once as Mn,i without overlaps. As we shall
show later, the 0-surgery manifolds of the π-minimal links in Example (6.5) are
mutually non-homeomorphic, so that we have the complete list of 3-manifolds in
M with length � 7 as it is stated in Example (6.6).

Example (6.6)
M1,1 = χ(O, 0), x1,1 = 0,

M2,1 = χ(22
1, 0), x2,1 = 12,

M3,1 = χ(31, 0), x3,1 = 13,

M4,1 = χ(42
1, 0), x4,1 = 14,

M4,2 = χ(41, 0), x4,2 = (1,−2, 1,−2),

M5,1 = χ(51, 0), x5,1 = 15,
M5,2 = χ(52

1, 0), x5,2 = (12,−2, 1,−2),

M6,1 = χ(62
1, 0), x6,1 = 16,

M6,2 = χ(52, 0), x6,2 = (13, 2,−1, 2),
M6,3 = χ(62, 0), x6,3 = (13,−2, 1,−2),
M6,4 = χ(63

3, 0), x6,4 = (12, 2, 12, 2),
M6,5 = χ(63

1, 0), x6,5 = (12,−2, 12,−2),
M6,6 = χ(63, 0), x6,6 = (12,−2, 1, (−2)2),
M6,7 = χ(63

2, 0), x6,7 = (1,−2, 1,−2, 1,−2),
M6,8 = χ(62

3, 0), x6,8 = (1,−2, 1, 3,−2, 3).

M7,1 = χ(71, 0), x7,1 = 17,
M7,2 = χ(62

2, 0), x7,2 = (14, 2,−1, 2),
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M7,3 = χ(72
1, 0), x7,3 = (14,−2, 1,−2),

M7,4 = χ(72
4, 0), x7,4 = (13,−2, 12,−2),

M7,5 = χ(72
2, 0), x7,5 = (13,−2, 1, (−2)2),

M7,6 = χ(72
5, 0), x7,6 = (12,−2, 12, (−2)2),

M7,7 = χ(72
6, 0), x7,7 = (12,−2, 1,−2, 1,−2),

M7,8 = χ(61, 0), x7,8 = (12, 2,−1,−3, 2,−3),
M7,9 = χ(76, 0), x7,9 = (12,−2, 1, 3,−2, 3),
M7,10 = χ(77, 0), x7,10 = (1,−2, 1,−2, 3,−2, 3),
M7,11 = χ(73

1, 0), x7,11 = (1,−2, 1, 3, (−2)2, 3).

To see that the 3-manifolds in Example (6.6) are mutually non-homeomorphic, we
first check the first integral homology. It is computed as follows:

(1) H1(M) = Z for M = M1,1, M3,1, M4,2, M5,1, M6,2, M6,3, M6,6, M7,1, M7,8,
M7,9, M7,10.
(2) H1(M) = Z ⊕ Z for M = M5,2, M7,4, M7,7.
(3) H1(M) = Z2 for M = M6,4, M6,5, M7,11.
(4) H1(M) = Z ⊕ Z ⊕ Z for M = M6,7.
(5) H1(M) = Z2 ⊕ Z2 for M = M4,1, M6,8, M7,6.
(6) H1(M) = Z3 ⊕ Z3 for M = M6,1, M7,2.
(7) H1(M) = 0 for M = M2,1, M7,3, M7,5.

For (1), since the Alexander polynomial of a knot K is an invariant of the homology
handle χ(K,0), we see that the homology handles of (1) are mutually distinct.
For (2), since the Alexander polynomial of an oriented link L with all the linking
numbers 0 is also an invariant of χ(L, 0) in the sense of Lemma (6.4), these 3-
manifolds are mutually distinct. For (3), we note that M6,4 = P 3 the projective
3-space, M6,5 = χ(31,−2) (where we take 31 the positive trefoil knot) and M7,11 =
χ(41,−2). We take the connected double covering spaces M̃ of M = M6,4, M6,5

and M7,11. The homology H1(M̃) for M = M6,4, M6,5 or M7,11 is respectively
computed as 0, Z3, Z5, showing that these 3-manifolds are mutually distinct. For
(4), we have nothing to prove. Note that M6,7 = T 3. For (5), we compare the
first integral homologies of the three kinds of connected double coverings of every
M = M4,1, M6,8, M7,6. For M = M4,1, it is the quaternion space Q and we have
H1(M̃) = Z4 for every connected double covering space M̃ of M . For M = M6,8,
we have H1(M̃ ; Z3) = Z3 for every connected double covering space M̃ of M . On
the other hand, for M = M7,6, we have H1(M̃) = Z20 and H1(M̃ ; Z3) = 0 for some
connected double covering space M̃ of M . Thus, these 3-manifolds are mutually
distinct. For(6), we use the following lemma:

Lemma (6.7) Let H = Zp ⊕ Zp for an odd prime p > 1. If the linking form
� : H×H −→ Q/Z is hyperbolic, then the hyperbolic Zp-basis e1, e2 of H is unique
up to unit multiplications of Zp.
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Proof. Let e′1, e
′
2 be another hyperbolic Zp-basis of H. Let e′i = ai1e1 +ai2e2. Then

0 = �(e′i, e
′
i) =

2ai1ai2

p
(mod 1),

1
p

= �(e′1, e
′
2) =

a11a22 + a12a21

p
(mod 1).

By these identities, we have either e′1 = a11e1 and e′2 = a22e2 with a11a22 = 1 in
Zp or e′1 = a12e2 and e′2 = a21e1 with a12a21 = 1 in Zp. �

By Lemma (6.7), there are just two connected Z3-coverings M̃ of every M = M6,1,
M7,2 associated with a hyperbolic direct summand Z3 of H1(M) = Z3 ⊕ Z3. In
other words, the covering M̃ is associated with a Z3-covering covering of the exterior
E(L) lifting one torus boundary component trivially, where L = 62

1, 6
2
2. Since the

link L is interchangeable, it is sufficient to check one covering for each M . For
M = M6,1 we have H1(M̃ ) = Z9 ⊕Z3 and for M = M7,2 we have H1(M̃ ) = Z ⊕Z.
Thus, these 3-manifolds are distinct. For (7), the Dehn surgery manifolds χ(72

1, 0)
and χ(72

2, 0) are the boundaries of Mazur manifolds (which are normal imitations
of S3) and identified with the Brieskorn homology 3-spheres Σ(2, 3, 13), Σ(2, 5, 7)
by S. Akbult and R. Kirby [1]. Hence, we have M2,1 = S3, M7,3 = Σ(2, 3, 13) and
M7,5 = Σ(2, 5, 7) and these 3-manifolds are mutually distinct. Thus, we see that
the 3-manifolds of Example (6.6) are mutually distinct.

For the Poincaré homology 3-sphere Σ = Σ(2, 3, 5), the prime link α(Σ) must
have at least 10 components. [To see this, assume that α(Σ) has r components.
Using that Σ is a homology 3-sphere and Σ = χ(α(Σ),0), we see that Σ bounds
a simply connected 4-manifold W with an r × r non-singular intersection matrix
whose diagonal entries are all 0. Since the Rochlin invariant of Σ is non-trivial, it
follows that the signature of W is an odd multiple of 8 and r is even. Hence r � 8.
If r = 8, then the intersection matrix is a positive or negative definite matrix which
is not in our case. Thus, we have r � 10.] Since χ(31, 1) = Σ for the positive trefoil
knot 31, an answer to the following question on Kirby calculus (see [13, 19,21]) will
help in understanding the link α(Σ):

Question (6.8) How is Ωc understood among colored links ?

We note that the cardinal numbers ln = #Lp
n and mn = #Mn are independent

of a choice of any well-order Ω of X with the condition that any lattice points x,y
with �(x) < �(y) has the order x < y. A sequence of non-negative integers kn

(n = 1, 2, . . . ) is a polynomial growth sequence if there is an integral polynomial
f(x) in one variable x such that kn � f(n) for all n. Concerning the classifications
of Lp and M, the following question may be interesting:
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Question (6.9) Are the sequences ln and mn (n = 1, 2, . . . ) polynomial growth
sequences ?

Let pn be the number of prime links with the crossing number n. C. Ernst
and D.W. Sumners [8] showed that the sequence pn (n = 0, 1, 2, . . . ) is not any
polynomial growth sequence by counting the numbers of 2-bridge knots and links.

7. Notes on the oriented version and oriented 3-manifold invariants

Let
→
M be the set of closed connected oriented 3-manifolds. Using the injection

→
σ :

→
L → X, we have a well-order in

→
L induced from a well-order Ω in X and also

denoted by Ω. Writing
→
Lπ = ι−1Lπ ⊂

→
L,

we can show that the embedding α : M → L in Theorem (1.1) lifts to an embedding

→
α :

→
M −→

→
L

such that χ0
→
α = 1 and

→
α(−M) = −→

α(M) for every M ∈
→
M, where the map

χ0 :
→
L →

→
M denotes the oriented vbersion of the 0-surgery map χ0 : L → M. To see

this, for every M ∈
→
M, we note that the link L0 = clβσα(M) is canonically oriented

and χ(L0, 0) = ±M , where −M denotes the same M but with the orientation
reversed. If M = −M , then we define

→
α(M) = L0. If M �= −M , then we define

→
α(M) so as to satisfy

{→α(M),
→
α(−M)} = {L0,−L̄0} and χ(

→
α(M), 0) = M.

As a related question, it would be interesting to know whether or not there is an

oriented link L ∈
→
L with L = −L̄ and χ(L, 0) = M for everyM ∈

→
M with M = −M .

For an algebraic system Λ, an oriented 3-manifold invariant in Λ is a map
→
M → Λ

and an oriented link invariant in Λ is a map
→
L → Λ. Let Inv(

→
M,Λ) and Inv(

→
L,Λ)

be the sets of oriented 3-manifold invariants and oriented link invariants in Λ,
respectively. Then we have χ0

→
α = 1. We consider the following sequence

Inv(
→
M,Λ)

χ#
0−→ Inv(

→
L,Λ)

→
α

#

−→ Inv(
→
M,Λ)

of the dual maps
→
α

#
and χ#

0 of
→
α and χ0. Since the composite

→
α

#
χ#

0 = 1, we see

that χ#
0 is injective and

→
α

#
is surjective, both of which imply that every oriented 3-

manifold invariant can be obtained from an oriented link invariant. More precisely,
if I is an oriented 3-manifold invariant, then χ#

0 (I) is an oriented link invariant

which takes the same value I(M) on the subset
→
L(M) = {L ∈

→
L|χ(L, 0) = M}

for every M ∈
→
M. Conversely, if J is an oriented link invariant, then

→
α

#
(J) is
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an oriented 3-manifold invariant and every oriented 3-manifold invarint is obtained
in this way. Here is an example creating an oriented 3-manifold invariant from
an oriented link invariant when we use the right inverse

→
α of χ0, defined by the

canonical order Ωc.

Example (7.1) We denote by V a Seifert matrix associated with a connected Seifert
surface of the link (see [15]). Then the signature sign(V +V ′) and the determinant
det(tV −V ′) give respectively oriented link invariants, that is, the signature invari-

ant λ ∈ Inv(
→
L ,Z) and the (one variable) Alexander polynomial A ∈ Inv(

→
L,Z[t, t−1])

(an oriented link invariant up to multiples of ±tm, m ∈ Z). For the right inverse
→
α

of χ0 using the canonical order Ωc, we have the oriented 3-manifold invariants

λ→
α

=
→
α

#
(λ) ∈ Inv(

→
M,Z) and A→

α
=

→
α

#
(A) ∈ Inv(

→
M,Z).

For some 3-manifolds, these invariants are calculated as follows:

(7.1.1) λ→
α
(S1 × S2) = 0, A→

α
(S1 × S2) = 1.

(7.1.2) λ→
α
(S3) = −1, A→

α
(S3) = t− 1.

(7.1.3) λ→
α
(±Q) = ∓3, A→

α
(±Q) = (t− 1)(t2 + 1) (we note that Q �= −Q).

(7.1.4) λ→
α
(P 3) = −4, A→

α
(P 3) = (t − 1)2.

(7.1.5) λ→
α
(T 3) = 0, A→

α
(T 3) = (t− 1)4.
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