Research plan

Shigehisa Ishimura

1. Generalized spin structures

The fundamental group of SO(n) is isomorphic to \mathbb{Z} for n = 2 and \mathbb{Z}_2 for $n \ge 3$. Thus SO(n) $(n \ge 2)$ has a non-trivial 2-fold covering. This fact defines the spin structures. Moreover SO(2) has a non-trivial r-fold coverring. Similarly this fact defines the r-spin structures. But it is not possible to define the r-spin structures for $n \ge 3$. I plan to construct the generalized spin structures for the weakly almost complex manifolds, because they have the stable tangent bundle whose structure group is U(n) and the fundamental group of U(n) is isomorphic to \mathbb{Z} for $n \ge 1$. I also plan to construct the cobordism for generalized spin manifolds.

2. Spin mapping class group

Let Σ_g be a compact, oriented surface of genus g. Let Γ_g be the mapping class group of Σ_g . The mapping class group Γ_g acts on an affine space consisting of spin structures on Σ_g . I clarified a relationship between the number of the generators of Γ_g and the spin structures by using this action. If we fix a spin structure σ on Σ_g , then we can consider the diffeomorphisms preserving σ . Let SP_g be the subgroup of Γ_g whose elements leave σ invariant. This group SP_g is called the spin mapping class group. I plan to research the number of the generators of SP_g by using an action of SP_q .

3. Relationships between the mapping class group and K-theory

M. Atiyah gave the invariant of the spin structure and the spin cobordism by using the mod 2 index and KO group. I plan to clarify relationships between the mapping class group and K-theory by using the spin structures.