Results

(1) Quantum deformations of prehomogeneous vector spaces of commutative parabolic type:

This is a joint work with T. Tanisaki and Y. Morita. Prehomogeneous vector spaces of commutative parabolic type are constructed in simple Lie algebras \mathfrak{g} over the complex number field. Their quantum deformations mean the deformation of coordinate algebras as non-commutative algebra with actions of quantized enveloping algebras. Let $\mathfrak{p}^+ = \mathfrak{l} \oplus \mathfrak{m}^+$ be a parabolic subalgebra of \mathfrak{g} , where \mathfrak{l} is a maximal reductive subalgebra and \mathfrak{m}^+ is the nilpotent part. Then the pair (L,\mathfrak{m}^+) , where L is the algebraic group corresponding to \mathfrak{l} , is a prehomogeneous vector space called of commutative parabolic type. The coordinate algebra of \mathfrak{m}^+ is identified with the enveloping algebra $U(\mathfrak{m}^-)$ of the opposite nilpotent subalgebra \mathfrak{m}^- . The quantum deformation A_q of the coordinate algebra is naturally constructed as a subalgebra $U_q(\mathfrak{m}^-)$ of the quantized enveloping algebra $U_q(\mathfrak{g})$ corresponding to $U(\mathfrak{m}^-)$. Moreover this method contains the construction of the quantum deformation f_q of the fundamental relative invariant f of (L,\mathfrak{m}^+) . These constructions do not depend on types of simple Lie algebras.

By this method I gave the explicit descriptions of A_q and f_q in the case where \mathfrak{g} is a classical simple Lie algebra.

(2) Quantum deformations of *b*-functions:

For a fundamental relative invariant f of (L, \mathfrak{m}^+) there exist the constant coefficient differential operator ${}^tf(\partial)$ and a polynomial b(s) such that ${}^tf(\partial)f^{s+1} = b(s)f^s$. This polynomial b(s) is called the *b*-function of f.

The *b*-function b(s) of (L, \mathfrak{m}^+) is a special case of a *b*-function of an invariant on a flag manifold G/P. In the case where *P* is a Borel subgroup, M. Kashiwara determined *b*-functions by the universal Verma modules. Similarly in the case $\operatorname{Lie}(P) = \mathfrak{p}^+$, I gave the following expression of b(s) of (L, \mathfrak{m}^+) in terms of weights of the irreducible \mathfrak{g} -module $V(\mu)$ with highest weight μ , where μ is the fundamental dominant weight corresponding to the simple root α uniquely determined from (L, \mathfrak{m}^+) .

$$b(s) = \prod_{\eta \in Wt(\mu) \setminus \{\mu\}} \left((s\mu + \rho + \mu, s\mu + \rho + \mu) - (s\mu + \rho + \eta, s\mu + \rho + \eta) \right),$$

where $Wt(\mu)$ is the set of highest weights of irreducible *l*-submodules of $V(\mu)$ and ρ is the half sum of positive roots of \mathfrak{g} . The *b*-function b(s) corresponds to a generator of an ideal of a polynomial ring defined by a universal Verma module. The differential operator used in the above correspondence can be regarded as a central element of the enveloping algebra $U(\mathfrak{l})$. This relation is the Capelli identity.

By the quantum universal Verma module, the quantum b-function $b_q(s)$ of (L, \mathfrak{m}^+) is regarded as a generator of an ideal of a Laurent polynomial ring, and

$$b_q(s) = \prod_{\eta \in Wt(\mu) \setminus \{\mu\}} \left[\frac{(s\mu + \rho + \mu, s\mu + \rho + \mu) - (s\mu + \rho + \eta, s\mu + \rho + \eta)}{2m_\eta} \right]_q$$

Here m_{η} is the positive integer defined by $(\mu, \mu - \eta) = m_{\eta} \frac{(\alpha, \alpha)}{2}$, and $[t]_q = \frac{q^t - q^{-t}}{q - q^{-1}}$. By the choice of generator this expression of $b_q(s)$ is up to q_{α}^{ns} multiple $(q_{\alpha} = q^{\frac{(\alpha, \alpha)}{2}})$, $n \in \mathbb{Z}$). Clearly the zero points of b(s) coincide with those of $b_q(s)$. The proof of these results from universal Verma modules do not depend on types of simple Lie algebras \mathfrak{g} .