(2) My results

1. "Seifert complex for links and 2 -variable Alexander matrices":
D. Cooper considered a union of Seifert surfaces of each component of a link. Intersections among Seifert surfaces are allowed, and can be restricted to clasp singularities. He defined it C-complex, and investigated especially the case of 2 -component C-complexces. We confirmed his method, and gave the characterization of the Alexander matrices for 2-component links. By using the result, we reproved the Torres formula, and the Bailey-Nakanishi theorem which is the characterization of the Alexander polynomials for 2-component links with the linking number zero.
2. "Proper link, algebraically split link and Arf invariant" (joint work with A. Yasuhara) :

We defined the new Arf invariant for algebraically split links by using an R-complex. I contributed to show the invariant is well-defined. The ordinary Arf invariant for a proper link is an invariant of the link itself. It satisfies the additivity for boundary links, but does not always satisfy the additivity for algebraically split links. On the other hand, our new Arf invariant for an algebraically split link and an R-complex F is an invariant of the pair of F and a component of F. It satisfies the additivity for algebraically split links.
3. "Component-isotopy of Seifert complexes" :
D. Cooper showed the fundamental moves of 2-component C-complexes. We generalized his result to the case of n-component C-complexes by adding one fundamental move. We also proved this new move cannot be removed by showing an example which are two C-complexes for the Borromean rings. The fundamental moves of singular Seifert surfaces can be obtained by the similar way.

4. "Detecting non-triviality of virtual links":

We consider the non-triviality of virtual links by using the supporting genus which is the minimal genus of a surface-realization of a virtual link diagram. A virtual link has the underlying projected virtual link (pv-link) which is obtained by identifying positive crossings and negative crossings. We gave an algorithm to obtain the supporting genus of a pv-link. By using the algorithm, we proved the virtual knot, which had been outstanding whether it is trivial or not, has the supporting genus 2. (i.e. non-trivial) We pointed out that there is a relation between the Virtual Knot Theory and the 2-dimensional hyperbolic geometry. In the other paper, we consider the connected sum of pv-links.
5. "On the additivity of 3 -dimensional clasp numbers":

Let K be a knot in the 3 -sphere. The clasp number $c(K)$ of K is the minimal number of clasps on clasp disks spanning K. We consider a question "Let K_{1} and K_{2} be knots. Then $c\left(K_{1} \sharp K_{2}\right)=c\left(K_{1}\right)+c\left(K_{2}\right)$?" It had been proved that the question is affirmative if $c\left(K_{1} \sharp K_{2}\right) \leq 3$. We proved that the case of $c\left(K_{1} \sharp K_{2}\right) \leq 5$ is affirmative. In the other paper, we showed a table of the clasp number for prime knots with crossing number at most 10.
6. "Reidemeister torsion of homology lens spaces":
V. Turaev gave a method how to compute the Reidemeister torsion of compact 3-manifolds. In particular, for a homology lens space, it is computed by the Alexander polynomial of a knot in a homology 3 -sphere, and a surgery coefficient p / q. By using the result, we consider the case that K has (1) the Alexander polynomial which is the same as a torus knot, (2) the Alexander polynomial of degree 2, and (3) the Alexander polynomial which is the same as a $(-2, m, n)$-pretzel knot (joint work with Y. Yamada), and conditions that the Reidemeister torsion of a rational surgery along K is the same as that of a lens space. We gave the necessary and sufficient condition for (1), and showed that the Alexander polynomial of K should be $t^{2}-t+1$ for (2). We generalized the results for the case that the Alexander polynomial of K is of degree $2 g$. In (3), we confirmed the speciality of the ($-2,3,7$)-pretzel knot. From these techniques, we also investigate Iwasawa polynomial in Number Theory with certain number theorists.

