Results

Supersymmetry is one of the most attractive theoretical ideas not only for mathematical physics but also for phenomenological physics. In particular, $\mathcal{N} = 1$ supersymmetry is closely related to our real world. For example, possibilities of restoring $\mathcal{N} = 1$ supersymmetry attract much attention recently. It is important also to derive $\mathcal{N} = 1$ information from extended supersymmetries in the light of string theory which requires supersymmetries for its consistency. For that purpose, we have to get $\mathcal{N} = 1$ supersymmetry from spontaneous partial breaking of extended supersymmetries. Antoniadis-Partouche-Taylor (APT) constructed the U(1) gauge model which breaks $\mathcal{N} = 2$ supersymmetry to $\mathcal{N} = 1$ spontaneously by the electric and magnetic Fayet-Iliopoulos (FI) terms . I studied the U(N) generalization of the APT model in the following papers;

[1] K. Fujiwara, H. Itoyama and M. Sakaguchi, "Supersymmetric U(N) gauge model and partial breaking of N = 2 supersymmetry," Prog. Theor. Phys. **113** (2005) 429.

We constructed the $\mathcal{N} = 2 \ U(N)$ gauge model which is equipped by the FI D-term and the superpotential. At vacua, there is one Nambu-Goldstone fermion, which represents spontaneous breaking of supersymmetry.

[2] K. Fujiwara, H. Itoyama and M. Sakaguchi, "Partial breaking of N = 2 supersymmetry and of gauge symmetry in the U(N) gauge model," Nucl. Phys. B **723** (2005) 33.

We studied partial breaking of $\mathcal{N} = 2$ supersymmetry and partial breaking of U(N) gauge symmetry. Examining vacua of the model, we showed that the Nambu-Goldstone fermion exists in the overall U(1) part of U(N) and there are three types of multiplets, massless $\mathcal{N} = 1$ vector multiplets, massive $\mathcal{N} = 1$ chiral multiplets, and massive $\mathcal{N} = 1$ vector multiplets.

We considered a manifestly $\mathcal{N} = 2$ formulation of U(N) gauge model [1,2] with/without $\mathcal{N} = 2$ hypermultiplets in the harmonic superspace. We introduced the electric and magnetic FI terms guided by the shift of the auxiliary field in the $\mathcal{N} = 2$ vector superfield. It overcomes the difficulty in coupling hypermultiplets to the APT model.

^[3] K. Fujiwara, H. Itoyama and M. Sakaguchi, "Partial supersymmetry breaking and N = 2 U(N(c)) gauge model with hypermultiplets in harmonic superspace," Nucl. Phys. B **740** (2006) 58 .

^[4] K. Fujiwara, "Partial breaking of N = 2 supersymmetry and decoupling limit of Nambu-Goldstone fermion in U(N) gauge model," Nucl. Phys. B **770** (2007) 145.

I studied the decoupling limit of the Nambu-Goldstone fermion. Under the decoupling limit, the action becomes a classical $\mathcal{N} = 2$ action. But there is non-trivial superpotential due to the electric and magnetic FI terms . Thus we can identify the origin of the fermionic shift symmetry with the second, spontaneously broken supersymmetry.