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From covering to surgery presentations. A covering presentation of a
3–manifold M is a knot K ⊂ S3 and a representation ρ from its knot group
onto a finite group of permutations G ⊂ Sym (∗1, . . . , ∗n). The manifold M

is constructed as a covering space of S3 branched over K with monodromy
uniquely specified by the permutation action of G on the sheets given by
ρ. Another way of presenting M is via a surgery presentation, in which M

is presented as an (integral) framed link in S3. Here M is recovered by
(integral Dehn) surgery along the link.

Any compact oriented connected 3–manifold M has both covering presen-
tations and surgery presentations. Roughly speaking, covering presentations
have been useful in classical knot theory, while surgery has been useful in
quantum topology. I have been interested in translating from covering pre-
sentations to surgery presentations. When G is a cyclic group, there is a
well-known construction whereby K is untied by surgery, and the surgery
link is then lifted to the cyclic cover to yield a surgery presentation for M .

The next case to consider is when G is a dihedral group D2n (n an odd in-
teger). I analyzed the set of covering presentations (K, ρ) with ρ a represen-
tation of the knot group onto D2n modulo surgery by unknotted loops whose
meridians lie in ker ρ (these are the loops which will lift to the branched di-
hedral cover to give a surgery presentation of M). There turn out to be n

such equivalence classes, each of which have representatives which lift in a
standard way to the dihedral covering, together with the surgery curves in
their complement. This was proved for G = D6 and G = D10 in my thesis,
an upper bound of 2n on the number of equivalence classes was established
by Litherland and Wallace, and the construction was completed by Kricker
and myself in 2007. I have also shown an analogue for the Kirby theorem
in this context which tells us when two surgery presentations for the same
knot lift to surgery presentations for the same dihedral covering manifold. A
corollary to the construction, combining with results of Przytycki, Sokolov,
and Sakuma, is that dihedral symmetry of a 3-manifold implies dihedral
symmetry of some surgery presentation.

Going further, I have considered G = A4 (symmetries of an oriented tetra-
hedron). Like the dihedral groups, A4 is metabelian, and its commutator
subgroup (the Klein four group) is small and easy to work with. Combining
the method which worked in the dihedral case with some ad hoc steps, I have
been able to translate from an A4 covering presentation of a 3–manifold and
a covering link to a surgery presentation.

I am interested in generalizing to all metabelian groups, for which new
ideas are necessary.
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Quantum topology for branched covering spaces. In my thesis, I
used the translation from covering presentation to define a dihedral analogue
to Garoufalidis and Kricker’s rational Kontsevich integral of a knot when
G = D2n for n = 3, 5. Its 1–loop part gives a non-commutative analogue to
the Alexander polynomial for pairs (K, ρ), and as a 2–loop part I would like
to obtain an analogue to the 2–loop polynomial. The construction I have
now can be significantly improved using the Kricker and my new translation
procedure. The goal is quantum topology for branched covering spaces, and
the covering links which they contain.

Yoshida’s parametrization of the Prym covering of Hitchin’s mod-

uli space. Tomoyoshi Yoshida has set out to complete Atiyah and Hitchin’s
programme for the abelianization of the SU(2) WZW model, thus deter-
mining an explicit basis for the space of SU(2) conformal blocks in terms of
Riemann theta functions. The first part of his work involves explicitly pa-
rameterizing the Prym cover of the Hitchin moduli space of Higgs bundles.
Jointly with S.K. Hansen I used a graph theoretic approach to flesh out and
simplify the details in its construction, which is suitable for the more general
case where Φ may have poles.

Combinatorics of Jacobi diagrams. A finite type invariant of a link is
determined by two pieces of information— a Jacobi diagram (a purely com-
binatorial object consisting of a formal sum over Q of uni-trivalent graphs
modulo relations), and a representation of a ribbon Hopf algebra (a gen-
eralization of a quantum group). A Jacobi diagram consisting of a single
connected graph is said to be n–loop if its Euler number is 1− n. Spaces of
0–loop Jacobi diagrams correspond to free Lie algebras. I determined a new
combinatorial approach to study and enumerate them, with which I could
reprove some classical theorems of free Lie algebras.

One important open question in the theory of finite-type invariants is
whether they can detect knot orientation. In a joint paper with T. Ohtsuki
we proved that the space of 3–loop Jacobi diagrams of odd degree vanishes.
This implies that no n–loop finite type invariant can detect knot orientation
when n < 4.

Self–linking number. Knot theory as a mathematical discipline is often
said to have started with Gauss’s integral formula for the linking number of
two curves. In the later 1950’s and early 1960’s, this formula was modified
to give an invariant of a single closed space curve— i.e. a knot (with a
framing). There are two main approaches to define the self–linking invariant
of a (framed) knot, corresponding to two different ways to compactify the
configuration space of pairs of points on the knot. In a project for Dror Bar-
Natan in Jerusalem, I proved the known result that these two approaches
yield the same invariant.


