定義 (Ebeling-Ploog 参照) \mathbb{C}^3 の 2 つの bimodular 特異点の芽 B=(0,(f=0)) と B'=(0,(f'=0)) について特異点の組 (B,B') が transpose dual とは以下の 3 条件をみたすことをいう.

- (1) 定義多項式 f, f' は可逆である.
- (2) f と f' のベキを並べた行列 $A_f, A_{f'}$ は互いに転置である.
- (3) f (resp. f') は $|-K_{\mathbb{P}(a)}|$ (resp. $|-K_{\mathbb{P}(b)}|$) の 4 項を持つ多項式 F (resp. F') にコンパクト化される. ここで $\mathbb{P}(a)$ (resp. $\mathbb{P}(b)$) は重みが a (resp. b) であり、その一般の反標準因子が Gorenstein K3 であるような 3 次元重み付き射影空間である.

植田氏との共同研究において各 trnaspose-dual のペア (B, B') について以下の定理を得た.

定理 (M-Ueda) Transpose-dual のペア (B, B') に対して,反射的な多面体 Δ が存在して $\Delta_F \subset \Delta$ と $\Delta_{F'} \subset \Delta^*$ が成り立つ.ここで Δ_F $(resp. \Delta_{F'})$ は頂点に対応する単項式がすべて F (resp. F') への作用で不変であるような F (resp. F') の Newton 多面体である.

定理 (M-Ueda) で得られた反射的な多面体を Δ とする. 多面体 Δ に対応するトーリック多様体 X_{Δ} の極小モデル $\widetilde{X_{\Delta}}$ から Δ -regular メンバー S の極小モデル \widetilde{S} への自然な制限写像 r は $H^{1,1}(\widetilde{X_{\Delta}})$ から $H^{1,1}(\widetilde{S})$ の制限写像 r_* を導く. \widetilde{S} の Picard 格子 $\operatorname{Pic}(\Delta) := H^{1,1}(\widetilde{S}) \cap H^2(\widetilde{S}, \mathbb{Z})$ と K3 格子の中でのその直交補空間 $T(\Delta)$ を定め、次の問題を考える.

問題 格子の間の同型 $\operatorname{Pic}(\Delta) \simeq U \oplus T(\Delta^*)$ は成り立つか?

次の主定理が得られた:

主定理 先の反射的な多面体 Δ に対し,同型 $\mathrm{Pic}(\Delta) \simeq U \oplus T(\Delta^*)$ が成り立つためには写像 r_* が全射であることが必要かつ十分である.また,そのときの Picard 格子 $\mathrm{Pic}(\Delta)$ と $\mathrm{Pic}(\Delta^*)$ は次の表示を持つ.ここでは $C_8^6 := \begin{pmatrix} -4 & 1 \\ 1 & -2 \end{pmatrix}$ と記し,特異点の記号は Arnold に依る.

1		
4	$U \oplus A_2$	E_{18}
3	$U \oplus A_1$	E_{19}
2	U	E_{20}
4	$U \oplus C_8^6$	Z_{17}
3	$U \oplus A_1$	Z_{19}
4	$U \oplus A_2$	E_{30}
	3 2 4 3	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Picard 格子の同型だけでなく、族の間の双有理的関係も得られた. 系 特異点 Q_{12} と Q_{18} $(resp. Z_{1,0}$ と $E_{25})$ をコンパクト化して得られた K3 曲面族は双有理的な一般元を持つ.