
1. Context: from braid groups to loop braid groups

The braid groups Bn, introduced by Hurwitz [16] in 1891 as fundamental groups of
configuration spaces of n points in the complex plane, owe their name to Artin [2], which
considered them in terms of braid automorphisms of the free group on n generators Fn.
Magnus [21] considered the same groups from the point of view of mapping classes, while
Markov [23] introduced these groups from a purely group-theoretic point of view. All these
points of view have long been known to be equivalent [29].

The loop braid groups LBn, introduced under this name in [3], have a very similar
nature. Loop braids have first been considered as motions of n unknotted, unlinked circles
in R3 [14, 15], a notion that can be translated in terms of mapping classes. McCool and
Savushkina [24, 25] considered them as basis-conjugating automorphisms and permutation
conjugacy automorphisms of Fn. They are also known in the literature as welded braids, as
defined by Fenn-Rimány-Rourke [11], in the form of elements of a presented group, with
diagrams representing them. More recently, in [9] an interpretation of these groups appeared
in terms of the fundamental groups of the configuration spaces of n unlinked euclidean circles.
Moreover one could give a topological interpretation of loop braids in terms of braided ribbon
tubes, i.e., as 2-dimensional submanifolds of R4 that bound immersed 3-manifolds with only
ribbon singularities, and of Gauss braid diagrams – a point of view that allows us to consider
loop braid groups as quotients of virtual braid groups.

2. Results

2.1. Unifying the different approaches to loop braid groups. In addition to appearing
in many areas of pure mathematics, thanks to their nature similar to braid groups Bn, loop
braid groups (together with their representations) are getting a lot of attention in the
mathematical physic’s branch of statistics of loop-like objects in three spatial dimensions [3,
10, 20]. Several parallel formulations and notations are being used by researchers working
in different fields, this is why a well-established collection of these formalisms was needed.
Although the equivalence of some of the points of view was already proved or at least stated
in the literature, for example in [4], the explicit isomorphisms between some of them were
not yet to be found. In my thesis I introduced the several interpretations of loop braid
groups appeared in the literature, and provided a complete proof of the equivalence of these
formulations. This provided a clear and well-established theoretical setting for these groups,
as the one we have in the case of the braid group Bn. Moreover I was able to find some
topological applications. This result appears, in a more synthetic form in preprint [26],
submitted in May 2016.

2.2. Towards a topological version of Markov’s theorem for ribbon torus-links.
Using the understanding of the interpretation of loop braids as ribbon knotted objects, I
started working on the adaptation of a classical result of braid theory, beginning with Markov’s
theorem: two braids (possibly with different numbers of strings) have isotopic closures in
R3 if and only if one can be obtained from the other with a finite number of Markov moves,
called conjugation and stabilization. This theorem allows to describe all braids with isotopic
closures as knots in R3. In the classical case many proofs are known ([6, 8, 18,22, 28]): some
of them are combinatorial, other topological, and these last ones are particularly beautiful in
this framework, as they use all of the isomorphisms between the different definitions of braid
groups. Sorting out a topological version of Markov’s theorem entailed the complication of
dealing with the fact that ribbon tubes in R4 could change orientation (seeing this from the
point of view of movements of circles in time, it corresponds to a circle making a “flip” of 180
degrees) whilst 1-dimensional manifolds in R3 do not present this problem.

Using the approach of [28] and [18] I have been able to prove a version of Markov theorem
for ribbon braids with closure in a solid torus in the 4-dimensional space, i.e., a 3-ball times
the circle S1:
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Theorem 2.1. For any n ≥ 1 and any β, β′ ∈ LBn, the closed ribbon braids β̂, β̂′ are isotopic
in B3 × S1 if and only if β and β′ are conjugate in LBext

n .

To extend it to R4 means to prove the invariance for stabilization. Following the approach
of [18] would mean to use the diagrammatic description of loop braids given by [19], but
this would not cast a light on the topological structure. Besides, it shall be recalled that for
welded braid diagrams and welded links there already is a combinatorial version of Markov’s
theorem, due to Kamada [17]. So in my future plans I will consider Bennequin’s proof and
use contact structures to prove a complete topological version of Markov’s theorem for loop
braids and extended loop braids.

2.3. Alexander invariants for ribbon tangles and planar algebras. In a joint work
with Vincent Florens of the University of Pau, we have been working on an Alexander invariant
defined on ribbon tangles. From this invariant we can extract a functorial generalization of
the Alexander polynomial, which goes from the category of ribbon cobordisms to the category
of graded modules. This functor is an extension of the Alexander functor for classical tangles
defined in [7] and [13]. When considered on braid-like objects, this functor coincides with the
exterior powers of the Burau representation extended to ribbon braids. This invariant has a
profund topological meaning, being a generalization of the classical Alexander polynomial of
links to ribbon tangles, but lacked a simple way of computation. We found a combinatorial
“easy” way of computing establishing a correspondence with Jana Archibal’s multivariable
Alexander polynomial for virtual/welded tangles defined in [1]. This second invariant is
defined on diagrams being part of a circuit algebra structure. This last one is a generalisation
of Jones’ planar algebras, or, more explicitly a morphism between the operad of circuit
diagrams, which are composed by disks with points marked on the border, a finite number of
subdisks removed, and arcs relying the points (the circuit comes from the fact that important
information carried by these diagrams is how points are paired), and the operad of modules
on a certain ring. So before the making of the bridge between the two invariants, this second
one lacked of a topological interpretation. One of the main difficulties has been working with
ribbon cobordism and modules categories on one side, and tensor algebras with a circuit
algebra structure on the other side, and having to translate the two sides in a common
formalism: we overcame it defining a circuit algebra structure on the topological objects.
This work resulted in a preprint [27], now submitted.

2.4. Quotients of the virtual braid group. In a joint work with Valeriy Bardakov and
Paolo Bellingeri we studied the group of unrestricted virtual braids UV Bn, a quotient of
the virtual and welded braid groups, and described its structure, the main result being the
following:

Theorem 2.2 ([5, Theorem 2.4]). Let Xn be the right-angled Artin group generated by xi,j for
1 ≤ i 6= j ≤ n where all generators commute except the pairs xi,j and xj,i for 1 ≤ i 6= j ≤ n.
The group UV Bn is isomorphic to XnoSn where Sn, the group of permutations on n elements,
acts by permutation on the indices of generators of Xn.

Using the insight given by knowing its structure, we showed that any fused link admits as
a representative the closure of a pure unrestricted virtual braid, and deduced an easy proof of
a theorem of Fish and Keyman [12] stating that fused links that have only classical crossings
are characterized by their linking numbers. Furthermore we constructed a representation
for UV Bn in the group of automorphisms of the free 2-step nilpotent group of rank n which
allowed us to defined a notion of group of fused links. This work resulted in a publication [5].
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