研究成果

有限次元既約 $U_q(\mathfrak{g})$ 加群のテンソル積の中に現れる有限次元既約 $U_q(\mathfrak{g})$ 加群の多重度(分岐係数)は、安定化領域において Littlewood-Richardson(LR) 係数 3 個の積の和で表現される.ここで、 \mathfrak{g} は $\mathfrak{so}(2n+1,\mathbb{C})$ (B_n 型)、 $\mathfrak{sp}(2n,\mathbb{C})$ (C_n 型)、および $\mathfrak{so}(2n,\mathbb{C})$ (D_n 型)である.この分岐則公式を柏原クリスタルで表現することに成功した [3].

第2の成果は奇妙な Lie 超代数(queer Lie superalgebra)のクリスタル $\mathfrak{q}(n)$ に関するものである [1]. まず、プライムド・タブローの集合に $\mathfrak{q}(n)$ クリスタルの構造が入ることを証明し、奇型の柏原作用素のアルゴリズムを具体的に与えた。また、正規 $\mathfrak{q}(n)$ クリスタルに特徴的な最高ウェイト・ヴェクトルおよび最低ウェイト・ヴェクトル(ともに一意的に存在する)の形も決定した。これらの結果を用い、さらに B 型 Coxeter 群の簡約語の符号付ユニモダル分解(m 因子)の集合に $\mathfrak{q}(m)$ クリスタルの構造が入ることを解明した。奇型の柏原作用素については、そのアルゴリズムを具体的に与えた。

第3の成果も奇妙な Lie 超代数のクリスタルー以下、奇妙な超クリスタルと呼ぶことにする一に関するものになる [2]. これは、固定点のない(FPF)対合語の増大列分解の集合に奇妙な超クリスタルの構造が入ることを示したものである。最近 Marberg [4] によって導入されたシンプレクティック・シフテッド Hecke 挿入アルゴリズムを用い、FPF 対合語の増大列分解の集合とプライムド・タブローの集合(前述のように奇妙な超クリスタルの構造をもつ)の間に 1 対 1 対応を確立した。この 1 対 1 対応を確立するために、2 つの FPF 対合語が Coxeter-Knuth 関係をもつこととシンプレクティック・シフテッド Hecke 挿入で同じ挿入タブローを与えることが同値であることを証明した。

参考文献

- [1] T. Hiroshima, q-crystal structure on primed tableaux and on signed unimodal factorizations of reduced words of type B, Publ. RIMS Kyoto Univ. **55** (2019) 369–399.
- [2] T. Hiroshima, Queer supercrystal structure for increasing factorizations of fixed-point-free involution words, arXiv:math/1907.10836v1.
- [3] T. Hiroshima, Crystal interpretation of a formula on the branching rule of type B_n , C_n , and D_n , Math. J. Okayama Univ. **62** (2020) 87–178.
- [4] E. Marberg, A symplectic refinement of shifted Hecke insertion, arXiv:math/1901.06771v3.