RESEARCH RESULTS

AIRI ASO

Twisted Alexander polynomial is a generalization of Alexander polynomial, which is one of the classical invariants of knots, and is defined for a knot and a representation of the fundamental group of the knot complement. Twisted Alexander polynomial was introduced by Lin [1], and Wada defined it for arbitrary finitely presentable groups and its representations [2] in 1990's. Wada showed that the twisted Alexander polynomial can distinguish Kinoshita-Terasaka knot and Conway's 11 crossing knots, whose Alexander polynomials are trivial [2].

It is known that there are relations between twisted Alexander polynomials and the properties of knots, e.g. the genus and the fiberedness of knots. More precisely, for a knot K and a nonabelian $\operatorname{SL}(2, \mathbb{F})$-representation $\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow \mathrm{SL}(2, \mathbb{F})$ of $\pi_{1}\left(S^{3} \backslash K\right)$, the degree of the twisted Alexander polynomial $\Delta_{K, \rho}(t)$ (i.e. the difference of the the highest degree and the lowest degree of $\left.\Delta_{K, \rho}(t)\right)$ is less than or equal to the number obtained from the genus of K, and if K is fibered $\Delta_{K, \rho}(t)$ is a monic polynomial.

We say that a knot is hyperbolic if the knot complement admits a complete hyperbolic metric of finite volume. For a hyperbolic knot K, there is a canonical representation of the fundamental group $\pi_{1}\left(S^{3} \backslash K\right)$ of the knot complement, called the holonomy representation of K, and Dunfield-Friedl-Jackson [4] conjectured that the genus and fiberedness of K are determined by the twisted Alexander polynomial associated to the holonomy representation of K (in what follws, we call this conjecture "Conjecture A").

In [5], for a $(-2,3,2 n+1)$-pretzel knot K and a family of representations of $\pi_{1}\left(S^{3} \backslash K\right)$ which contains the holonomy representation of K, we computed the twisted Alexander polynomials of K associated to each representation in the family, and we proved that the above Conjecture A is true for ($-2,3,2 n+1$)-pretzel knots. Moreover, in [6], we studied the twisted Alexander polynomials of all Montesinos knots with tunnel number one which contains $(-2,3,2 n+1)$-pretzel knots and two-bridge knots. More precisely, for a family, which contains ($-2,3,2 n+1$)-pretzel knots, and two-bridge knots, we computed the degree and the leading coefficient of their twisted Alexander polynomials associated to any $\operatorname{SL}(2, \mathbb{C})$-representations, and then we reduced Conjecture A to a certain condition of the holonomy representations. For other Montesinos knots with tunnel number one, in a similar way as in [5], we computed twisted Alexander polynomials associated to any $\operatorname{SL}(2, \mathbb{C})$-representations, and we proved that Conjecture A is true in this case.

Another application of the twisted Alexander polynomial is some relations to the hyperbolic volume. For a cusped hyperbolic 3-manifold, Menal-Ferrer-Porti showed that the hyperbolic volume appears in the asymptotic behavior of Reidemeister torsion [7], and Kitano [8] and Yamaguchi [9] showed some relations between the twisted Alexander polynomials of knots and the Reidemeister torsions. By using these results, Goda [10] proved that for a hyperbolic knot K, the hyperbolic volume $\operatorname{Vol}\left(S^{3} \backslash K\right)$ of $S^{3} \backslash K$ appears in the asymptotic behavior of the twisted Alexander polynomials associated to certain $\operatorname{SL}(n, \mathbb{C})$-representations ρ_{n}, where ρ_{n} is induced from the holonomy representation of K. Furthermore, Park gave a generalization of the formula of the hyperbolic volume with the Reidemeister torsion, and he conjectured that the complex volume is obtained by a complexification of his results [11]. Here the complex volume $\operatorname{cv}(M)$ of a hyperbolic manifold M is defined to be the complex number $\operatorname{Vol}(M)+2 \pi^{2} \operatorname{cs}(M) \sqrt{-1}$ whose real part is the hyperbolic volume $\operatorname{Vol}(M)$ of M and the imaginary part is a multiple of the Chern-Simons invariant $\operatorname{cs}(M)$ of M.

In my recent work, to obtain a complexification of Goda's formula in [10], for any hyperbolic knot K of 6 crossings or fewer, we studied the asymptotic behavior of the twisted Alexander polynomials of K associated to ρ_{n}, and we conjectured the equality

$$
\lim _{n \rightarrow \infty} \frac{4 \pi \log \Delta_{K, \rho_{n}}(1)}{n^{2}}=\operatorname{cv}\left(S^{3} \backslash K\right)
$$

In fact, we observed that the left hand side approaches to $\operatorname{cv}\left(S^{3} \backslash K\right)$ as n gets bigger.

References

[1] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin., 17 (2001), 361-380.
[2] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology, 33 (1994), 241-256.
[3] T. Kitano and T. Morifuji, Divisibility of twisted Alexander polynomials and fibered knots, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IV (2005), 179-186.
[4] N. Dunfield, S. Friedl and N. Jackson, Twisted Alexander polynomials of hyperbolic knots, Exp. Math., 21 (2012), 329-352.
[5] A. Aso, Twisted Alexander polynomials of $(-2,3,2 n+1)$-pretzel knots, Hiroshima Math. J., 50 (2020), 43-57.
[6] A. Aso, Twisted Alexander polynomials of tunnel number one Montesinos knots, arXiv:2008.00875.
[7] P. Menal-Ferrer and J. Porti, Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds, J. Topol. 7 (2014), no. 1, 69-119.
[8] T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), no. 2, 431-442.
[9] Y. Yamaguchi, A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 337-362.
[10] H. Goda, Twisted Alexander invariants and hyperbolic volume, Proc. Jpn. Acad. Ser. A 93 (2017), 61-66.
[11] J. Park, Reidemeister torsion, complex volume and the Zograf infinite product for hyperbolic 3-manifolds, Geom. Topol. 23 (2019) 3687-3734.

