Research plan

Takanori Ayano

I will construct the concrete theory of Abelian functions for higher genus curves.

1. Degeneration of the inverse function of the hyperelliptic integrals.

Let $\alpha_{1}, \ldots, \alpha_{5}$ be five distinct complex numbers, V be the hyperelliptic curve of genus 2 defined by $y^{2}=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{5}\right)$, and α be a complex number such that $\alpha \neq \alpha_{i}$ for any i. Let

$$
u=\int_{\left(\alpha_{1}, 0\right)}^{(x, y)}-\frac{x-\alpha}{2 y} d x
$$

We can regard x and y as functions of u. Since $y(u)$ can be expressed in terms of $x(u)$ and $x^{\prime}(u)$, by substituting this expression into the defining equation of V, we can obtain the differential equation satisfied by $x(u)$. In this research, we will derive the recurrence formulae with respect to the coefficients of the series expansion of $x(u)$ around $u=0$. When we take $\alpha_{4}, \alpha_{5} \rightarrow \alpha$, the curve V becomes a singular curve. This singular curve is birationally equivalent to the elliptic curve E defined by $y^{2}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$. In this research, we will give relationships between the limit of $x(u)$ under $\alpha_{4}, \alpha_{5} \rightarrow \alpha$ and the Weierstrass elliptic function associated with E. Further, we will study whether the convergence of $x(u)$ under $\alpha_{4}, \alpha_{5} \rightarrow \alpha$ becomes the uniform convergence.
2. We will decompose a meromorphic function on \mathbb{C}^{2} into a product of a holomorphic function and a meromorphic function.

Let $f(x)$ be a polynomial of degree $5, V$ be the hyperellptic curve of genus 2 defined by $y^{2}=f(x)$, and $\sigma(u)=\sigma\left(u_{1}, u_{3}\right)$ be the sigma funciton associated with V. The function σ is a holomorphic function on \mathbb{C}^{2}. Let $\sigma_{i}=\frac{\partial}{\partial u_{i}} \sigma$ and $\wp_{i, j}=\frac{\partial}{\partial u_{i} \partial u_{j}}(-\log \sigma)$. Via the Abel-Jacobi map, the rational function x on V can be identified with the meromorphic functions $g(u)=\wp_{1,1}(2 u) / 2$ and $h(u)=-\sigma_{3}(u) / \sigma_{1}(u)$. Then there exists a meromorphic function k on \mathbb{C}^{2} such that the relation $g-h=\sigma k$ holds on \mathbb{C}^{2}. In this research, we will give an explicit expression of k in terms of σ.

3. Relationships between Abelian functions of genus 2 and elliptic func-

 tions.Let $f(x)$ be a polynomial of degree 3 such that $f(x)$ has no multiple root and $f(0) \neq 0$, V be the hyperelliptic curve of genus 2 defined by $y^{2}=f\left(x^{2}\right), E_{1}$ be the elliptic curve defined by $y^{2}=f(x), E_{2}$ be the elliptic curve defined by $y^{2}=x^{3} f(1 / x)$, and $\operatorname{Jac}(V), \operatorname{Jac}\left(E_{1}\right), \operatorname{Jac}\left(E_{2}\right)$ be the Jacobians of V, E_{1}, E_{2}, respectively. Then we can construct morphisms $\varphi_{1}: V \rightarrow E_{1}$ and $\varphi_{2}: V \rightarrow E_{2}$. By these morphisms, the holomorphic maps

$$
\psi_{1}: \operatorname{Jac}(V) \rightarrow \operatorname{Jac}\left(E_{1}\right), \quad \psi_{2}: \operatorname{Jac}(V) \rightarrow \operatorname{Jac}\left(E_{2}\right)
$$

are induced. In this research, we will express ψ_{k} explicitly. By pulling back the Weierstrass elliptic functions associated with E_{k} by ψ_{k}, we can obtain an Abelian function f_{k} associated with V. In this research, we will express f_{k} in terms of the fundamental Abelian functions $\wp_{i, j}$. Further, we will pull back the addition formula of the Weierstrass elliptic function by the map ψ_{k} and derive the addition formula of f_{k}.

