Abstract of present research

Our study is polynomial approximation theory as an application of potential theory. On \mathbb{R}, every polynomial $P(t)$ blows up as $|t| \rightarrow \infty$, we must multiply a weight function $w(t)$. Then, for $1 \leq p \leq \infty$ and $f w \in L^{p}(\mathbb{R})$, is there exist a sequence of polynomials $\left\{P_{n}\right\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(f-P_{n}\right) w\right\|_{L^{p}(\mathbb{R})}=0 \tag{A}
\end{equation*}
$$

holds? We assume that an exponential weight w belongs to relevant class $\mathcal{F}\left(C^{2}+\right)$. Let w be $w(t)=\exp (-Q(t))$. We consider a function $T(t):=t Q^{\prime}(t) / Q(t),(t \neq 0)$. If T is bounded, then w is called a Freud-type weight, and otherwise, w is called an Erdős-type weight. In this study, we consider Erdős-type weights.

1. Convergence of the de la Vallée Poussin mean: The de la Vallée Poussin mean $v_{n}(f)$ of f is defined by $v_{n}(f)(t):=\frac{1}{n} \sum_{j=n+1}^{2 n} s_{j}(f)(t)$, where $s_{m}(f)(x)$ is the partial sum of Fourier series of f for orthogonal polynomials with respect to w. The degree of approximation for f defined by $E_{p, n}(w ; f):=\inf _{P \in \mathcal{P}_{n}}\|(f-P) w\|_{L^{p}(\mathbb{R})}$. Here, \mathcal{P}_{n} is the set of all polynomials of degree at most n. We assume that $w \in \mathcal{F}\left(C^{2}+\right)$ and suppose that $T\left(a_{n}\right) \leq c\left(n / a_{n}\right)^{2 / 3}$ for some $c>0$. Here, the notation a_{n} is called MRS number. Then there exists a constant $C \geq 1$ such that for every $n \in \mathbb{N}$ and when $f w \in L^{p}(\mathbb{R})$,

$$
\begin{equation*}
\left\|\left(f-v_{n}(f)\right) w\right\|_{L^{p}(\mathbb{R})} \leq C T^{1 / 4}\left(a_{n}\right) E_{p, n}(w ; f) \tag{B}
\end{equation*}
$$

We show the following two conditions such that the right side of (B) converge to 0 as $n \rightarrow \infty$. First, if w belongs to smooth subclass $\mathcal{F}_{\lambda}\left(C^{3}+\right)$ and $T^{1 / 4} f w \in L^{p}(\mathbb{R})$, second, if f be an absolutely continuous function with $f^{\prime} w \in L^{p}(\mathbb{R})$. Then the de la Vallée Poussin mean $v_{n}(f)$ for a function f gives one of the concrete example of (A). Moreover, if f is more smoother function, $v_{n}(f)$ is not only a good approximation polynomial for f, but also its derivatives give an approximation for f^{\prime}.
2. Uniform convergence of the Fourier partial sum: By the way, we show the condition uniformly convergence of $s_{n}(f)$ for a weight in a class $\mathcal{F}_{\lambda}\left(C^{3}+\right)$: Let $w \in$ $\mathcal{F}_{\lambda}\left(C^{3}+\right)$ with $0<\lambda<3 / 2$. Suppose that f is continuous and has a bounded variation on any compact interval of \mathbb{R}. If f satisfies $\int_{\mathbb{R}} w(x)|d f(x)|<\infty$, then

$$
\lim _{n \rightarrow \infty}\left\|\left(f-s_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L^{\infty}(\mathbb{R})}=0
$$

3. Lagrange interpolation polynomials: Let w_{ρ} be $w_{\rho}(t):=|t|^{\rho} w(t)$ for $\rho>0$. For $f \in$ $C(\mathbb{R})$, we write the Lagrange interpolation polynomial $L_{n}(f)(t)$ with nodes $\left\{t_{j, n, \rho}\right\}_{j=1}^{n}$, where $\left\{t_{j, n, \rho}\right\}_{j=1}^{n}$ are the zeros of n-th orthogonal polynomial with respect to w_{ρ}. We show the condition such that $L_{n}(f)(t)$ converges to f with w_{ρ} in L^{2}-norm: Let $f \in C(\mathbb{R})$ and $\beta>1 / 2$. If $\left|\left(1+t^{2}\right)^{\beta / 2} w_{\rho}(x) f(x)\right| \rightarrow 0$ as $|t| \rightarrow \infty$, then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(L_{n}(f)-f\right) w_{\rho}\right\|_{L^{2}(\mathbb{R})}=0 \tag{C}
\end{equation*}
$$

Moreover, for $1<p<2$, let $\beta>1 / p$ and $\left|\left(1+t^{2}\right)^{\beta / 2} T^{1 / 2}(t) \Phi^{-1 / 4}(t) w_{\rho}(t) f(t)\right| \rightarrow$ $0(|t| \rightarrow \infty)$ (where, $\left.\Phi(t):=(1+Q(t))^{-2 / 3} T^{-1}(t)\right)$. Then we have (C) in the case of $1<p<2$.

