(a) On a relation between a polytope duality for families of K3 surfaces and coupling.

Introduced by Ebeling, coupling is a duality between two weight systems using the magic square. Bisides, for some weight systems that are coupling pairs, one can find a pair of defining invertible polynomials of some singularities in \mathbb{C}^3 to be strange-dual, and then, they can be projectivized as anticanonical sections in the weighted projective spaces with weight systems determining simple K3 singularities.

Take defining polynomials f and f' of strange-dual singularities in \mathbb{C}^3 and their invertible projectivizations F and F' respectively as anticanonical sections in the weighted projective spaces \mathbb{P}_a and \mathbb{P}_b of weights a and b. We concluded that almost all the strange-dual pairs admit an extension of the Newton polytopes to polar-dual polytopes. We also expect that the result is applied to the geometrical study of reflexive polytopes associated to families of K3 surfaces.

(b) On integral lattices with an automorphism and isolated hypersurface singularities. (joint work with Professor Claus Hertling)

A pair (H, h) of a finitely-generated Z-lattice H and an automorphism h on it is said to admit a standard decomposition into Orlik blocks if the following two conditions are satisfied: (1) H admits a decomposition into h-invariant sublattices $H^{(i)}$ for which there exists an element $e_0^{(i)}$ such that $H^{(i)}$ is generated by finitely-many orbits of $e_0^{(i)}$ by h.

(2) The characteristic polynomials of h on $H^{(i)}$, which we denote by $p_{H^{(i)},h}$, divides the characteristic polynomial $p_{H^{(i-1)},h}$ for $H^{(i-1)}$, for all i.

In other words, the lattice H admits a decomposition with elementary divisors being its characteristic polynomials. In 1972, Orlik conjectured that for any isolated hypersurface singularities, its Milnor lattice together with a monodromy action admit a standard decomposition into Orlik blocks. In our study, we consider Orlik's conjecture for several cases.

Part 1: Let (H, h) be a pair of a single Orlik block H and an automorphism h and consider the power (H, h^{μ}) of the lattice, where μ is the rank of H. Firstly, we give a sufficient condition for (H, h^{μ}) to admit a standard decomposition into Orlik blocks in terms of the set of orders of eigenvalues of h. As an application, together with a result by Orlik and Randell in 1977 that the Milnor lattice of chain-type singularity is of the form $(H_{Mil}, h_{Mil}) = (H_{Mil}, h^{\mu})$ with some automorphism h, we can give a sufficient condition for (H_{Mil}, h_{Mil}) to admit a standard decomposition into Orlik blocks.

Part 2: Consider two single Orlik blocks $(H^{(1)}, h^{(1)})$ and $(H^{(2)}, h^{(2)})$ and their tensor product $(H^{(1)} \otimes H^{(2)}, h^{(1)} \otimes h^{(2)})$. Secondly, we give a sufficient condition for $(H^{(1)} \otimes H^{(2)}, h^{(1)} \otimes h^{(2)})$ to admit a standard decomposition into Orlik blocks in terms of the set of orders of eigenvalues of $h^{(1)} \otimes h^{(2)}$. As an application, we obtain a method to judge a Thom-Sebastiani sum of two appropriate singularities admits a standard decomposition into Orlik blocks.

Part 3: Thirdly, we introduce a notion of "excellent orders" and partly interpret above results.

Part 4: We consider whether or not the Milnor lattice together with a monodromy action admits a standard decomposition into Orlik blocks for cyclic-type singularities. Cooper studied this topic in 1982, but it contains some errors. Following his method using spectral sequences, we carefully investigate generators of the lattice and finally obtain a standard decomposition of the Milnor lattice into Orlik blocks.