Results of my research

Shin'ya Okazaki

A genus 2 handlebody-knot is a genus 2 handlebody embedded in the 3 -sphere, denoted by H. Two handlebody-knots are equivalent if one can be transformed into the other by an isotopy of S^{3}. Cutting along a meridian disk system of H, if we have a knotted solid torus in S^{3}, then we call the spine of the knotted solid torus a constituent knot of H. The constituent knot depend on choice of a meridian disk. There are infinite many meridian disks for a handlebody-knot. Thus, there are infinite many constituent knots for a handlebody-knot. Then, we have the following results.

Let K be a knot in S^{3}. Let $\Delta_{K}(t)$ be the Alexander polynomial of a knot K. The Nakanishi index $m(K)$ of K is the minimum size among all square Alexander matrices of K.

Theorem 1 [O.]
If $K \in C K\left(4_{1}\right)$, then $m(K) \leq 1$ or $\Delta_{K}(t)$ is reducible.
Here, 4_{1} is the handlebody-knot in the table of genus 2 handlebody-knots with up to six crossings. We have that the knot 9_{35} is not a constituent knot of the handlebody-knot 4_{1} by Theorem 1 .

Let $\operatorname{Conj}\left(G_{1}, G_{2}\right)$ be the set of conjugacy classes of homomorphisms from a group G_{1} to a group G_{2}. Let $G(K)$ be a knot group of K.

Theorem 2 [O.]
If $K \in C K\left(4_{1}\right)$, then $\# \operatorname{Conj}\left(G(K), S L\left(2, \mathbb{Z}_{3}\right)\right) \leq 11$ or $\Delta_{K}(t)$ is reducible.
We have that the knot 10_{115} is not a constituent knot of the handlebodyknot 4_{1} by Theorem 2.

Cutting along a meridian disk system of H, we have knotted solid tori in S^{3}. then we call the spine of the knotted solid tori a constituent link of H. Then, we have the following result.

Theorem 3 [O.]
If L is not in $\left\{0_{1}^{2}, 7_{2}^{2}, 9_{6}^{2}, 9_{23}^{2}, 9_{39}^{2}, 9_{54}^{2}\right\}$ and the crossing number of L is less than or equal to 9 , then L is not a constituent link of the handlebody-knot 4_{1}.

Here, $7_{2}^{2}, 9_{6}^{2}, 9_{23}^{2}, 9_{39}^{2}$ and 9_{54}^{2} are 2-component links in the table of links with up to nine crossings by Rolfsen, and 0_{1}^{2} is the two component trivial link.

