Plan of the study (Yosuke Saito)

We use the following notations. For a complex number q satisfying $|q|<1$ and $x \in \mathbb{C}$, set $(x ; q)_{\infty}:=\prod_{n \geq 0}\left(1-x q^{n}\right)$. For $x \in \mathbb{C} \backslash\{0\}$, set $\Theta_{q}(x):=(q ; q)_{\infty}(x ; q)_{\infty}\left(q x^{-1} ; q\right)_{\infty}$ (theta function). By setting $D_{x}=x \frac{\partial}{\partial x}$ (Euler derivative), we define $E_{k}(x ; q):=-D_{x}{ }^{k} \log \Theta_{q}(x) \quad\left(k \in \mathbb{Z}_{>0}\right)$. For complex numbers q, p satisfying $|q|<1,|p|<1$ and $x \in \mathbb{C}$, set $(x ; q, p)_{\infty}:=\prod_{m, n \geq 0}\left(1-x q^{m} p^{n}\right)$. For $x \in \mathbb{C} \backslash\{0\}$, set $\Gamma_{q, p}(x):=\frac{\left(q p x^{-1} ; q, p\right)_{\infty}}{(x ; q, p)_{\infty}}$ (elliptic gamma function).

Let N be an positive integer, β be a complex number, and p be a complex number satisfying $|p|<1$. The Hamiltonian of the elliptic Calogero-Moser system $H_{N}^{\mathrm{CM}}(\beta, p)$ is defined by

$$
H_{N}^{\mathrm{CM}}(\beta, p):=\sum_{i=1}^{N} D_{x_{i}}^{2}-\beta(\beta-1) \sum_{1 \leq i \neq j \leq N} E_{2}\left(x_{i} / x_{j} ; p\right)
$$

Then the following fact is known: the function $\Psi_{N}(x ; \beta, p):=\prod_{1 \leq i \neq j \leq N} \Theta_{p}\left(x_{i} / x_{j}\right)^{\beta / 2}$ satisfies

$$
H_{N}^{\mathrm{CM}}(\beta, p) \Psi_{N}(x ; \beta, p)=\left\{2 N \beta D_{p}+C_{N}(\beta, p)\right\} \Psi_{N}(x ; \beta, p), \cdots(*)
$$

where $C_{N}(\beta, p)$ is a complex number determined by N, β, p. It is remarkable that the derivative $D_{p}=p \frac{\partial}{\partial p}$ is in the right hand side of $(*)$. This means that the elliptic Calogero-Moser system has a solution which involves the infinitesimal deformation of the elliptic modulus p.

Let N be a positive integer, q, p be complex numbers satisfying $|q|<1,|p|<1$, and t be a complex number satisfying $t \in \mathbb{C} \backslash\{0\}$. The Hamiltonian of the elliptic Ruijsenaars system $H_{N}^{\mathrm{R}}(q, t, p)$ is defined by

$$
H_{N}^{\mathrm{R}}(q, t, p):=\sum_{i=1}^{N} \prod_{j \neq i}\left(\frac{\Theta_{p}\left(t x_{i} / x_{j}\right) \Theta_{p}\left(q t^{-1} x_{i} / x_{j}\right)}{\Theta_{p}\left(x_{i} / x_{j}\right) \Theta_{p}\left(q x_{i} / x_{j}\right)}\right)^{\frac{1}{2}} T_{q, x_{i}},
$$

where $T_{q, x}$ is the q-shift operator which is defined by $T_{q, x} f(x)=f(q x)$. Then the function $\Psi_{N}(x ; q, t, p):=\prod_{1 \leq i \neq j \leq N}\left(\frac{\Gamma_{q, p}\left(t x_{i} / x_{j}\right)}{\Gamma_{q, p}\left(x_{i} / x_{j}\right)}\right)^{1 / 2}$ satisfies

$$
H_{N}^{\mathrm{R}}(q, t, p) \Psi_{N}(x ; q, t, p)=t^{\frac{-N+1}{2}} \sum_{i=1}^{N} \prod_{j \neq i} \frac{\Theta_{p}\left(t x_{i} / x_{j}\right)}{\Theta_{p}\left(x_{i} / x_{j}\right)} \Psi_{N}(x ; q, t, p) \cdots(* *)
$$

It is known that by setting $t=q^{\beta}$ and by taking the limit $q \rightarrow 1$ appropriately, the equation ($* *$) degenerates to the equation $(*)$. Thus it is probable that the equation $(* *)$ contains a certain difference deformation of the elliptic modulus p. By standing the point of view, the author will study the elliptic Ruijsenaars system.

